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Abstract

Linear Relation Analysis [28, 39] is now a classical abstract interpretation based on an approx-
imation of reachable numerical states of a program by convex polyhedra. Since it works with
a lattice of infinite depth, it makes use of a widening operator to enforce the convergence of
fixpoint computations. This paper takes place in the many attempts to improve the precision
of the results reached using such a widening. It will first present an extended survey of the ex-
isting approaches in that direction. Then it will investigate the cases where the exact (abstract)
effect of a loop can be computed. This technique is fully compatible with the use of widening,
and whenever it applies, it generally improves both the precision and the performances of the
analysis.
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1 Introduction

Linear Relation Analysis [28, 39] (LRA) is one of the very first applications of abstract interpretation [27].
It aims at computing an upper approximation of the reachable states of a numerical program, as a con-
vex polyhedron (or a set of such polyhedra). It was applied in various domains like compile-time error
detection [29], program parallelization [43], automatic verification [41, 42] and formal proof [10, 11].

Like any approximate verification method, LRA is faced with the compromise between precision and
cost. Since its relatively high cost restricts its applicability, any situation where the precision can be im-
proved at low cost must be exploited. One source of approximation in LRA is widening, an operation that
ensures the termination of iterative computations, by extrapolating an upper approximation of their limits.

Improving the precision of the result of widened iterations has motivated so many works that we will
devote a whole section to their survey. Some authors propose better widening operators, while others
consider the way the widening is applied. The first track raises the question of “what is a better widening?”.
The fact that one single application of a widening operator gives smaller results does not necessarily mean
that its repeated application will involve a convergence towards a more precise limit. Moreover, such “more
precise” widenings, and the use of many proposed application policies — like delaying the widening —
are likely to slow down the convergence, by increasing the number of necessary iterations.

These remarks led us to look at situations where the widening can obviously be improved — in the
sense that it involves a faster convergence towards a better limit — at low cost with respect to the cost of
usual polyhedra operators. A source of inspiration are the so-called “acceleration techniques” proposed
by several authors [14, 64, 23, 32, 7]. These works consist in identifying categories of loops whose effect
can be computed exactly. Roughly speaking, the effect of a simple loop, guarded by a linear condition on
integer variables, and consisting of incrementations/decrementations of these variables can be computed
exactly as a Presburger formula. These methods have the advantage of giving exact results. Now, because
they are exact, they are restricted to some classes of programs (e.g., “flat counter automata”, i.e., without
nested loops). Moreover, the exact computation with integer variables has a very high complexity (2EXP).
So the applicability of these methods is somewhat limited.

In this paper, we investigate on the use of acceleration methods in LRA, in complement to widening. Of
course, when the effect of a loop can be computed exactly (and at low cost) there is no need to approximate
it. Now, since we want to integrate these results in LRA, only the exact abstract effect of the loop is
necessary, that is the convex hull of the reachable states during or after the loop. This means that we
won’t use expensive computations in Presburger arithmetic. Moreover, we only look for an improvement
of standard LRA: wherever an acceleration is possible, its application will improve the results, but the
resulting method is not restricted to those programs where acceleration applies everywhere.

The paper is organized as follows: After a reminder of the principles of LRA (Section 2), Section 3
and Section 4 surveys the existing works about widening and acceleration techniques. Our proposal is
introduced by a motivating example in Section 5. Then, Section 6 addresses the trivial case of a single
loop where variables are just incremented with constants, and defines the notion of abstract acceleration.
In Section 7, we consider the case of several translation and reset loops. We are then able to describe the
mechanisms that we implemented in our tool Aspic (Section 8). In Section 9, some experimental results
are described, before giving some conclusions.

2 Linear Relation Analysis

In this section, we briefly recall the principles of Linear Relation Analysis (LRA), and we introduce some
notations used throughout the paper.

The goal of Linear Relation Analysis is to attach to each control point of a program a system of linear
inequalities satisfied by the numerical variables whenever the control is at that point. This is done by
propagating systems of linear inequalities along the control paths of the program.
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2.1 Convex polyhedra
Let n denote the number of numerical variables. A state of the numerical variables will be a point ~x in the
affine space Qn. The set of solutions of a system of linear inequalities — say, A~x 6 B, where A is an m × n
matrix, for some m > 0, and B is an m-vector — is a (closed convex) polyhedron in Qn. A point (resp., a
ray) of the polyhedron is a point ~x (resp., a vector ~r) such that A~x 6 B (resp., A~r 6 0). A polyhedron P can
also be characterized by a system of generators, which is made of a finite set V of points (called vertices)
and a finite set R of rays, such that each point ~x of P can be expressed as the sum of a convex combination
of elements of V and a positive combination of elements of R:∑

~vi∈V

λi~vi +
∑
~r j∈R

µ j~r j | λi, µ j ∈ Q
+,

∑
λi = 1


If A~x 6 B is a system of constraints, we will often note simply {A~x 6 B} the polyhedron of its solutions.

Similarly, [V,R] will denote the polyhedron generated by the system of generators (V,R). If P is a polyhe-
dron and R ⊂ Qn is a finite set of vectors, we will note P↗R the polyhedron {~x+

∑
~r j∈R µ j~r j | ~x ∈ P, µ j ∈ Q

+}

obtained by adding to P all the vectors of R as new rays.
This double representation of polyhedra, by means of systems of constraints and systems of generators,

is important, since some operations are easier on one or the other representation. Moreover, the knowl-
edge of both representations allows them to be minimized (i.e., removing redundant constraints, and non
extremal vertices and rays). Algorithms have been proposed [22, 47, 63] for translating each representation
into the other.

The lattice of polyhedra: The set of polyhedra in Qn is a lattice, with least element ⊥ (the empty poly-
hedron), greatest element > (the universe polyhedron Qn); the greatest lower bound operator u is the
intersection, but the least upper bound operator t is not the union (which is generally not convex), but the
convex hull, i.e., the least polyhedron containing the operands.

Saturations, redundancies: Let us say that a vertex ~v (resp. a ray ~r) saturates a constraint κ = a~x 6 b if
a~v = b (resp. a~r = 0). Let Sat(κ) denote the set of vertices and rays saturating the constraint κ. A constraint
κ of a polyhedron P is an equation if it is saturated by all the generators of P. A constraint κ is redundant
in a system of constraints, if there is another constraint κ′ in the system such that Sat(κ) ⊂ Sat(κ′) and κ′ is
not an equation. κ and κ′ are mutually redundant if Sat(κ) = Sat(κ′).

2.2 Operations on polyhedra
We define the essential operations used in LRA:

Intersection: A system of constraints of the intersection of two polyhedra is simply the conjunction of
their systems of constraints:

{A~x 6 B} u {A′~x 6 B′} =

{[
A
A′

]
~x 6

[
B
B′

]}
Convex hull: A system of generators of the convex hull P t Q is the union of those of P and Q:

[V,R] t [V ′,R′] = [V ∪ V ′,R ∪ R′]

Affine transformation: The image of a polyhedron P by an affine transformation ~x 7→ C~x + D, where C
is an n× n matrix and D ∈ Qn, is the polyhedron [C~x + D](P) = {~y ∈ Qn | ∃~x ∈ P, ~y = C~x + D}. Then:

[C~x + D][V,R] = [{C~v + D | ~v ∈ V}, {C~r | ~r ∈ R}]

Variable elimination: The projection (or existential quantification) of a polyhedron according to some
variable xi can be obtained
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• either by eliminating xi from the system of constraints of P by the Fourier-Motzkin procedure;
• or by adding to P the rays ~ui and −~ui, where ~ui is the unit vector of the i-th dimension.

The result is noted ∃xi.P. It can be generalized to a set of variables.

Test for inclusion: P is included in Q if and only if all vertices of P belong to Q, and all rays of P are rays
of Q:

[V,R] v {A~x 6 B} ⇔ (∀~v ∈ V, A~v 6 B) ∧ (∀~r ∈ R, A~r 6 0)

Test for emptiness: A polyhedron is empty if and only if it has no vertex:

[V,R] = ∅ ⇔ V = ∅

2.3 Models of programs
Throughout the paper, a program will be represented by an interpreted automaton — or a control-flow
graph —, (K, kinit,T ), where
• K is a finite set of control points
• kinit ∈ K is the initial control point
• T is a finite set of transitions, each transition being a 4-tuple (k, g, a, k′), where k (resp., k′) is the

source (resp., target) control point, g ∈ (Qn 7→ B) is a guard (function from variable valuations to
Booleans), and a ∈ (Qn 7→ Qn) is an action.

Concretely, guards and actions will generally be expressed by means of conditions and assignments on a
setV = x1, x2, . . . xn of variables.

Operational semantics: The set of states of the program is K ×Qn. A state (k, ~x) is reachable if and only
if there exists a sequence of states (k0, ~x0), (k1, ~x1), . . . , (kp, ~xp) such that:
• k0 = kinit, kp = k and ~xp = ~x
• for each i = 0 . . . (p − 1), there exists in T a transition (ki, g, a, ki+1) such that g(~xi) = true and
~xi+1 = a(~xi).

Let R denote the set of reachable states.

Collecting semantics: For each control point k ∈ K, let us define Rk to be the set of possible variable
valuations when the control is in k:

Rk = {~x ∈ Qn | (k, ~x) ∈ R}

Then, we have, for each k ∈ K:

Rk = if k = kinit then Qn else
⋃

(k′,g,a,k)∈T

a(Rk′ ∩ g)

where Rk′ ∩ g stands for {~x ∈ Rk′ | g(~x) = true} and a(Rk′ ∩ g) stands for {a(~x) | ~x ∈ Rk′ ∩ g}.

2.4 The analysis
Abstract semantics: As usual in abstract interpretation, the abstract semantics define approximation of
the sets Rk. Let g] and a] denote respectively the polyhedral approximations of a guard g and an action a:
• if g is a system of linear inequalities, g] = g, otherwise it can be any system of linear inequalities

implied by g, including >, the system with 0 inequalities.
• if a is an affine assignment, say ~x := C~x + D, then a] = a. Otherwise, it can be made of an affine

assignment of some variables (say ~y := C~x + D) and a loss of information about other variables (say
~z :=?), in which case a] is the composition of an affine assignment — changing ~y into C~x + D and
leaving ~z unchanged — and a projection according to ~z:

a] : P 7→ ∃z.[C~x + D, z](P)
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k1k0

k3

k2
x := y := 0

x ≥ 101?

x ≤ 100?
x := x+ 1
y := y + 1

x ≤ 100?x := x+ 2

Figure 1: A simple “program”

Then, we can attach with each control point k a polyhedron Pk, which is an upper approximation of Rk, as
follows:

Pk = if k = kinit then > else
⊔

(k′,g,a,k)∈T

a](Pk′ u g])

Iterative computations: We are left with a system of fixpoint equations

(Pk = Fk(P1, ...Pk, ...))k∈K

whose least solution can be computed by iteration from Pk = ⊥,∀k. Of course, this computation will raise
the problem of termination.

Example 1: Let us consider the “program” of Fig. 1. The corresponding system of abstract equations is

P0 = >

P1 = [(x, y) := (0, 0)](P0) t P2
P2 = [(x, y) := (x + 2, y)](P1 u {x 6 100}) t [(x, y) := (x + 1, y + 1)](P1 u {x 6 100})
P3 = P1 u {x > 101}

Starting the iterative resolution, we get:

Step 0 1 2 3 . . .

P0 ⊥ > > > . . .

P1 ⊥ {x = y = 0} {0 6 y 6 x 6 2 − y} {0 6 y 6 x 6 4 − y} . . .

P2 ⊥ {x + y = 2, 0 6 y 6 x} {2 6 x + y 6 4, 0 6 y 6 x} {2 6 x + y 6 6, 0 6 y 6 x} . . .

P3 ⊥ ⊥ ⊥ ⊥ . . .

Obviously, at step i we will get P1 = {0 6 y 6 x 6 2i − 2 − y}, P2 = {2 6 x + y 6 2i, 0 6 y 6 x}, and
the iterations will continue until P1 intersects {x > 101}. Performing this extrapolation at once is the role
of the widening operator.

3 Widening in LRA: state of the art

3.1 Principles
According to [27], a widening operator on polyhedra is a binary operator ∇ such that
• ∀P,Q, P t Q ⊆ P∇Q
• (chain condition) for any sequence P0, P1, . . . of polyhedra, the sequence Q0 = P0, Qi = Qi−1∇Pi is

not strictly increasing.
Let (Pk = Fk(P1, ...Pk, ...))k∈K be a system of fixpoint equations. A widening operator is used to ensure the
convergence of iterative computations of fixpoints as follows: Let K∇ be a subset of K, such that each loop
in the program graph contains at least one control point in K∇. Then, for each k ∈ K, define F∇k by

F∇k (P1, ...Pk, ...) =

{
Pk∇Fk(P1, ...Pk, ...) if k ∈ K∇
Fk(P1, ...Pk, ...) otherwise
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Then, the iterative computation of the least solution of the system
(
Pk = F∇k (P1, ...Pk, ...)

