L.Gonnord and JPBabau - Real Time Systems, Wisla, Poland, Oct 2008

Runtime resource assurance and adaptation with
Qinna framework: a case study

Laure Gonnort, Jean-Philippe Babau
CITI / INSA-Lyon
F-69621 Villeurbanne Cedex - France
Email : {Laure.Gonnord, Jean-Philippe.Bab@insa-lyon.fr

Abstract—Even if hardware improvements have increased the constraints and dynamically adapt the implementationl$eve
performance of embedded systems in the last years, resourceaccording to resource availabiligt runtime.
problems are still acute. The persisting problem is the cortantly In this paper, we present a case study using Qinna as proof

growing complexity of systems. New devices for service sucs . . .
PDAs or smartphones increase the need for flexible and adapg of concept. In Section Il we present the main charactesistic

open software. Component-based software engineering tseto the case study which is an image remote viewer. In Section Il
address these problems and one key point for development isg we recall Qinna’s main concepts, as introduced in [2] and

Quality of Service (QoS) coming from resource constraintsin formalize them in a more generic way. We give an overview
this paper, we recall the concepts behind Qinna, a component s Qinna’s C++ implementation (Section 1), and then pravid

based QoS Architecture, which was designed to manage QoSth Limpl tati t to d I e
issues, and we illustrate the developpement of a image viewe € general implementation steps 1o develop a resourcesawa

application whithin this framework. We focus on the general application with Qinna (Section V). We illustrate in the
developpement methodology of resource-aware applicatisrwith ~ particular case of the remote viewer application in Sectidn
Qinna framework, from the specification of resource constrints

to the use of generic Qinna's algorithms for negociating QoS Il. SPECIFICATION OF THE REMOTE VIEWER

contracts at runtime. Our case study is a remote viewer application whose high
level specification follows:
« The system is composed of a mobile phone and a remote
The study takes place in the context of embedded handled server. The application allows the downloading and the
systems (personal digital assistants, mobile phones) avhos visualization of remote images via a wireless link.
main characteristic is the use of limited resources (CPU,. The remote directory is reached via a ftp connection.
memory). After connection, two buttons “Next” and “Previous” are
In order to develop multimedia software on such systems used to display images one by one. Locally, some images
where the quality of the resource (network, battery) caryvar are stored in a buffer. To provide a better quality of

I. INTRODUCTION

during use, the developer needs tools to: service, some images are downloaded in advance, while
« easily add/remove functionality (services) during compi- the oldest ones are removed from the photo memory.
lation or at runtime; « The application must manage different qualities of ser-
« adapt component functionality to resources, namely pro- vices for the resources: shortage of bandwidth and mem-
pose “degraded” modes where resources are low, ory, or disconnections of the ftp server. When needed it
« evaluate the software’s performances: quality of provided can download images in lower quality (in size or image
services, consumption rafer some scenarios. compression rate).

In this context, component-based software engineering ap-. Different storage policies are possible, and there are many
pears as a promising solution for the development of such parameters which can be modified; like the size of the
kinds of systems. Indeed it offers an easier way to build buffer, or the number of images that are downloaded
complex systems from base components ([1]), and thus we each time. We want to evaluate which policy is the best
are able to design resource components like others. The main according to a given scenario.

advantages are the re-usability of code and also the fléyibil . . . S
We aim to use Qinna for two main objectives: maintenance
of such systems. of the application with respect to the different qualitiel o
The Qinna framework (2], [3]) was designed to handig rvice, and also the evaluation of the influence of the param

the specification and management of resource constrai%fs . : -
. eters on the non-functional behavior (timing performance a
problems during the component-based system developmen

R) . : . resource usage) of the application.
Variability is encoded into discrete implementation levahd ge) PP
links between them. We can also encode quantity of resource Ill. DESCRIPTION OF THEQINNA FRAMEWORK
constraints. Qinna provides algorithms to ensure resouige Qinna’s main concepts

* This work has been partially supported by the REVE projethefFrench The fra-.m?work deS|gned n [2] and [3] has the foIIowmg
National Agency for Research (ANR) characteristics:

L.Gonnord and JPBabau - Real Time Systems, Wisla, Poland, Oct 2008

« Both the application pieces of code and the resourée last, Qinna provides a single component nantgmSDo-
are components. The resource services are enclosednain for the whole architecture. It manages all the service
components likevenor y, CPU, Thr ead. requests inside and outside the application. The clientsafra

o The variation of quality of the provided services arice asks the Domain for reservation of some implementation
encoded by the notion ofmplementation level. The code level and is eventually returned a contract if all constisaare
used to provide the service is thus different according gatisfied. Then, after each service request, the Domain snake
the current implementation level. an acknowledgment only of the corresponding contract lis sti

o The link between the implementation levels is madealid.
through an explicit relation between the implementatio
level of the provided service and the implementation lev-
els of the services it requires. For instance, the develope Quantity of resource constraint (QRC) is a quantitative
can express that a video component provides an imaggnstraint on a componeitand the services() it proposes.
with highest quality when it has enough memory an@RCs are for instance formula on the total instance of a given
sufficient bandwidth. component type, of the total amount of resource (memory,