)
k∈K

converges
after a finite number of steps towards a solution (P∇k )k∈K which is an upper approximation of the least
solution of the initial system.

3.2 Standard widening
The very first widening operator over polyhedra was proposed in [28]: P1∇P2 is defined to be the polyhe-
dron whose system of constraints is made of the constraints of P1 satisfied by P2. Moreover, ⊥∇P = P for
all P. Since the set of constraints of P1∇P2 is included in the set of constraints of P1, the widening cannot
be applied indefinitely without convergence (chain condition).

This initial operator has the drawback that its result depends on the form of the systems of constraints.
For instance, in our Example 1, if k1 is the widening point, at step 2 we have to compute {x = 0, y =

0}∇{0 6 y 6 x 6 2 − y}, i.e., {0 6 x 6 0, 0 6 y 6 0}∇{0 6 y 6 x 6 2 − y} which gives simply {0 6 x, 0 6 y}.
Now, if we rewrite the first system of constraints into the equivalent system {0 6 y 6 x 6 0}, the widening
evaluates to {0 6 y 6 x}, which is much more precise.

This is why [39] proposed a better operator, often referred to as standard widening: it consists of
keeping for P1∇P2 not only the constraints of P1 satisfied by P2, but also the constraints of P2 mutually
redundant with some constraint of P1 in the system of constraints of P1.

In the example before, P1 is defined by the system of constraints {0 6 x 6 0, 0 6 y 6 0} and the system
of generators V = {(0, 0)},R = ∅. In the system of constraints of P2, {0 6 y 6 x 6 2 − y}, y 6 x is saturated
by the unique vertex of P1, (0, 0), so it is mutually redundant with any constraint of P1, and is kept in the
widening.

Example 1 (continued): Using the standard widening in our example, we get the following iterations
which converge at step 3:

Step 0 1 2 3
P0 ⊥ > > >

P1 ⊥ {x = y = 0} {0 6 y 6 x} {0 6 y 6 x}
P2 ⊥ {x + y = 2, 0 6 y 6 x} {2 6 x + y 6 202, 0 6 y 6 x 6 102} {2 6 x + y 6 202, 0 6 y 6 x 6 102}
P3 ⊥ ⊥ {0 6 y 6 x, x > 101} {0 6 y 6 x, x > 101}

3.3 Descending sequence
The first way of improving the results of the widened sequence is the general descending/narrowing
method, proposed as early as in [27]. It is guaranteed that the solution (P∇k )k∈K is a post-fixpoint of the
exact function (Fk)k∈K , i.e.,

∀k ∈ K, Fk(P∇1 , . . . , P
∇
k , . . .) ⊆ P∇k

If, for some k, this inclusion is strict, one can improve the solution by iterating the exact function from
(P∇k ) (i.e., continuing the iterations without widening). These additional iterations are not guaranteed to
terminate (unless a narrowing operator is used [27]), but each iterate is a correct approximation of the least
fixpoint, meaning that the iterations can safely be stopped at any step.

Example 1 (end): It is the case in our simple example, since

F1(P∇0 , P
∇
2 ) = {0 6 y 6 x 6 102, x + y 6 202} ⊂ P∇1

Continuing the iterations without widening, we get one more iteration which provides a fixpoint and cannot
be improved further:

Step 0 1 2 3
P0 ⊥ > > >

P1 ⊥ {x = y = 0} {0 6 y 6 x} {0 6 y 6 x 6 102, x + y 6 202}
P2 ⊥ {x + y = 2, 0 6 y 6 x} {2 6 x + y 6 202, 0 6 y 6 x 6 102} {2 6 x + y 6 202, 0 6 y 6 x 6 102}
P3 ⊥ ⊥ {0 6 y 6 x, x > 101} {0 6 y 6 202 − x, 101 6 x 6 102}

There were two main tracks for reducing the imprecision due to the widening: The first one investigates
better widening operators, while the second one consists in proposing widening application strategies.
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3.4 Improving the widening operator

3.4.1 Parma widening

[6] proposes a general framework to design new widening operators from an existing one. They use the
notion of “limited growth” to guarantee the termination of the computations:

P1 y P2
de f
=


if dim P2 > dim P1
or codim(P2) > codim(P1)
or ]cons(P1) > ]cons(P2)
or ]cons(P1) = ]cons(P2) and ]V1 > ]V2
or ]cons(P1) = ]cons(P2) and ]V1 = ]V2 and χ(R1) >> χ(R2)

In other words, P1 y P2 in one of the following cases:
• The dimension of P2 (i.e., the dimension of the least subspace containing P2) is strictly greater than

P1’s dimension;
• The codimension of P2 (the dimension of the largest subspace strictly included in P2) is strictly

greater than P1’s codimension;
• The number of constraints of P1 is strictly greater than the one of P2;
• The number of constraints of P1 is the same as the one of P2, and the number of vertices of P1 is

strictly greater than the one of P2;
• P1 and P2 have the same number of constraints and vertices, and the multisets χ(Ri) of the non null

coordinates of Pi’s rays verify χ(P1) >> χ(P2) (multiset classic ordering).
This definition guarantees that a sequence (Pi)i∈N where for all i, Pi y Pi+1 is finite (y is a well-founded
strict ordering). So, the operator ∇′ defined by

P1∇
′P2 =

{
P1 t P2 if P1 y P2
P1∇P2 otherwise

where ∇ is the standard widening, is also a widening (the operator proposed in [6] is slightly more compli-
cated), and for any P1, P2, P1∇

′P2 ⊆ P1∇P2.
So, one application of the new widening gives a more precise result. However, there is no guarantee that

the limit of the widened sequence will be more precise: most experimental results show an improvement,
but there are also counter-examples. Moreover, the cost of the analysis can increase significantly, because
the convergence is generally slower.

3.4.2 Limited widening

This technique, called “widening up to” in [40, 41] and “widening with thresholds” in [12], consists in
precomputing a setU of constraints that are likely to be invariants in a widening location (e.g., the negation
of the exit condition of a “for” loop), and in keeping in P1∇P2 all the constraints inU which are satisfied
by both P1 and P2. In [40], the set U is computed, at a given widening point, as the set of all conditions
that permit to come back to this control point, by propagating the exiting condition on the global loops.
The main drawback of this method is that propagating the exit condition of all loops has an exponential
cost. In general, only the preconditions of the exiting transitions are computed.

Example 2: To illustrate the use of this heuristic, we show in Figure 2 an example taken from [40]: it
models the speedometer of a car, which counts the number t of received “seconds” (time elapsed), the
number d of received “meters” (distance covered), and the number s of meters received each second (in-
stantaneous speed). It is assumed that (1) the car stops within 4 seconds, (2) the car crashes into a wall
after 10 meters, and (3) the maximum speed is 2 meters per second. The goal is to show that the car stops
before crashing, i.e., that the control point k4 is not reachable.
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k1 k2

k5

k4

k3

t := 0; d := 0; s := 0

d = 9?d := d+ 1

s = 2?s := s+ 1

t = 3?t := t+ 1

t := t+ 1

t ≤ 2 → s := 0;

v ≤ 1, d ≤ 8 → v := v + 1;
d := d+ 1

Figure 2: Car example

Let’s choose Uk2 = {s 6 2, d 6 9, t 6 3} as limiting constraints at the widening point k2 (these are
the postconditions of the guards of the transitions looping on k2). Then, after the first iteration, we have
P(1)

2 = {d = 0; t = 0; v = 0}, and at the second iteration we have to compute

P(2)
2 = P(1)

2 ∇{0 6 d = s 6 1; 0 6 t 6 1; t + d 6 1}

The standard widening would give P(2)
2 = {0 6 s = d; 0 6 t; }, but all the constraints inUk2 are satisfied by

both operands of the widening, so the limited widening gives P(2)
2 = {0 6 s = d 6 2; 0 6 t 6 3}. At third

iteration, we get

P(3)
2 = P(2)

2 ∇{0 6 s 6 d 6 2t + s; t 6 3; d 6 2}
= {0 6 s 6 d 6 2t + s; t 6 3; d 6 2}

which is a fixpoint, and from which we get P4 = ⊥ as expected. Notice that the constraint d 6 2t + s
in P(3)

2 is the “speed constraint”, which is the key property for this example and is missed by the standard
widening.

3.4.3 Widening with landmarks

A similar idea is developed in [54], which proposes to compute a set of inequalities that are not satisfied
while staying in the loop. Unlike the limited widening, this set of constraints is computed dynamically: the
computation of the invariant associated to one control point depends on the incoming transitions, and each
of these transitions can have a empty contribution. The proposed widening takes into account the guards
of these incoming empty transitions, in order to guess when they will be enabled.

In practice, with each widening point is associated a set of landmarks representing a set of non sat-
isfiable inequalities when the control is inside the associated strongly connected subcomponent: these
landmarks are of the form < c, d1, d2 > where c is a (non satisfied) constraint, d1 is the Euclidean distance
from the current polyhedron to this constraint, d2 is the previous distance which is strictly smaller. The
design of the widening operator is changed in order to take these landmarks into account: the assumption is
that the distance follows an arithmetical law, so we can estimate the number of steps necessary to reach the
constraint c; then the algorithm performs an extrapolation of the result of m steps, where m is the minimum
of these numbers of steps associated with all considered constraints c .

The main advantage of this method is that it can take some non convex guards like i , 0 into account.
The drawback is that the dynamic computation of the landmarks is costly, because the computation of the
distances makes use of linear programming.

3.4.4 Guiding the widening by a care set

In [62], the authors use counterexamples of the property to prove, in order to improve the precision. In fact,
they consider the LRA classic process which consists of successive applications of forward and backward
iterations. If a forward iterator does not manage to prove the goal formula ψ, then a backward iteration is
performed, starting from the polyhedra obtained so far, intersected with ¬ψ. The authors propose to use

Verimag Research Report no TR-2010-10 7/43



Laure Gonnord, Nicolas Halbwachs Abstract Acceleration in Linear Relation Analysis

some information during the backward analysis to get some new constraints that must be avoided in the
next forward iteration. Then they propose to use this information in one of the following two ways:
• the first one consists in using the negation of each constraint as an “up-to” constraint, and use the

classic limited widening operator.
• the second one is to use an extrapolation operator — which does not guarantee the termination —

instead of widening. This extrapolation of P with respect to Q under C is defined by the following
algorithm (P,Q,C are polyhedra, P ⊆ Q, C is the “care set”, so P ∩C = ∅ and Q ∩C = ∅):

– Build a new polyhedron P′ by dropping from P each constraint c not satisfied by Q, and whose
removal does not make P′ intersect the care set (i.e., such that

(
P \ {c}

)
∩C , ∅ ).

– From Q, drop any constraint c′ not satisfied by P′, and return the obtained polyhedron.
The authors claim that the result doesn’t intersect the care set C, and is generally smaller than P∇Q.

The first solution has the advantage to increase the precision while always guaranteeing the termination.
However, this method is guided by a proof goal, and then is only useful in verification. Our goal is to
discover better invariants in the general case. This method can also be combined with ours.

3.5 Widening strategies
3.5.1 Delaying the application of the widening operator

An obvious way for improving the precision of the limit of the widened sequence is to delay the application
of the widening: during the first m steps, the exact function is applied, then the widening is applied to
enforce the convergence. The greater the parameter m, the more precise is the limit. For instance, in our
Example 1, with the first very rough widening proposed in [28] (cf. Section 3.2), if the widening is applied
at once, we get only

P1 = {x = y = 0}∇{0 6 y 6 x 6 2 − y} = {x > 0, y > 0}

but if it is applied only one step later, we get

P1 = {0 6 y 6 x 6 2 − y}∇{0 6 y 6 x 6 4 − y} = {0 6 y 6 x}

i.e., the result provided by the standard widening without delay. This delaying strategy was proposed in
[40, 12]. A variant is the loop unrolling technique used in [37, 52]. Of course, this technique may increase
significantly the cost of the analysis, since on one hand it involves additional iterations, but also because
the first exact steps of computation generally produce complex polyhedra, which would be simplified by
the widening.

3.5.2 New control path

The widening technique assumes some regularity in the behavior of the program: the first iterations in a
loop are assumed to allow the widening operator to predict the behavior of further iterations. However, this
regularity hypothesis is clearly violated when a path in the loop becomes feasible only after some iterations:
the effect of taking this path cannot be predicted before it is taken at least once. As a consequence, when
a new path of a strongly connected component becomes feasible at some iteration of the analysis, specific
strategies should be applied:
• [12] simply applies least upper bound instead of widening;
• [40] proposes to extrapolate the result from the first non empty polyhedron: basically, instead of

computing P(n+1)
k = P(n)

k ∇Fk(P(n)), one computes P(n+1)
k = P(1)

k ∇Fk(P(n)).
None of these strategies endangers the termination, since the allowance of a new path can only happen a
finite number of times.

3.5.3 Lookahead Widening

The approach proposed in [35, 36] tends to subsume both the limited widening and the new path strategy.
The main idea is to make a complete analysis (increasing and decreasing) by loop phase. A phase is a
period where no new path is being activated.
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Intuitively, after a first step of the analysis of a strongly connected component of the control graph, the
part of this SCC that has been found feasible is considered alone, and a full — ascending and descending
— sequence is computed on this subgraph. Then, from the obtained results, new paths are added if they
are found feasible, and a full analysis is performed on this extended graph, and so on, until no new path is
found.

The lookahead widening is not guaranteed to give more precise results, but experiments show that
it often does, at the price of some additional complexity. It is a valuable method since it can easily be
combined with other approaches.

4 Acceleration techniques for exact computations
Another track of research concerns the exact computation of the reachable states of programs with integer
variables, the sets of states being characterized by Presburger formulas. Although some authors in this track
also use widening techniques [19, 20], most of these works aim at computing reachable states exactly, when
possible. For that, the notion of “acceleration” has been introduced, to compute the effect of a loop. For
instance, the reachable states at the entry of the loop

x:= x0; y:=y0; while x<=100 do {x:=x+2; y:=y+3}

can be characterized by the Presburger formula

∃k > 0 s.t. x = x0 + 2k ∧ y = y0 + 3k ∧ ∀k′, (0 6 k′ < k)⇒ (x0 + 2k′ 6 100).

Let us recall some decidability results for the iteration of some classes of transitions, and then describe
how they are used in reachability analysis.

4.1 Theoretical results
Several results have been obtained in the past 15 years:
• In [14], the authors use periodic sets in order to represent the reachability sets of integer programs:

the tuple (∆, δ, P, q) where ∆, P are (integer) matrices and δ, q are vectors, represents the set {~x ∈
Zn;∃~k ∈ Zn, such that ~x = ∆~k + δ and P~k 6 q}. Then the authors give an algorithm to compute the
exact effect of affine guarded transitions (A~x 6 B→ ~x := C~x + D) with integer constants on a given
input periodic set, but only for the transitions where C2 = C.

• [13] and [31] use an automaton encoding of sets to compute the iteration of a Presburger set by
an affine guarded function verifying ∃p,C2p = Cp. In §6.6, we will come back to this algebraic
characterization.

• [23, 24] only consider guards of the form
∧

y j#yi + c, where # ∈ {=, <,6}, and yi are primed or
non primed variables (output and input variables). The actions are of the form x′ = Cx + d. They
give a constructive procedure to compute a Presburger formula on x, x′ which is true if and only if
x′ ∈ τ∗(x). But this procedure has a very high complexity and has not been implemented.

4.2 Application to reachability analysis
These results are then used for reachability analysis in the following ways:
• In the Lash tool [45], the user designates which loops should be accelerated. Then the analysis is

performed forward. Termination is not guaranteed but if the analysis succeeds, the result is the exact
reachability set.

• In [13], the author’s prototype detects if some loop is accelerable, and if so, adds the corresponding
meta-transition which subsumes the effect of the whole loop. In the case of two nested loops, the
termination is not guaranteed, except for the special case where the internal loop is deterministic,
that is, the number of its iterations is completely determined by the initial values of the variables.

• The Fast [30] tool uses the UBA (automata to encode integer sets, [46]) representation to accelerate
Presburger sets. In practice, if all the transitions in the graph loops have a finite associated monoid
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(see §6.6), then the authors use an enumeration of restricted linear regular expressions (i.e., words
of the form u∗1u∗2 . . . u

∗
p with ui words on the transition alphabet) to enumerate loop paths [9, 8]. If

the procedure terminates, then it returns exactly the set of reachable states. It has been shown [9]
that the programs for which this procedure terminates are exactly the counter automata that are L-
flatable, i.e., such that there exists an equivalent automaton (with respect to the reachability sets) that
is flat (i.e., without nested loops). This condition is undecidable. This algorithm has been improved,
concerning the enumeration of class paths, and the management of some kinds of nested loops by
the union reduction ([8]). In the Fast tool, the user can provide some help by using graph strategies.

All these methods are based on the fact that accelerating single loops is sometimes enough to compute
the reachability set. In the general case, there are loops that cannot be accelerated, and above all, general
programs contain nested loops that cannot be flattened. In conclusion, these methods have the advantage
of being exact. But they involve computations of high complexity in Presburger arithmetic. Moreover,
they are restricted to some classes of programs, and cannot be straightforwardly integrated with general
methods like LRA.

5 Motivating example: the gas burner
To motivate our contribution, let us start with a classical example of hybrid system, the “leaking gas
burner” [21]: whenever the gas burner leaks, it is always fixed within 10 seconds, and the minimum in-
terval between two leakages is 50 seconds. The standard modelling of this system is by a linear hybrid
automaton [1, 42] (see Fig. 3).

leaking

˙̀ = 0

ṫ = 1

not leaking

x := 0
ṫ = 1
˙̀ = 1
ẋ = 1

x 6 10 ẋ = 1

x := 0

x > 50
x := 0

` := 0
t := 0

Figure 3: Hybrid automaton of the gas burner

Let us recall the behavior of this model: 3 continuous variables — t, counting the absolute time, `
counting the global leaking time, and x counting the time elapsed since the last event — are initialized to
0, and initially the gas burner is leaking. In the leaking location, all the variables evolve continuously with
unit derivatives: they all count time, as long as the invariant x 6 10 is satisfied; at any time during this
delay, the gas burner can be fixed, in which case the automaton enters the location “not leaking”, and x is
reset to 0; in the “not leaking” location, the variable ` doesn’t change (its derivative is 0), while the other
two count time; the automaton may go back to the “leaking” location only when x > 50.

LRA was extended in [1, 41] to deal with such linear hybrid automata. The abstract semantics of
discrete transitions is standard. To deal with the continuous evolution of variables in a given location, the
“time elapse” operator on polyhedra was introduced: let D be a polyhedron representing the domain of
variable derivatives in a given location; let I be the polyhedron representing the invariant attached to the
location. Assume the location is entered while the variable values belong to some polyhedron P. Then, the
set of variable values which can be reached during the stay in the location is

{x + td | x ∈ P, d ∈ D, t > 0} ∩ I

which can be computed as (P↗{V,R}) ∩ I, where (V,R) is a system of generators of D: one adds as rays to
P the vertices and rays of D, and intersects the result with the invariant.

In Fig. 4, we represent the projection onto the variables t and ` of the successive polyhedra computed
when analyzing the hybrid automaton of the gas burner:
• At step 1, the “leaking” control point is reached with the unique point {t = ` = 0}, and the time elapse

operator gives the segment {0 6 t = ` 6 10}. Thus, the “not leaking” control point is reached with the
polyhedron {0 6 t = ` 6 10}, and the time elapse operator gives the polyhedron {0 6 ` 6 10, t > `}.
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step 1

step 2

10
10

10

10 50

−→
δ

6` 6 t + 50

−→
δ

` `

` `

t

t t

t

Leaking NotLeaking

Figure 4: Analysis of the hybrid gas burner

• At step 2, the contribution of the return transition from “not leaking” to “leaking” is the polyhedron
{0 6 ` 6 10, t > ` + 50} (in dark in the bottom-left figure), then the time elapse operator is applied,
then the convex hull with the preceding polyhedron is computed, and finally the widening operator
provides {0 6 ` 6 t, t > 6` − 50}. If we propagate we find the same polyhedron for the “not leaking”
location, and we stop.

Notice that the results are the exact convex hulls of the reachable points.
Now let us consider a discrete version of the gas burner, where continuous variables are replaced by

counters (Fig. 5): in the L(eaking) location, the 3 variables are incremented as long as x 6 9. In the N(on
leaking) location, only t and x are incremented.

L

x := 0; t := 0; ℓ := 0

τ1 : x ≤ 9 → N τ2 : true →

true → x := 0

x ≥ 50 → x := 0

x := x+ 1

t := t+ 1

x := x+ 1

t := t+ 1

ℓ := ℓ+ 1

Figure 5: Discrete automaton of the gas burner

Let us apply the classical LRA to this automaton: In L, we get first t = ` = 0, then t = ` = 1 (with no
contribution back from N), so the convex hull is {0 6 t = ` 6 1}, and the widening provides {0 6 t = `}.
The complete analysis terminates with

PL = {0 6 x 6 `, ` 6 t} PN = {0 6 x, 0 6 `; x + ` 6 t}.

This result is much less precise than in the continuous case, and is not improved by the descending
sequence. To obtain better results, we should delay the widening for at least 60 iterations (to get the same
invariant as for the hybrid version). Of course, delaying the widening in such a way is expensive; moreover
it is rather ad-hoc, and it would not work if the constants of the problem were replaced by some symbolic
parameters.

This example shows that the analysis can give much better results on a hybrid automata than on the cor-
responding discrete counter automata. The obvious reason is the availability of the “time elapse” operator,
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t: time

f : leaking duration

706010

10

20

Figure 6: Behaviour of the discrete gas burner

which plays the role of a specialized exact widening operation. A result of the following sections will be to
detect that the effect of the single loops in the counter automaton of Fig. 5 can be computed exactly, so that
these loops can be treated as single transitions, exactly as it is done by using the time elapse operator on
hybrid automata. In other words, instead of analyzing the automaton of Fig. 5, we will apply the standard
analysis to the automaton of Fig. 7, where τ⊗1 , τ⊗2 denote the operations subsuming the effect of the two
single loops in the initial automaton. In this standard analysis, the two single loops will be accelerated, but
the widening is still applied, e.g., at L, because of the remaining global loop.

L

L
′

x := 0; t := 0; ℓ := 0

τ
⊗

1

N

N
′

τ
⊗

2

true → x := 0

x ≥ 50 → x := 0

Figure 7: The “accelerated” automaton of the gas burner

The rest of the paper is devoted to identifying the loops and sets of loops that can be “accelerated” in
that way. We will consider first single loops, i.e., self-looping transitions around a control state.

6 Single loops

6.1 Some definitions and first remarks
Let (K, kinit,T ) be a program.

Definition 1 A loop of size p around a control point k ∈ K is a sequence of transitions (k, τ1, k1) →
(k1, τ2, k2)→ . . .→ (kp−1, τp, k). A single loop is a loop of size 1, (k, τ, k).

In this section, we consider the acceleration of single loops. We restrict ourselves to transitions with
affine guards and affine assignments: τ : A~x 6 B → ~x := C~x + D. Such a transition can be expressed as a
function from Qn to Qn:

τ : ~x 7→ if A~x 6 B then C~x + D else ~x

Let P0 be a polyhedron, we want to characterize the effect of any number of applications of τ on P0, i.e., to
compute

τ∗(P0) = {~x | ∃i ∈ N, ∃~x0 ∈ P0, ~x = τi(~x0)}
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or, if, for each x0, we define the sequence (x`)`>0 by x` = C`x0 +
∑`−1

j=0 C jD:
~x ∈ τ∗(P0) ⇔ ∃~x0 ∈ P0,∃i ∈ N, such that ~x = ~xi and ∀ j ∈ [0, i − 1], A~x j 6 B.

In general, obtaining a general expression for C` is too expensive, and the quantification over i and j
cannot be computed. So, let us look at some cases where the computation is possible; in such cases, the
loop will be said to be accelerable:
• [59] considers the same kind of loops, and shows that their termination is decidable. The method

uses algebraic characterization of the C matrix, but does not provide any loop invariant.
• In [31], the class of linear functions λ~x.C~x+ D such that the cardinal of {C`, ` ∈ N} is finite is pointed

out to be accelerable. But the upper-bound that is given is too large, and as far as we know, the
complexity of finding whether a monoid generated by a matrix is finite or not is an open problem (it
is known to be decidable [38]).

• The case where C2 = C is interesting, since it covers the loops which increment or decrement
variables by constants, and/or set variables to constants.

• The simplest case is when C = I (the identity matrix), i.e., when all variables are incremented or
decremented by constants. We call such loops translation loops and we first consider this simple
case.