« All the calls to a “variable function” are made througHcPU) allocated to a given component. They are two types of
an existing contract that is negotiated. This negotiatigiPnstraints, depending on their purpose:
is made automatically through the Qinna components.. Component type constraints (CTC) express properties of
A contract for a service at some objective implemen- components of the same type and their provided services.
tation level is made only if all its requirements can be « Component instance constraints (CIC) express properties
reserved at the corresponding implementation levels and of a particular instance of a component.

also satisfy some constraints called Quality of resource The management of these constraints is automatically done
constraints (QoR). If it not the case, the negotiation failgt runtime, if the developer implements them in the follogvin

. Quantity of Resource constraints in Qinna

way:
e s S U A T B Y W e « In the QoSConponent, for each service, implement
e [&] ¢ the two functions:t est CI C and updat eCl C. The
QoSComponent €, — : . .
Batoational port = former decides whether or not the call to the service can
i J unctional por .B"JkﬁlJ [\ . .
: —— (aned: be performed, and the later updates variables after the
| N D function call. In addition, there must be an initialization
' [QoSComponentBroker! s () of the CICs formulas at the creation of each instance.
: ?)f{:ij-j?';;{:f;;;.:J“"-*'f""’f'“””‘” e « Similarly, in theQoSConponent Br oker , for each pro-
P == L : . - HL]A_ vided service, implement the two functionest CTC
‘ QQSC(:mp(:ncni..‘\’{anugerI} Managery andupdat eCTC.
L el ki Then, Qinna maintains resource constraints at runtime
O I B T through the following procedure:
\. QoSDomain gestion part)

« When the Broker fof is created, the parameters used in
Figure 1. Architecture example test CTC are set.
« The creation of an instance @&fis made by the Broker
These characteristics are implemented through new compo- iff CTCeompo(C) is true. During the creation, the CIC
nents which are illustrated in Figure 1: to each application Parameters are set. o
component (or group of components) which provide one or* The CIC(s;) and CTC(s;) decision procedures are

more variable service Qinna associate§@SComponent €. invoked at each function call. A negative answer to one
The variability of a variable service is made through theafse ~ Of these decision procedures will cause the failure of the
a correspondingpl enent ati on | evel variable. Then currentcontract. We will detail the notion of contract in

two new components are introduced by Qinna to manage the Seéction IlI-D.
resource issues of the instances of QESComponent: C. QoS Linking constraints
o a QoSComponentBroker which goal is to realize the

. ; Unlike quality of resource constraints, linking consttain
admission of a component. The Broker decides whether : ; .
. . express the relationship between components, in termsadf qu
or not a new instance can be created, and if a service :
, ity of service. For instance, the following property is akiimg
call can be performed w.rt. gthe uantity of resourc e : N R
constraints (QOR) constraint: “ to provide theget | nages at a “good” level
j . . of quality, thel mageBuf f er component requires a “big”
« a QoSComponentManager which manages the adaptation
. ; . amount of memory and a “fast” network”. This relationship
for the services provided by the component. It contains . . .
. . . . etween the different QoS of client and server services are
a mapping table which encode the relationship between

the implementation levels of each of these services aﬁalled QoS Linking Service Constraints (QLSC).

their requirements. Implementation Level To all provided services that can

L.Gonnord and JPBabau - Real Time Systems, Wisla, Poland, Oct 2008

vary according to the desired QoS we associateirgrie- the service at some interval of “satisfactory” implemeiotat
mentation level. This implementation level (IL) encodes whichlevels. Qinna then is able to find the best implementation
part of implementation to choose when supplying the servidevel in this interval that respects all the behavioral ¢rists
These implementation levels are totally ordered for a givéthe behavioral constraints of all the services involvedhie
service. As these implementation levels are finitely margy, veall tree). If there is no intersection between feasible and
can restrict ourselves to the case of positive integers asatisfactory implementation levels, no contract is buiitthe
suppose that implementation leveis the “best” level,l gives other case, a contract is made for the specific service. A
a lesser quality of service, and so on. contract is thus a tupléid, s;, I L, [I Lynin, I Lymaz], imp) de-