6.2 Abstract acceleration of a translation function
Let us consider a translation τ : A~x 6 B→ ~x := ~x + D. First we distinguish the case where τ is not applied
at all from the other applications: τ∗(P0) = P0∪τ

+(P0). To apply τ an arbitrary positive number of times, it
is enough that the guard — since it is convex — be satisfied at the first and last applications of the function:

~x ∈ τ+(P0) ⇔ ∃i ∈ N∗,∃~x0 ∈ P0, ~x = ~x0 + iD ∧ A~x0 6 B ∧ A(~x0 + (i − 1))D) 6 B.

We are faced with an arithmetic problem: the exact effect of the loop is defined with i ∈ N∗, but there is
no way to compute simply it by elementary operations on polyhedra. To avoid this, we decide to introduce
the notion of dense abstract acceleration, which is defined as follows:

Definition 2 Let τ : A~x 6 B → ~x := ~x + D be a translation. We call dense abstract acceleration of τ the
function τ⊗ : P0 7→ P0 t τ

⊕(P0) with

~x ∈ τ⊕(P0) ⇔ ∃i ∈ Q+,∃~x0 ∈ P0, ~x = ~x0 + iD ∧ A~x0 6 B ∧ A(~x − D) 6 B.

τ⊕(P0) is a polyhedron which can be easily computed by means of usual operations on polyhedra:

Proposition 1 Let τ : A~x 6 B→ ~x := ~x + D. Then:

τ⊕(P0) =
(
(P0 ∩ {A~x 6 B})↗ {D}

)
∩ {A(~x − D) 6 B}.

This proposition is illustrated in Figure 8, where g stands for the guard A~x 6 B.

Proof The fact that, in Definition 2, ∃x0 ∈ P0 ∩ g,∃i ∈ Q+, such that x = x0 + iD, exactly expresses that
x ∈ (P0∩g)↗ {D}, by definition of a ray. The last intersection with {A(~x−D) 6 B} results straightforwardly
from the guard. �

The abstract dense acceleration τ⊗(P0) is guaranteed to contain τ∗(P0), but generally it is only an over-
approximation of the convex hull of τ∗(P0), as shown by the following example:

Example 1 Let τ : {x 6 11} → x := x + 2 with P0 = {x = 0}. The exact convex hull of τ∗(P0) is
{0 6 x 6 12}, while the above definition gives τ⊗(P0) = P0 t

(
{x = 0} ↗ (1) ∩ {x 6 13}

)
= {0 6 x 6 13}.

However, the next example shows that, because of arithmetics, the exact behavior of variables can be
complex, so computing the exact convex hull is not realistic.

Example 2 Let P0 = {0 6 x = 2y 6 4} and τ : y 6 3 → y := y + 2, x := x + 1. Figure 9 shows the effect
of the successive applications of τ to points in P0. On this figure, we can see that τ∗(P0) (in dark) is quite
irregular, due to arithmetics. The light part shows the difference between τ⊗(P0) and τ∗(P0).
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P0

τ⊕(P0)

P0 ∩ g

g

D

g(~x − D)

Figure 8: Adding ray algorithm

y

x

P0)

3

0

0 4

τ⊗(P0)

τ∗(P0)

Figure 9: Approximation of a complex arithmetic behavior

In the particular case of Example 1, the Omega algorithm ([51]), which uses integer linear program-
ming, would give the exact result, and thus its convex hull. In the general case, the linear programming
algorithms give better results in the case where the program deals with integer variables. Indeed, the pro-
jection algorithm in the Omega test uses the projection of one integer variable on polyhedra intersected
with a lattice (here the word lattice is used for Zn), and thus cannot be used in our general context.

6.3 The gas burner example with abstract acceleration
Applying the results of the section 6.2 to the example of Fig. 5 and ??, we obtain the following expressions
for the acceleration of τ1 and τ2:

τ⊗1 (P) = P↗ DL u {x 6 10} and τ⊗2 (P) = P↗ DN

where DL = (1, 1, 1) and DN = (1, 1, 0) are the translation vectors of the translation loops around
control points L and N, respectively.
• Step 1. P1

L = {x = t = ` = 0} ↗ DL u {x 6 10} = {0 6 x = t = ` 6 10}. Then, P1
N = τ⊗2 [x := 0](P1

L) =

{` + x = t, ` 6 10, 0 6 ` 6 t}.
• Step 2.

– Location L: We compute the contribution [x := 0]
(
P1

N u {x > 50}
)
, then the convex hull with

P1
L, to obtain PtL = {x = 0, 0 6 6` 6 t, ` 6 10}. Then, we apply the widening operator:

P1
L∇τ

⊗
1 (PtL ), and we obtain P2

L = {6` 6 t + 5x, 0 6 x 6 10, x 6 `}.
– Location N: A similar computation without widening provides: P2

N = {6`+ x 6 t + 50, `+ x 6
t, 0 6 l, 0 6 x}.
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• Step 3 shows the convergence.
We have obtained in 3 steps the same invariants as in the hybrid version, without delaying the widening.
Let us notice that the expressions of τ⊗1 and τ⊗2 compute the exact effect of the loops because variables are
incremented by one at each time.

6.4 Abstract acceleration of a translation/reset function
If τ is a translation combined with some reset, that is, τ can be rewritten in the following way:

τ : A~x 6 B→

~y := ~y + Dy (translated variables)
~z := Dz (reset variables)

, where ~x =

[
~y
~z

]
we can obtain a similar definition and algorithm for τ⊗(P0). Indeed, a translation/reset behaves like a

translation of vector
(
Dy

0

)
if the number i of loop iterations is strictly greater than 1. So we compute the

acceleration of P1 = τ(P0), thanks to the fact all points in τ(P0) satisfy Z = Dz.

Definition 3 τ⊗ : P0 7→ P0 t τ
⊕(τ(P0)) with:

τ⊕ : P1 7→

{
~x | ∃i ∈ Q+,∃~x1 ∈ P1, g(~x1) ∧ g

(
~x −

[
Dy

0

] )
, ~x = ~x1 + i

[
Dy

0

]}
.

Proposition 2 Let τ : A~x 6 B→ ~x := C~x + D with C a diagonal matrix with only 1 and 0 on the diagonal.
Then:

τ⊕(P1) =
((

P1 ∩ {A~x 6 B}
)
↗

{[
Dy

0

]} )
∩ g

(
X −

[
Dy

0

] )
.

6.5 The finite monoid class
In this section, we consider a transition τ : A~x 6 B→ ~x := C~x + D, where the matrix C verifies ∃p,C2p =

Cp. We have already seen in section 4 that [13] and [31] obtain acceleration results for this particular class
of transitions. Let’s show that, in this case, we are able to compute an over-approximation of τ∗(P0) by
using a reduction to translation/reset functions.

Lemma 1 Let τ : A~x 6 B→ ~x := C~x + D be a guarded affine transition with ∃p > 1,C2p = Cp. Then the
computation of τ∗(P0) can be reduced, in polynomial time in p and n (the size of C), to the computation of
the iterated image of p polyhedra by an affine guarded transition τ′ whose matrix C′ verifies C′2 = C′, i.e.,
is a projection matrix.

Proof Let P′ = τ∗(P0) = P0 t P1 . . . t Pp−1 t Pp t . . . then we can write:

P′ =
(
P0 t τ

p(P0) t τ2p(P0) t . . .
)
t

(
P1 t τ

p(P1) t τ2p(P1) t . . .
)

t . . . t
(
Pp−1 t τ

p(Pp−1) t . . .
)
.

Then we remark that ~x has an image by τp if and only if the condition: A~x 6 B ∧ A(C~x + D) 6 B ∧ . . . ∧
A
(
Cp−1~x +

(
Cp−2 + Cp−3 + . . . + I

)
D) 6 B is verified.

Finally, if we write

C′ = Cp, B′ =


B

B − AD
B − A

(
(C + I

)
D)

. . .
B − A

(
(Cp−1 + . . . + I)D

)

 , A
′ =


A

AC
AC2

. . .
ACp−1


and D′ = (Cp−1 + Cp−1 + . . . I)D, we have τ′ : A′~x 6 B′ → C′~x + D′, and finally:

P′ =
⊔

06i6p−1

P̃p with P̃p = τ′∗(Pp).
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So we are led to the computation of p polyhedra images by the affine guarded transition τ′ which verifies
C′2 = C′. The computation of the new transition is independent of P0 and costs 4p matrix multiplications.
Let us notice that the size of the guard of τ′ is p times the one of the guard of τ. �

Lemma 2 The case where C2 = C can be polynomially reduced to the case of a diagonal matrix with only
0s and 1s on the diagonal.

Proof If C2 = C then C is a projection matrix so we can move to a base adapted to this projection. We
compute fixpoints of C (classically, the kernel of C − I), and the points that have a null image (kernel of
C). These vectors constitute an (invertible) matrix Q such that Q−1CQ is diagonal with only 0s and 1s on
the diagonal. Then, we are able to compute the modified guard, D and P0. Each operation costs O(n3). �

Finally, we obtain:

Proposition 3 Let τ : A~x 6 B→ ~x := C~x + D be an affine guarded transition verifying ∃p,C2p = Cp and
P0 an input polyhedron. Then we compute an overapproximation of τ∗(P0) by reducing it to p computations
of abstract accelerations of translation/reset.

Proof Immediate from lemmas 1 and 2 and the results of the two previous subsections. �

6.6 Conclusion of the section
The previous subsections have shown that we can compute overapproximations of a whole class of loops,
containing swap loops, translation, translation/reset, and some kind of rotations. Let us point out the
fact that our algebraic condition is equivalent to the one of [13] (“Is there a power Cp of C which is
diagonalizable and which eigenvalues are in the {0, 1} set ?”) and also of [31] (“is the multiplication
monoid < C >= {I,C,C2, . . .}) finite ?”). Deciding one of these questions can be done in O(n4) where n is
the size of C. But p can be very large:

Proposition 4 [48] A power p such that C2p = Cp can be very big. More precisely, the maximum of such
p verifies ln(pmax) ∼

√
n ln(n).

This result influences the algorithm implementation. In [13], such a decision algorithm for finding p is
implemented, and the author uses the result to compute the desired (precise) acceleration. In [31, 8], the
authors propose semi-algorithms that terminate if and only if the associated monoid is finite, but do not
decide if it is the case. In our case, we decided to search for a such p up to a constant (generally 3 or 4).
This choice comes from the fact that for larger p, the computation becomes both too expensive and too
unprecise (because of the p − 1 convex hulls performed at the end of the computation).

7 Multiple loops
In this section, we address the case of multiple single loops around the same control point (Fig. 10), and
we focus on translation and translation/reset functions.

τ1 τ2

Figure 10: Multiple single loops

7.1 Combined Translation loops
We first consider the case of transition loops τi : gi → ~x := ~x + Di. We give some theoretical results
concerning this case, and we give an algorithm to compute efficiently a precise over-approximation of the
convex hull of reachable states.
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x0
D1

g2g1

D2 x0

g2g1

D1

D2

Figure 11: More complex behaviors

First remarks: When there are multiple loops around the same control point, the computed polyhedra
become more complex. Even in the case of combined translations, the successive applications of the
transitions may introduce non convexity and/or complex oscillations. Consider Fig 11, where we take
P = {x0} and we apply a succession of τ1 and τ2 actions, when possible (the guards are the half-spaces that
are delimited by the deep lines). The left-hand Figure shows a non convex behavior, the right-hand one
shows oscillations. This last example shows that the acceleration results of section 6 cannot be applied in
the general case because the graph is not flat (the successive applications of τ∗1, then τ∗2, then τ∗1 never reach
a fixpoint).

The problem to compute (τ1 + τ2 + . . .)∗(P0) is known to be hard, as shown by the previous works on
acceleration and also the results obtained for Piecewise Constant Derivative (PCD) systems ([3]). Such a
system (in dimension 2) is drawn in Figure 12. The space is divided into polyhedral regions, and a vector is
associated to each region. The direction of the trajectory of one point in a region is given by the associated
vector, and changes as soon as a frontier is crossed.

Figure 12: A PCD in dimension 2

Proposition 5 ([5, 4]) The reachability problem for PCDs in dimension 3 and higher is undecidable.

Consequently, as the computation of the successive iterations of the τi translation functions on the entry
polyhedron P0 can be reduced to reachability in a PCD, our problem is still undecidable in this case.

In this section, we consider the case of two translations. The successive applications of (an over ap-
proximation of) τ∗1, then τ∗2, then τ∗1 and so on, is not guaranteed to terminate.

7.1.1 A first proposition, partitioning the graph

In [34], we proposed to compute in one step all points that are reachable while continuously satisfying both
g1 and g2:

Definition 4 τ◦1,2(P0) is composed of all ~x that can be obtained from P0 ∩ g1 ∩ g2 by “rationally” applying
the two translations τ1 and τ2 while staying in g1 ∩ g2:

~x ∈ τ◦1,2(P0) iff ∃~x0 ∈ P0 ∩ g1 ∩ g2,

∃~x1, ~x2 . . . , ~x` ∈ g1 ∩ g2,∃~x′1, ~x
′
2 . . . , ~x

′
` ∈ g1 ∩ g2,

∃i1, i2, . . . , i`, i′1, i
′
2, . . . , i

′
` ∈ Q

+,

such that ~x = ~x′`, and ~x j = τ
i j

1 (~x′j−1), ~x′j = τ
i′j
2 (~x j), j = 1..`.
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Remark 1 Since we compute in the lattice of closed convex polyhedra, we will in fact compute the closure
of this preceding set, i.e., the set of all limits of sequences of points staying in g1 ∩ g2 and resulting from a
sequence of rational applications of τ1 and τ2. This closure will also be noted τ◦1,2(P0) henceforth.

The following proposition gives an algorithm to compute (the closure of) τ◦1,2(P0):

Proposition 6 Let τi : gi → ~x := ~x + Di, (i = 1, 2), then:
• if there exist x̃ ∈ P0 ∩ g1 ∩ g2, and ε > 0 such that x̃ + εD1 ∈ g1 ∩ g2, or x̃ + εD2 ∈ g1 ∩ g2 (i.e.,

there is at least one point of P0 from which one of the two transitions can be rationally applied while
staying in g1 ∩ g2), then:

τ◦1,2(P0) = ((P0 ∩ g1 ∩ g2)↗ {D1,D2}) ∩ g1 ∩ g2.

• otherwise τ◦1,2(P0) = P0 ∩ g1 ∩ g2.

Proof Let Pl = ((τ1 + τ2)◦(P0)) et Pr = ((P0 ∩ g1 ∩ g2)↗ {D1,D2}) ∩ g1 ∩ g2.
• Pr ⊆ Pl is obvious.
• Pl ⊇ Pr:

D1

D2

~x0

~x

g1

g2

Figure 13: Proof draw

Let ~x ∈ Pr. Then there exists k1, k2 ∈ Q
+, and ~x0 ∈ P0 ∩ g1 ∩ g2 such that ~x = ~x0 + k1D1 + k2D2.

The hypothesis of the proposition implies that ~x0 (or one point in its neighborhood) satisfies ∃i0 >
0, ~x0 + i0D1 ∈ P0∩g1∩g2. Then let us define ~x1 = ~x0 + i0D1 +

i0
k1

k2D2. By construction ~x1 belongs to
the segment [~x0, ~x] and thus, since both ~x and ~x0 satisfy g1 ∩ g2, so does ~x1 (by convexity). We also
have

∥∥∥~x − ~x1
∥∥∥ < ∥∥∥~x − ~x0

∥∥∥. By iterating the process, we obtain a sequence of ~xis which converges to
~x (dark line on figure 13). ~x being the limit of points of τ◦1,2(P0), it belongs to the closure of τ◦1,2(P0).

�

Remark 2 The first condition on P0 ∩ g1 ∩ g2 comes from the fact that there must be one (rational) ap-
plication of τ1 or τ2 to initialize the successive iterations. This condition is easy to check by taking N1 a
normal vector to g1, then the condition is equivalent to N1.D2 > 0 (scalar product).

CFG partitioning Now we can partition the control-flow graph in order to use the previous results. The
idea is to separate the cases where both transitions are enabled from those where each transition is enabled
alone. This operation on the CFG, illustrated in figure 14, consists in:
• creating new control points q1, q2, q12. All valuations reaching q1 (respectively q2, q12) will satisfy

g1 ∧ ¬g2 (resp. g2 ∧ ¬g1, g1 ∧ g2).
• creating the transition for the initialization of these new control points, from q0 (ε is the identity

action).
• creating ending transitions from q1, q2, q12 to q′, with empty transitions (ε on the figure).
• creating single loops around q1 and q2, taking into account the location invariant. For instance,

around q1, the transition (q1, (pre(g1 ∧ ¬g2, a2), a1), q1) is created (where pre(g, a) stands for the
precondition of g according to a). For q12 we add the loop τ◦1,2.
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• creating the new transitions between these new control points. For instance, on the figure 14, the
transition µ1,2 denotes the transition (q1, (pre(g2 ∧ ¬g1, a1), ε), q2).

q0 q

τ1

τ2

q0 q12

q1

q2

q′

τ◦
12

τ ′
1

τ ′
2

ε

ε

ε

µ1→2

g1 ∧ g2 → ε

g1 ∧ ¬g2 → ε

¬g1 ∧ g2 → ε

true → ε

Figure 14: Partitioning the GFC among guards

Remark 3 The complement ¬g2 of a polyhedron g2 is not necessarily a polyhedron, but a union of poly-
hedra. We can then create a new transition for each element of this union.

After this partitioning, we use the classic LRA strategy, in fact the new partitioned graph has more
loops, so new strongly connected sub-components. In particular, q1, q2 and q12 are new widening points.
We can replace however τ1 and τ2 by their acceleration, which strongly reduces the number of iterations.

In practice, this partitioning is not realized, because of the induced combinatorial explosion in case
of many loops. A first heuristic consists in computing an approximate solution of the system P = P0 t

τ◦1,2(P) t τ⊗1 (P) t τ⊗2 (P), using the widening operator if necessary. Experimentally, it often happens that
P = P0 t τ

◦
1,2(P0) t τ⊗1 (P0) t τ⊗2 (P0) is already a post-fixpoint, in which case the widening is not applied.

Of course, it is one strategy among others, we could compute for instance P = P0 t τ
◦
1,2(P0)t τ⊗2 (τ⊗1 (P0))t

τ⊗1 (τ⊗2 (P0)) or other combinations, as the Fast tool does ([7]).

Example 3 Let us come back to the example of Fig. 1, which can be considered as the CFG of Fig. 15.a.
We can compute τ◦1,2({x = y = 0}) = {(0, 0)} ↗ {(1, 1), (2, 0)} ∩ {x 6 100} = {0 6 y 6 x 6 100} (see
Fig. 15.c) Then we compute the following polyhedra:
• τ⊗1 (τ◦1,2(P0)) = {0 6 y 6 100, y 6 x, x 6 102}
• τ⊗2 (τ◦1,2(P0)) = {0 6 y 6 x 6 y + 100}

The convex hull of these polyhedra is {0 6 y 6 x 6 102, y + x 6 202}, which is stable by any application of
τ1 or τ2, so we have reached a post fixpoint. We are then able to propagate the information to control point
k3, for which we get the polyhedron {0 6 y 6 202 − x, 101 6 x 6 102}. So, we obtain in only one iteration
the same results that we got with widening and descending sequence in §3.3.

7.1.2 A direct algorithm

A second possibility is to directly compute an over-approximation of
⊔

(τ1 + τ2)∗. We will see that we can
compute directly some over-approximations without dealing with integer arithmetic. Then we propose an
algorithm to deal with all cases.

First results:
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k1

k0

k2

x ≥ 101?

x ≤ 100?

τ2 :

x := x+ 1
y := y + 1

x ≤ 100?

x := x+ 2

τ1 :

x := y := 0

x

100

101

101100 102

(b)

y

Figure 15: Example with two translations

Proposition 7 If D1 is a ray of g1, D2 a ray of g2, then

⊔
(τ1 + τ2)∗(P0) =


P0 if P0 ∩ g1 = ∅ and P0 ∩ g2 = ∅

P0 ↗ {D1} if P0 ∩ g2 = ∅ and
(
P0 ↗ {D1}) ∩ g2 = ∅

P0 ↗ {D2} if P0 ∩ g1 = ∅ and
(
P0 ↗ {D2}) ∩ g1 = ∅

P0 ↗ {D1,D2} otherwise

P0

g1

g2

D1

g2

P0

D2

g1

D2

(b)(a)

Figure 16: Illustration of Proposition 7

Proof Let P be
⊔

(τ1 + τ2)∗(P0). If P0 ∩ g1 = ∅ and P0 ∩ g2 = ∅, then P = P0. Let us now suppose that
P0 ∩ g1 = ∅ and P0 ∩ g2 , ∅ (Figure 16). Since D2 is a ray of g2, each point of P0 ∩ g2 ↗ D2 belongs
to P. Then, since P is convex, each point of P0 ↗ D2 belongs to P (Figure 16.(a)). Now, there are two
possibilities:

• if P0 ↗ {D2} ∩ g1 = ∅, there are no more points. This is the case of Fig. 16.(a).

• if P0 ↗ {D2} ∩ g1 , ∅ (Fig. 16.(b)), and the ray D1 should be added, again because of the convexity
of P.
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�

Proposition 8 If D2 is a ray of both polyhedra g1 and g2, then (τ1 + τ2)∗(P0) = τ∗1(τ∗2(P0)).

Proof Let us show that τ1 and τ2 can commute in the following way:

∀X0 ∈ R
n,∀pi ∈ N, τ

p1
2
(
τ

p2
1 (τp3

2 (X0)
)

= τ
p2
1 (τp1+p3

2 (X0))

Let us name L the left expression and R the right one. Then:

• If p1 = 0, or p2 = 0 ,or p3 = 0 then L = R.

• Else, suppose p1, p2, p3 , 0 and let X = L. As p2 , 0, the left expression implies that τp3
2 (X0) =

X0 + p3D2 satisfies g1. As D2 is a ray of g1, we get:

∀i ∈ {0, . . . , p1}, g1(X0 + p3D2 + iD2),

so g1(τp1+p3
2 (X0)). The left expression also implies that, for all i ∈ {0 . . . , p2 − 1}, τp3

2 + iD1 satisfy g1,
so as D2 is a ray of g1,

∀i ∈ {0, . . . , p2 − 1}, g1

(
X0 + (p1 + p3)D2 + iD1

)
,

and then all the τ1 applications in R are valid and X = R.

Thus any point obtained as a combination of τ1 and τ2 applications can be also obtained by a combi-
nation where all the applications of τ2 are made before τ1 ones, which means (τ1 + τ2)∗(P0) ⊆ τ∗1(τ∗2(P0)).
Let us notice that this equality is valid even if P0 ∩ g2 = ∅, because in this case τ∗2(P0) = P0.

�
This expression gives a simple algorithm to compute an over approximation in this case by using the

simple ones obtained in the previous section. We have a similar result for τ1 by permuting g1 and g2 and
D1 and D2 on the previous proposition.

Algorithm 1 Let P0 be the entry polyhedron. Then:
1. If D1 is a ray of g1 and D2 a ray of g2, then (cf. proposition 7):

• If P0 ∩ g1 = ∅ and P0 ∩ g2 = ∅ then return P0.
• Else, if P0 ∩ g2 = ∅, compute P1 = P0 ↗ {D1}, then

– if P1 ∩ g2 = ∅, return P1,
– else return P0 ↗ {D1,D2}.

• Else if P0 ∩ g1 = ∅, compute P2 =↗ {D2}, then
– if P2 ∩ g1 = ∅, return P2,
– else return P0 ↗ {D1,D2}.

• Else return P0 ↗ {D1,D2}.
2. If D2 is a ray of both g1 and g2, then: (cf. Figure 17.(a))

• Compute P2 = (P0 ∩ g2)↗ {D2} (applications of τ2 first).
• Compute P21 = (P2 ∩ g1)↗ {D1} ∩ post(g1,D1).
• Return P0 t P2 t P21 (the dotted polyhedron).

3. If D1 is a ray of both g1 and g2, then (symmetric case of item 2):
• Compute P1 = (P0 ∩ g1)↗ {D1} (applications of τ1 first).
• Compute P12 = (P1 ∩ g2)↗ {D2} ∩ post(g2,D2).
• Return P0 t P2 t P12.

4. In all other cases (see Figure 17.(b) and 17.(c)):
• Compute P1 = (P0 ∩ g1) ↗ {D1} ∩ post(g1,D1). (a segment starting from the point P0 in

Fig. 17.(c), a light dashed polyhedron in Fig. 17.(b))
• Compute P2 = (P0 ∩ g2)↗ {D2} ∩ post(g2,D2) (empty in Fig. 17.(c)).
• If P1 ∩ g2 ⊆ P2 then let P12 = ∅ else compute P12 = (P1 ∩ g2) ↗ {D2} ∩ post(g2,D2) (P12 is

empty in Fig. 17.(b)).
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• If P2 ∩ g1 ⊆ P1 then let P21 = ∅ else P21 = (P2 ∩ g1) ↗ {D1} ∩ post(g1,D1) (empty set in
Fig. 17.(c)).

• Compute P′ = P0tP1tP2tP21tP12. If this polyhedron is stable by τ1 and τ2, then return P′

(Fig. 17.(b)). Else, iterate like in classic LRA, i.e., take as P0 the polyhedron P0∇C
(
P′tτ1(P′)t

τ2(P′)
)

with with C = {post(g1,D1), post(g2,D2)}), and restart the algorithm. (This example
is depicted in Fig 17.(c)) where P0 is reduced to one point and g1 = ¬g2, P′ is the dashed
polyhedron, which is not stable, and the result is finally obtained by applying widening).

Remark 4 The expressions for cases 2 and 3 are included in the expression of case 4. If the first test is
false, we then use the fourth sub-algorithm to compute the desired polyhedron.

Example 4 Let us consider again our example 3 (Fig 15). None of the vectors D2 =

(
2
0

)
and D1 =

(
1
1

)
are

rays of the guards g1 = g2 = {x 6 100}. So, we compute:
• P1 = {0 6 x 6 y 6 101}.
• P2 = {y = 0, 0 6 x 6 102}.
• P12 = {0 6 x 6 102, x 6 y, 0 6 y 6 100}.
• P21 = {y = 0, 0 6 x 6 101}.
• The convex hull is {0 6 y 6 x 6 102, x + y 6 202}. This set is stable under the applications of τ1 or
τ2, we do not need any widening application.

The p loops case We adapt the previous algorithm to the p loop case:
1. For all i ∈ [1, p], we compute Pi = (P0 ∩ gi)↗ {Di} ∩ post(gi,Di).
2. For all i, j if Pi ∩ g j ⊆ P j let Pi, j = ∅ else Pi, j = (Pi ∩ g j)↗ {D j} ∩ post(g j,D j)
3. Then, let P′ = P0 t

⊔
i

Pi t
⊔
i, j,i

Pi, j.

4. If P′ is stable by each τi, return P′, else start again with P′∇C
( ⊔

i∈[1,p]

τi(P′)
)

with C =

{post(g1,D1), post(g2,D2), . . . , post(gp,Dp)}.

7.2 Combined Translation-Reset loops
In this section, we give some partial results concerning the combination of translation and translation/reset.

The Figure 18 subsumes our notations. We decompose our variable vector into two components ~x =

(~y,~z). In the first loop, all the variables are translated while in the second only the variables denoted by ~y
are translated, and the variables ~z are reset to 0 (the case of reset to a constant c is very similar).

Remark 5 Without loss of generality, we can assume that P0 satisfies ~z = 0, since it is the case after the
first application of τr.

7.3 Simple reset
We first study the case of a translation τ1 combined with a simple reset τ2 (i.e., no variables ~y).

Proposition 9 (Simple reset) Let τ1 : g1 → ~x := ~x + D1 and τ2 : true→ ~z := 0 and assume P0 ⊆ g1∩{~z =

0}. Then, if we note d1 = D1 ↓ {~z = 0} the projection of D1 on ~z = 0, P0 ↗ {D1, d1} ∩ post(g1,D1) is an
over approximation of (τ1 + τr)∗(P0).

Proposition 10 (simple reset with guards) Let τ1 : g1 → ~x := ~x + D1 and τ2 : gr → ~z := 0 and
d1 = D1 ↓ {~z = 0}. We also assume P0 ⊆ g1 ∩ {~z = 0}, then, let P′ = P0 ↗ {D1} ∩ post(g1,D1):

• if P′ ∩ gr = ∅ then P′ is an overapproximation of (τ1 + τr)∗(P0).

• else P0 ↗ {D1, d1} ∩ post(g1,D1) is an overapproximation of (τ1 + τr)∗(P0).
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P2

P21

g1

D1

D2

g2

P0

(a)

g2

g1

D2

D2 D1

P2

P′

P1

P0

(b)

g1

g2

post(g1,D1)

post(g2,D2)

D1

D2

P12
P

P0

(c)

Figure 17: Illustrations for Algorithm 1
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g1 →

~x := ~x+D1

gr →

~y := ~y +Dr

~z := 0

P0

Figure 18: Combination of translation and translation/reset functions

d1

z

g1

D1

x0

Figure 19: Simple reset

Example 5 Consider the program of Figure 20.(a). With the previous notations (x is the first variable z the

second one), we get: D1 =

(
1
1

)
and d1 =

(
1
0

)
. We compute P0 ↗ {D1} ∩ {x 6 10}, this polyhedron has a non

empty intersection with the constraint gr = {x = 10}. Finally, we obtain P0 ↗ {D1, d1} ∩ {x 6 10}, which is
the desired polyhedron. Notice that we get a precise result also with the program of Fig. 20.(b), even if the
exact reachable state set is not Presburger definable (the exact acceleration methods cannot converge).

7.4 Reset with translation

A first result Now let us consider the case where Dr , 0 does not belong to the plane (D1, d1). The
consequence is that some variables (called ~y) are translated by the second loop out of the plane (D1, d1). In
the sequel, we first suppose that gr = true, and also that g1 is of the form z 6 K (parallel to the hyperplane
z = 0, see remark 6). Moreover, and without loss of generality, we assume that P0 ⊆ {z = 0} ∩ g1, that D1
lies in the subspace ~y = 0 and Dr lies in the subspace ~z = 0 (see Fig. 21).

Then the variables behave as follows:
• (Fig. 21.a) From a point ~x0 satisfying g1∧(z = 0), we can apply both τ1 or τr. From ~x0, the translation
τ1 can be applied at most kmax times, where kmax is the least of all quantities bKzi/D1zi + 1c, for
all zi reset variables (on the figure, kmax = 2). At any time, τr can be applied, as its guard is
always true; in this case, variables ~z are reset (projection onto the subspace ~z = 0) and a translation
according to the vector Dr is performed in the subspace {z = 0}. Thus, after k applications of τ1
(0 6 k 6 kmax) followed by one application of τr, the current point is defined by x = x0 + kd1 + Dr

with d1 = D1 ↓ [z = 0] as before.
• (Fig. 21.b) From the points reached so far, the same succession of some (at most kmax) applications

of τ1 followed by one application of τr can occur.
• Finally, we get the whole reachable domain shown in Fig. 21.c, which is the polyhedron with vertices
~x0, ~x0 + kmaxD1 and rays Dr, kmaxd1 + dr.

We obtain the proposition:
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(a)

(b)

1 3 7

τ1 τr

τ1 τr

2z > x→2z 6 x→

(x, z) := (0, 0)

x := x + 1
z := z + 1

z := 0

z = 10→z 6 9→

(x, z) := (0, 0)

x := x + 1
z := z + 1

z := 0

x

10

10 x

z

d1

D1

z

Figure 20: Two loops with simple reset, and the convex hull of reachable states

D1Dr
D1 Dr

~x0

~x0

~x0

(a)

x

z

yK1

z

K1
y

x
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z

K1
y

x
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Figure 21: Reset with translation
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Proposition 11 Let τ1 be of the form (~z 6 K)→ ~x := ~x + D1 and τr : true→ ~y := ~y + Dry;~z := 0. Suppose

P0 ⊂ {~z = 0}. Let also d1 = D1 ↓ [~z = 0] and Dr =

(
Dry

0

)
. Then

• If P0 ↗ {D1} does not intersect g1 : (z 6 K), then P0 ↗ {D1, d1,Dr} is a convex overapproximation
of (τ1 + τr)∗(P0).

• Else let kmax = bK/D1z + 1c, then P0 ↗ {D1,Dr, kmaxd1 + Dr} ∩ post(g1,D1) is a convex overapprox-
imation of (τ1 + τr)∗(P0).

Remark 6 In contrast with the example of Fig. 20.(b), if the guard g1 is not of the form~z 6 K, the variable
behaviour can be non linear, as shown in Fig. 6, one border of the reachable region is then a parabola.

x ≥ 2z →

x := x+ 1
z := z + 1
y := y + 1

τ1 τr

true →

z := 0
y := y + 1

(x, y, z) := (0, 0, 0)

x0

Z

g1

Dr

Y

Figure 22: A parabolic behaviour

A more general algorithm The previous result can be extended to more general cases:

• If P0 is not included in {~z = 0}, we first compute P′0 = τr(τ⊗1 (P0)), which is included in {~z = 0}.

• The next proposition will deal with more general conditions for gr.

Proposition 12 [34] Let τ1, τr of the form:

τ1 : (~z 6 K1)→ ~x := ~x + D1 and τr : (~z ./ Kr)→ ~y := ~y + Dr; z := 0

where ./ ∈ {6,=,>}. Assume K1 > 0 and D1 · uz > 0 (i.e., D1 is not a ray of g1). Let kmax1 = bK1/D1z + 1c,
d1 = D1 ↓ [z = 0], and kmaxr = bKr/D1z + 1c. We also assume then P0 ⊆ g1 ∩ {~z = 0}. Then let P′ be the
polyhedron computed with the following algorithm:

• if ./ is “6” then

– if Kr < 0 then (τr is never applied) P′ = P0 ↗ {D1} ∩ post(g1,D1)

– if Kr > K1 then P′ = P0 ↗ {D1,Dr,Dr + kmax1d1} ∩ post(g1,D1)

– if K1 > Kr > 0 then P′ = P0 ↗ {D1,Dr,Dr + kmaxrd1} ∩ post(g1,D1)

• if ./ is “=” then

– if K1 > Kr > 0 and ∃k,Kr = kD1z then P′ = P0 ↗ {D1,Dr + kd1} ∩ post(g1,D1)

– else (τr never applies) P′ = P0 ↗ {D1} ∩ post(g1,D1)

• if ./ is “>” then

– if Kr > K1 and Kr > 0 then (τr never applies) P′ = P0 ↗ {D1} ∩ post(g1,D1)

– if K1 > Kr > 0, then P′ = P0 ↗ {D1,Dr + kmax1d1,Dr + kmaxrd1} ∩ post(g1,D1)

26/43 Verimag Research Report no TR-2010-10



Abstract Acceleration in Linear Relation Analysis Laure Gonnord, Nicolas Halbwachs

– if Kr < 0 then P′ = P0 ↗ {D1,Dr,Dr + kmax1d1} ∩ post(g1,D1)

Then P′ is a precise overapproximation of (τ1 + τr)∗(P0).

Remark 7 If D1 ·uz < 0 with the notations of Proposition 12, g1 is always true, then the overapproximation
becomes P0 ↗ {D1, d1,Dr}

An algorithm for a combination of translation and translation/reset

Algorithm 2

• If P0 ⊆ g1 ∩ {z = 0} :

– If Dr =
−→
0 , or Dr ∈ Vect(D1, d1), we first compute d1 = D1 ↓ [~z = 0]. Then:

∗ If P0 ↗ {D1} ∩ post(g1,D1) ∩ gr = ∅, then return P0 ↗ {D1} ∩ post(g1,D1)
∗ Else, return P0 ↗ {D1, d1} ∩ post(g1,D1).

– Else:

∗ If D1 is a ray of g1 or the z in g1 are not of the form z 6 K1, then return P0 ↗ {D1, d1,Dr}∩

post(g1,D1).
∗ Else, apply proposition 12.

• If P0 ( g1∩{z = 0}, by computing P1 = τ⊗1 (P0) = (P0∩g1)↗ {D1}∩ post(g1,D1), and P1r = τr(P1∩

gr) we reduce the case into the preceding one. We compute the result P2, then P′ = P0tP1tP2tP1r.
If this polyhedron is stable under τ1 and τ2, return P′ else continue classical LRA iterations with
P0∇CP′ with C = {post(g1,D1)}.

Proposition 13 This algorithm computes an overapproximation of (τ1 + τr)∗(P0).

8 Aspic tool implementation
In this section, we briefly describe our prototype tool Aspic (Accelerated Symbolic Polyhedral Invariant
Computation), which implements most of the techniques proposed in this paper.

Aspic is implemented over a fixpoint generic analyzer called Analyseur ([2]), developed by B. Jeannet
at Inria. This tool performs a fixpoint analysis, provided an encoding of the control flow graph and an
implementation of the abstract lattice of properties. We chose the polyhedral library NewPolka ([49]).

Aspic takes as input the textual automata input format of the tool Fast ([7]). A Fast file is composed of
two parts:
• A “model”, which contains a textual description of a unique counter automaton: numerical vari-

ables, control points and transition functions consisting of a source, a destination, a numerical guard
(possibly non convex) and an affine action over the numerical variables.

• A “strategy”, which defines “regions”, and computation objectives. In contrast with the tool Fast
itself, our tool only needs an initial region; an “error region” is only optional, and no additional
information is required.

The Aspic input language grammar can be found in Appendix.

Classical Linear Relation Analysis. The Aspic tool makes a forward accessibility analysis, which aims
at discovering some polyhedral invariants at each program control point. If an error region is defined (a
formula over numerical variables and control points), the goal is transformed into a non accessibility prob-
lem by creating new bad states and new transitions; if, after convergence, all the bad states are associated
an empty polyhedron, the goal is proved, otherwise the result is inconclusive.

The analysis is performed through the strategy of strongly connected subcomponents given in [16]. The
decomposition is precomputed at the beginning of analysis by a variant of Tarjan algorithm [58].
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Dealing with undeterministic transitions Some benchmarks pointed out the need for undeterministic
affectations. The semantics of counter automata has been extended with a special operation x′ =? who
basically encodes that every information on x is lost. The expressivity power of the input language is
increased, as all affine transitions, that is, transitions of the form Q(x, x′) with Q a polyhedron, can now be
encoded, as shows lemma 3.

Lemma 3 A general transition with affine relations can be encoded as the sequence of two extended affine
transitions.

Proof Let t = (k,Q, k′) be a general affine transition (Q is a polyhedron of size 2n. Let ~z be a vector of n
fresh variables and knew a new control point. Then, the transition t is equivalent to the combination of t1
and t2, where:
• t1 = (k, true, a1, knew) with a1(~x,~z) = (~x, (?)n);
• t2 = (knew, g2, a2, k′) where g2(~x,~z) = true iff (~x,~z) ∈ Q (affine guard) and a2(~x,~z) = (~z,~z) (projec-

tion).
In other words, the affine relation is encoded in the guard of the second transition. As an illustration, on
figure 23, the transition on the left is equivalent to the pair of transitions on the right.

k k′
3 ≤ 2x′ + 7x ≤ 19

2y ≤ 42

k knew k′
z :=? x′ := z

2y ≤ 42 3 ≤ 2z + 7x ≤ 19

Figure 23: Affine relations encoded with extended affine function

�

Detecting and preprocessing accelerable loops. During the first phase of the analysis the transition
functions are preprocessed, an internal structure encodes the type of the action (identity, translation, trans-
lation reset, idempotent transition, . . . ), of the guard (always true, simple, complex, . . . ), and if the tran-
sition is accelerable, and other useful informations that can be precomputed (postconditions, rays to add,
. . . ).

The control structure of the automaton is modified in order to deal with accelerable loops:
• The unique single loop case (a unique circuit around the head of the strongly connected subcom-

ponent) is dealt with as follows: if the loop is accelerable, then the control point is split into two
points, related with a meta-transition, as shown by Fig. 24. This splitting for single loops aims at
suppressing the widening at control point q. At qsplit, the computed polyhedron is τ⊗(P0).

q

x ≤ 10 → x++

q qsplit
post = (x ≤ 11), D = (1)

meta

Figure 24: The unique single loop case

• The multiple single loop case. For multiple single loops, we also decide to split the control point,
as shown in Fig. 25. Multiple loops can be dealt with in two ways:

– If we have only partial acceleration results, we introduce a return identity edge, which creates
a new loop, so a widening node must be chosen among q and qsplit.

– If complete acceleration results are available, which means that the multiple loops can be ac-
celerated all together, this return arc is not necessary. This case is similar to the single loop
one.
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q

τ1

τ2

τN

q qsplit
meta(1,2,...N)

returning edge

Figure 25: The multiple single loops case

• The complex loop case. We deal with this case by (possibly) precomputing the meta transitions
associated to the circuits that are detected by the Tarjan algorithm. We compute the associated
transformation backward, by composing actions and computing preconditions of guards. For in-
stance, let us consider the following circuit: (q, τ1, q1)(q1, τ2, q) with q1 : x 6 7 → x := x + 1 and
q2 : x 6 4→ x := x + 3. In this case, we compute the transition q2 ◦ q1 : x 6 4→ x := x + 4, and it
is accelerable, thus we add a meta-transition over the control point q. Both initial transitions are kept
in order to preserve the semantic of the CFG. The main drawback of this approach is that not every
circuit are detected, in particular in the case where two parallel circuits exists on the same control
point (Fig. 26). The detection of every circuit is however too expensive.

q

Figure 26: “Parallel” circuits

The choice of widening nodes: Since the first phase modifies the graph structure, the computation of
widening control points is done afterwards. Bourdoncle’s strategy [16] has been modified as follows: if
the head q of a strongly connected subcomponent has been split (with the creation of qsplit), then qsplit is
chosen as a widening point, instead of q. The reason is that it is better to widen at a control point where the
most precise information has been collected. Experiments show that widening after acceleration is a good
heuristic.

9 Experimental results
In this section we present some experiments driven with our Aspic tool. These results show that the method
we have proposed gives interesting results in terms of precision and efficacity.

9.1 Other approaches to compute invariants

Avoiding widening Some authors study specific cases where a (least) fixpoint can be precisely computed
without widening. In the lattice of intervals, the problem is studied in [57], [26] and [33]. [53] proposes a
direct method to solve polyhedra fixpoint equations through the use of Farkas lemma and quantifier elimi-
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nation. In general, the problem is that these works don’t clearly identify the cases where these techniques
work.

Using SMT solvers A comparaison to methods using SMT solvers ([55], [60],[61]) is in progress.

9.2 Toy examples
For the toy examples, we compared our method (column “Aspic” in tables) with the following ones:
• Classic Linear Relation Analysis, without widening upto, without the new path algorithm, with two

widenings: the standard widening ([39]) and the one proposed in [6]. The first analysis is imple-
mented in Aspic and the StInG tool ([56]) can deal with both of them. The results can be found in
column Hal79/BHRZ03. On the toy examples, the invariants are the same.

• The algorithm [53], which is implemented in StInG (column named “STING”). Aspic provides a
translator from the Fast language to the input language of StInG.

• The classical LRA with or without widening upto, with the new path algorithm. It has been done
with the Aspic tool (column Ch79-v2)

• The LRA with “lookahead widening”, which is also implemented in Aspic. The results can be found
in column called “lookahead”.

• The Fast tool, that implements the exact acceleration techniques described in Section 4. The Fast
version we used does not give the fixpoint, but only some information on the accelerated loops. The
benchmarks give only an estimation of the computing time.

The description of the automata can be found in Aspic homepage1. We present only the results obtained
with the different methods on a relevant control point in Fig 27 and 28. No computation time is given
because all these analyzes are instantaneous, at the exception of the gas burner and the car analysis with
the Fast tool (we stopped these two analysis after 15 min because the Presburger automata were too big at
this time (more than 8000 states in each case).

On these examples, we can notice that Aspic often manages to infer more precise invariants than the
other tools. When the classic LRA (column CH79-v2) gives the same result, it needs the new path heuristic
and the widening upto, and needs more steps to converge, as can be shown in Figure 29. In this last
table, we used proof goals and compare the behaviour of classical LRA, Lookahead widening and LRA
with acceleration. We indicate the minimum delay used for proving the goal, and the number of global
iterations. This table shows the efficiency of Aspic in terms of iteration number.

Example Proof Goal CH79_v2 Lookahead Aspic
swap da 6 db + 1 delay = 4/6it delay = 4/7it delay = 1/1it

subway b 6 s⇒ s − b 6 29 delay = 1/5it delay = 20/23it delay = 1/4it
GB 6` 6 t + 50 delay = 63/65it delay = 63/66it delay = 1/5it

wcet1 3k 6 10i + 10 delay = 11/12it delay = 10/12it delay = 1/4it
wcet2 20 6 k1 delay = 37/39it delay = 37/40it delay = 5/8it

Figure 29: Some examples with proof goals

9.3 Application to other areas
Reachability analysis on MicMac automaton In [25], the authors propose a new automata formalism
to encode SystemC processes. SystemC [50] is a C++ library used to describe and simulate systems on
chips, handled as asynchronous compositions of components, managed by a simulation scheduler. For each
component, a “Micmac automaton” is generated, in which two kinds of states are distinguished:
• The micro states (in black) represent locations where the process owns the control (in SystemC, the

scheduling is not preemptive);
• The macro states (in white) are locations where the process can give back the control to the scheduler.

1http://laure.gonnord.org/pro/aspic/benchmarks.html
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Name/Method Ch79/BHRZ03 STING CH79 v2

Hal79a
{

0 6 j
2 j 6 i

}
idem BHRZ03

{
0 6 j

2 j 6 i 6 104

}
Hal79b {0 6 y 6 x} idem BHRZ03 {0 6 y 6 x 6 102}

S P {x2 + x3 + x4 + x7 = p2, x1 + x2 + x4 + x5 + x6 = p1, . . .}
GB {0 6 x 6 ` 6 t} idem ch79 idem Aspic

Train1


d = 9
20 6 b

b 6 s + 20




. . .
11 6 b

1 6 b − s 6 20
. . .

 idem BHRZ03

S impleCar
{

0 6 s 6 d
0 6 t

}
idem BHRZ03 idem Aspic

Car
{

0 6 s 6 d
0 6 t

}
idem BHRZ03 idem Aspic

Apache1 idem Aspic idem Aspic idem Aspic
Goubault1b idem Aspic idem Aspic idem Aspic
Goubault2b { j − i <= 25, j 6 175} {. . . i > 150} idem Aspic

wcet1
{

j > k, k 6 10
2k 6 a, 0 6 a 6 2k + 5

}
BJRZ03 +

{
j > 10

}
idem BHRZ03

wcet2 idem Aspic idem Aspic idem Aspic
dummy1 {0 6 t0 6 t} idem CH79 idem CH79
dummy4 {3t = 3t0 + z, z > 0} idem Aspic idem Aspic

dummy6 {t + 2a > 4}
{

a 6 6
0 6 t + a − 2

} {
0 6 t

4 6 t + 2a

}
ax0


t0 = j, 1 6 t0, 1 6 i

n − 1 < t0
n − 1 < i

 idem BHRZ03 idem BHRZ03

t4x0
{

t0 = j, 1 6 t01 6 i
}

idem BHRZ03 idem BHRZ03

Figure 27: The toy examples with different methods (1)

These automata communicate with each other by means of shared variables. An ad-hoc product is
then performed, which takes the different possible schedulings into account. The result is an interpreted
automaton that encodes all the possible behaviors. The final goal is to check trace inclusion between two
such automata. On figure 30, we show a result of such a product. We remark that these automata have no
nested loops, the only loops coming from “elapsing of simulation time”.

The main limitation of this method is the size of the generated automata. This is why people use
existing verification tools in order to discard unreachable states and transitions. Our tool can compute an
over approximation of reachable states, and thus can cut off unreachable parts in the resulting product.

A translation of the generated MicMac automata (product) to the Fast format has been given by J.
Cornet [25]. The first experiments on toy examples have shown that Aspic permits to make the analysis in
a reasonable time and with non trivial results, as we can seen in Fig. 31.
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Name/Method Lookahead Faster ASPIC

Hal79a idem Aspic OK


i + 2 j 6 204
i 6 104, 0 6 j

2 j 6 i


Hal79b idem Aspic OK

{
0 6 y 6 x 6 102

x + y <= 202

}
S P {x2 + x3 + x4 + x7 = p2, x1 + x2 + x4 + x5 + x6 = p1, . . .}

GB {0 6 x 6 ` 6 t} > 15min


6` 6 t + 5x
0 6 x 6 10

x 6 `
0 6 `


Train1 idem BHRZ03 OK idem BHRZ03

S impleCar


0 6 s 6 d

s 6 4
0 6 t

 > 15min


0 6 s 6 4

s 6 d
d 6 4t + s


Car


0 6 s 6 d

s 6 2
0 6 t

 OK


0 6 s 6 2

s 6 d
d 6 2t + s

t 6 3


Apache1 idem Aspic OK

{
c < tk_sz, 0 6 c

}
Goubault1b idem Aspic OK

{
i + 2 j = 21
j 6 8, 6 6 j

}
Goubault2b idem CH79V2 OK(4s)

{
j 6 175, i < 177, 98 6 j

}
wcet1 idem CH79V2 OK(4s)

{
0 6 2k 6 a 6 2k + 5

3k < 10i + 10, k 6 5i

}

wcet2


5 < k1

20 6 3k1
. . .

 OK(4s)


k = 5, j = 10, i = 5

2k1 6 a
0 6 k1

a 6 2k1 + 5


dummy1 idem Aspic OK

{
0 6 t0 6 t 6 t0 + 10

}
dummy4 idem Aspic OK

{
3t = 3t0 + z
0 6 z 6 56

}
dummy6 idem CH79V2 OK

{
4 6 t + 2a 6 16
−2 6 t − a 6 1

}
ax0 idem CH79V2 > 3min

{
t0 = j, 1 6 t0 6 i

n − 1 < t0

}
t4x0 idem CH79V2 > 3min


t0 = j, 1 6 i,
t0 <= n + 1,

i <= n + 1, 1 6 t0


Figure 28: The toy examples with different methods (2)

Product Aspic IF Tool
Example (nb vars) (#loc,#trans) #of acc loops (#loc/#trans) time time

Ex1 (3) (47,93) 5 (30,36) 0.036s some ms
Ex2 (3) (42,104) 13 (22,35) 0.040s some ms
Ex3 (4) (144,653) 1 (144,350) 0.060s >12min
Ex4 (4) (180,508) 13 (50,87) 0.044s >12min

Figure 31: Use of Aspic for reachability analysis in MicMac
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1

2
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3

    e_2:=1

4

    {e_1=1}

5

    p
    [Y<10]

   Y++

6

    [Y=10]

7

    {x=1}
    Ok

    {x=0}
    Ko

8

    p

1

2

    q

3

  {e_2=1}
   e_1:=1  {e_2=0}

4

    x:=0
    [Z<10]

   Z++

5

    [Z=10]

6

    x:=1

7

    q

1_1

2_1

    p

1_2
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3_1
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1_3
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    p

1_6

    x:=1

3_5

    e_2:=1

1_7

    q

2_7

    p

3_7

    e_2:=1

4_1

    {e_1=1}

3_2

    q

    [Z<10]
 Z++

    [Z=10]}

4_4

    {e_1=1}

4_5

    {e_1=1}

3_6

    x:=1
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    {e_1=1}

5_1

    p

3_3

    {e_2=1}
    e_1:=1     {e_2=0}

    x:=0

5_4

    p

5_5

    p    q

5_7

    p

    [Y<10]
  Y++

6_1

    [Y=10]

5_2

    q

    [and(Y<10,Z<10)]
 Y++   Z++

    [and(Y<10,Z=10)]

6_4

    [and(Y=10,Z<10)]

6_5

    [and(Y=10,Z=10)]    [Y<10]
  Y++

    [Y=10]

5_6

    x:=1

    [Y<10]
  Y++

6_7

    [Y=10]

7_1

    {x=1}
    Ok

    {x=0}
    Ko

6_2

    q

5_3

    {e_2=1}
    e_1:=1     {e_2=0}

    x:=0

    [Z<10]
  Z++

    [Z=10]

7_4

    {x=1}
    Ok

    {x=0}
    Ko

7_5

    {x=1}
    Ok

    {x=0}
    Ko

6_6

    x:=1    q

7_7

    {x=1}
    Ok

    {x=0}
    Ko

8_1

    p
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    {e_2=1}
    e_1:=1     {e_2=0}

    x:=0

8_4

    p

8_5

    p    q

8_7

    p

8_2

    q

    [Z<10]
  Z++

    [Z=10]

8_6

    x:=1

8_3

    {e_2=1}
    e_1:=1     {e_2=0}

    x:=0

    q

Figure 30: Two MicMac automata and their product

On each example, we give the number of locations and transitions of the generated automaton, then
the number of accelerated loops; then the number of the locations/transitions potentially reachable given
by Aspic, and then the analysis time. The results given by the IF tool [17, 18] are exact — since IF deals
with timed automata —, but the analysis time can be very long (see the last two examples) and the analysis
splits the control, so tracing back the results to the source automaton is more difficult.

Programs with lists [15] proposes a translation of programs manipulating lists to counter automata.
This translation is made by making abstraction of lists by some “list segments”, all the elements of which
having the same behaviour. This modeling is often too rough, so some counters are generated in order to
take the lists sizes into account. The tool [44] implements this algorithm from programs with lists to the
Fast format. Aspic thus permits to verify some properties on program with lists. For the time being, the
translation induces several intermediate control points, and the Fast tool does not manage to deal with such
programs in the absence of strategy. In many cases, Aspic permits to verify the non reachability of the
error states in a reasonable time. However, the generated automata does not involve complex numerical
properties for now.

10 Conclusion

When experimenting standard Linear Relation Analysis on various examples, two phenomena become
rapidly evident:
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1. There is a significant class of programs where the analysis finds the most precise information, i.e.,
the least abstract fixpoint;

2. On the other hand, it is much more difficult to get precise results about other programs which, how-
ever, have an obviously linear behavior: the “discrete derivative” of some variables — i.e., their
average variation with respect to loop counters — is constant, or bounded by constants.

This paper explains the former phenomenon, and proposes some solutions to the later one.
We first performed an extended review of the existing proposals in order to improve the results of

widened iterations. The message, here, is that while being a heuristic technique, the widening should be
applied with some principles in mind. Particularly, the fact that one application of a widening operator is
more precise than with another operator, does not ensure that the limit of the iterations will be more precise.
Another conclusion, that we used afterwards, is that using only two successive terms of the iteration is often
a too strong limitation: looking at the program, i.e., at the way one term is computed from the previous
one, can pay off in defining widening strategies.

After this survey of the background, we looked at cases where the least abstract fixpoint should be
computable. While being strongly influenced by results of exact acceleration, we decided to stay in the
framework of abstract interpretation, because, on one hand, we strongly believe that simplifying sets and
formulas is the key to acceptable performances, and on the other hand, we want to keep general applicabil-
ity: if the exact fixpoint cannot be computed, an extrapolated approximation should still be provided.

We first identified the simple translation loops, which explain the first phenomenon, where standard
LRA provides precise results. On this kind of loops, our abstract acceleration computes the result without
iteration, thus improving the efficiency w.r.t. classical methods. The second phenomenon often appears
when the limitations on derivatives are expressed by means of counter limitations, i.e., by combining trans-
lations and resets in loops. We have also studied this case, and identified many situations where the abstract
effect of the loop can be computed almost exactly. In these situations, our analysis is more precise, and
generally more efficient than existing methods.
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Aspic input Grammar (Fast Variant)

prog: model strat

/*MODEL*/
model : TK_MODEL id TK_LBRACE vars states transitions TK_RBRACE

vars : TK_VAR idlist TK_SEMI

id:
TK_ID

idlist:
id | idlist TK_COMMA id

states : TK_STATES idlist TK_SEMI

transitions : translist

translist :
trans | translist trans

trans : TK_TRANS id TK_ASSIGN TK_LBRACE intrans TK_RBRACE TK_SEMI

intrans : TK_FROM TK_ASSIGN id TK_SEMI TK_TO TK_ASSIGN id TK_SEMI
TK_GUARD TK_ASSIGN guard TK_SEMI
TK_ACTION TK_ASSIGN action TK_SEMI

action :
| /*do nothing */
| affectation
| action TK_COMMA affectation

affectation :
|id TK_PRIME TK_EQUAL TK_INDET /*x:=?*/
| id TK_PRIME TK_EQUAL numexpr

/*STRATEGY*/

strat : TK_STRATEGY id TK_LBRACE instructionlist TK_RBRACE

instructionlist :
instruction | instructionlist instruction

instruction :
TK_REGION TK_REGINIT TK_ASSIGN region TK_SEMI
| TK_REGION TK_REGBAD TK_ASSIGN region TK_SEMI
| TK_REGION id TK_ASSIGN region TK_SEMI
| TK_STRATTRANS id TK_ASSIGN idlistbraq TK_SEMI
| TK_BOOLEAN id TK_ASSIGN boolfastexpr TK_SEMI /*ignore*/
| TK_SETMAXSTATE TK_LPAREN integ TK_RPAREN TK_SEMI /*ignore*/
| TK_SETMAXACC TK_LPAREN integ TK_RPAREN TK_SEMI /*ignore*/
| TK_PRINT TK_LPAREN chaine TK_RPAREN TK_SEMI /*ignore*/
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| TK_IF boolfastexpr TK_THEN instructionlist suite /*ignore*/

suite :
TK_ENDIF
| TK_ELSE instructionlist TK_ENDIF

chaine :
id | TK_DOUBLEQUOTE idandspace TK_DOUBLEQUOTE

idandspace :
id | id idandspace

idlistbraq :
id | TK_LBRACE idlist TK_RBRACE

integ:
| TK_NUM

region :
regionterm /*terminal*/
| region TK_ANDAND region
| region TK_OROR region
| TK_EXCLA region
| TK_LPAREN region TK_RPAREN
| TK_PRE TK_MUL TK_LPAREN region TK_COMMA idlist TK_RPAREN /*pre
star, ignore*/
| TK_PRE TK_MUL TK_LPAREN region TK_COMMA idlist TK_COMMA integ TK_RPAREN /*ignore*/
| TK_POST TK_MUL TK_LPAREN region TK_COMMA idlist TK_RPAREN /*ignore*/
| TK_POST TK_MUL TK_LPAREN region TK_COMMA idlist TK_COMMA integ TK_RPAREN /*ignore*/

regionterm :
id | TK_LBRACE guard TK_RBRACE

boolfastexpr :
| id | TK_TRUE | TK_FALSE
| TK_STRATSUBSET TK_LPAREN region TK_COMMA region TK_RPAREN
| TK_STRATEQSET TK_LPAREN region TK_COMMA region TK_RPAREN
| TK_STRATISEMPTY TK_LPAREN region TK_RPAREN
| boolfastexpr TK_AND boolfastexpr
| boolfastexpr TK_OR boolfastexpr
| TK_EXCLA TK_LPAREN boolfastexpr TK_RPAREN
| TK_LPAREN boolfastexpr TK_RPAREN

/*guards are formula over numerical constraints*/
/*non primed formula*/
guard :
| TK_LPAREN guard TK_RPAREN
| guard TK_ANDAND guard
| guard TK_OROR guard
| guard TK_IMPLY guard
| TK_EXCLA TK_LPAREN guard TK_RPAREN
| term

term:
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| TK_TRUE | TK_FALSE
| TK_STATE TK_EQUAL id /*bad state*/
| exprcompare

exprcompare:
| numexpr TK_GREATEREQUAL numexpr
| numexpr TK_GREATER numexpr
| numexpr TK_LESSEQUAL numexpr
| numexpr TK_LESS numexpr
| numexpr TK_EQUAL numexpr
| numexpr TK_NOTEQUAL numexpr

numexpr : /*numerical expressions*/
expr6

expr6:
expr7
| expr6 TK_PLUS expr7
| expr6 TK_MINUS expr7
expr7:
expr8

| expr7 TK_MUL expr8
| expr7 TK_DIV expr8
expr8:
| numcst
| id
| numcst id
| TK_LPAREN expr6 TK_RPAREN
| TK_MINUS expr8
numcst:
TK_NUM | TK_RAT

Token defs
(*keywords*)
|"model" { TK_MODEL }
|"var" { TK_VAR }
|"states" { TK_STATES }
|"transition" { TK_TRANS }
|"from" { TK_FROM }
|"to" { TK_TO }
|"guard" { TK_GUARD }
|"action" { TK_ACTION }
|"exists" { TK_EXISTS }
|"pre" { TK_PRE }
|"post" { TK_POST }
|"false" { TK_FALSE }
|"true" { TK_TRUE }
|"strategy" { TK_STRATEGY }
|"Region" { TK_REGION }
|"init" { TK_REGINIT }
|"bad" { TK_REGBAD }
|"state" { TK_STATE }
|"Transitions" { TK_STRATTRANS }
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|"boolean" { TK_BOOLEAN }
|"True" { TK_STRATTRUE }
|"False" { TK_STRATFALSE }
|"eqSet" { TK_STRATSUBSET }
|"subSet" { TK_STRATEQSET }
|"isEmpty" { TK_STRATISEMPTY }
|"setMaxState" { TK_SETMAXSTATE }
|"setMaxAcc" { TK_SETMAXACC }
|"print" { TK_PRINT }
|"if" { TK_IF }
|"endif" { TK_ENDIF }
|"then" { TK_THEN }
|"else" { TK_ELSE }
|"and" { TK_AND }
|"or" { TK_OR }

(* Delimitors *)
| "," { TK_COMMA }
| ";" { TK_SEMI }
| ’’’ { TK_PRIME }
| "(" { TK_LPAREN }
| ")" { TK_RPAREN }
| "{" { TK_LBRACE }
| "}" { TK_RBRACE }
| "[" { TK_LBRACKET }
| "]" { TK_RBRACKET }
| ":" { TK_COLON }
| "\"" { TK_DOUBLEQUOTE }

(* Arithmetic operators *)
| "+" { TK_PLUS }
| "-" { TK_MINUS }
| "*" { TK_MUL }

(* Comparison functions *)
| ">" { TK_GREATER }
| "<" { TK_LESS }
| ">=" { TK_GREATEREQUAL }
| "<=" { TK_LESSEQUAL }
| "=" { TK_EQUAL }
| "!=" { TK_NOTEQUAL }

(*assignation*)
| ":=" { TK_ASSIGN }

(*boolean operators*)
| "&&" {TK_ANDAND}
| "||" {TK_OROR}
| "!" {TK_EXCLA}
| "=>" {TK_IMPLY}
| "<=>" {TK_EQUIV}

(*indet*)
| "?" {TK_INDET}
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