We assume that required services for a given service doesioting respectively its identifiant number, the referred/iee,
change according to the implementation level, that is, #ie cthe current implementation level, the interval of satitfag
graph of a given service is always the same. However, thmeplementation levels, and theportance of the contract. This
arguments of the required services calls may change. last variable is used to sort the list of all current consatd
Linking constraints expressionLet us consider a compo- is used for degrf”“’."’?“".’“ (;ee next paragraph).
nent € which provides a service that requiresr, and r After contract initialization, all the service calls mue_a‘spect

: . : . . ; . the terms of the contract. In the other case, there will beesom
services. Qinna permits to link the different implemermtati .
levels between callers and callees. The relationship tmtwerenegotlatlon.
the different implementation levels can be viewed as a func-Contract Maintenance and DegradationAfter each ser-
tion which associates to each implementation levelsadn vice call the decision procedure for behavioral constsaare
implementation level for; and forrs: updated. After that, a contract may not be valid anymore. As
OLSC,:| N — N2 all service.cqlls are mac_ie throug.h. the Brokers by the_ Domain,
IL — (ILy,ILy) thg Domain is automgtlcglly notified of a contract failure. |
this case, the Domain tries to degrade the contract of least

Thus, as soon as an implementation level is set forstheimportance (which may be not the same as the current one).
service, the implementation level of all required servi@sd This degradation has consequences on the resource and thus
all the implementation levels in the call tree) are set. Tids can permit other service calls inside the first contract.

a consequence not onIy on the code of all the involved sesvice Basica”y, degrading a contract consists in setting a tesse
but on the arguments of the service calls as well. implementation level among the satisfactory ones, but hic

Therefore, if a user asks for the servieeat some imple- s still feasible. If it is not possible, the contract is steg.
mentation level, the request may fail due to some behavioral

constraint. That's why every request for a service must peUse of servicesEach call to a service at toplevel as conse-

negotiated and the notion of contract will be accurate f'€nces on the contract which has been negociated for him.
implement a set of a satisfactory implementation levels Ve suppose that a contract is made before the first invocation
(a set of) future calls. of the desired service. The verification could automatycall

be done with Qinna, but is not not yet implemented. All the

Implementation of linking constraints in Qinna The netifications of failures are logged for the developer.
links between the provided QoS and the QoS of the required

services are made through a table whose lines encode théV. QINNA’S COMPONENTS IMPLEMENTATION INC++

tuples of linked implementation level/Lg,IL,,,IL,,). We implemented in C++ the Qinna components and algo-

This “mapping” table is encoded in the QoSManager. Thiéhms. These components are provided through classehwhic

natural order of the lines of the table is used to determimee detail in this section.

which tuple to consider if the current negotiation fails.
Now we have all the elements to define the notion

contract. QoSComponent The QoSComponent class provides
D. Qinna’s contracts generic constructors and destructors, and contains at@riva
structure to save the current implementation levels of the

Qinna provides the notion a@bntract to ensure both behav- . ! - .
ioral constraints and linking constraints component provided service. All QoS components will inheri
9 ! frlom this class.

When a service call is made at some implementation level,
all the subservices implementation level are fixed impjicit QoSBroker The QoSBroker class contains a private struc-
through the linking constraints. As all the implementatioture to save the references to all the corresponding com-
levels for a same service are ordered, the objective is tdliilmd ponents it is responsible for. It provides the two functions
best implementation level that is feasible (w.r.t. the bvédral Fr ee(QSConponent » ref @) and Reserve(...).
constraints of all the components and service involved @ tii\s t est Cl C andupdat eCl C functions signature depends
call tree). of each component/service, these functions will be pravide
in each instance of QoSBroker.

(ﬁ. Qinna’s components for the management of services

Contract Negotiation All service calls in Qinna are made
after negotiation. The user (at toplevel) of the servicesdek QoSManagerThe QoSManager class contains all informa-

L.Gonnord and JPBabau - Real Time Systems, Wisla, Poland, Oct 2008

tion for the service provided by its associated componént. | Sometimes, the basic functions are encapsulated in higher
provide the following public functions: level components. For instance, a high level library might
« bool Set Servicel nfos(int idserv, provide abi spl ayl mage function which makes an explicit
QoSConponent =compo, int nbregq, int calltomal | oc, but this call is hidden by the use of the library.

nbrap) initializes the manager for thiserv service, I this particular case, the management of basic resource
provided by*compo, with nbreq required services and functions can be done in two different but equivalent ways:

nbmap different implementation levels. Retutrr ue if » the creation of a “phantom” Memory component which
successfulf al se otherwise. provides the two servicesal | oc (for abstract malloc)

. bool AddLevQoSReq(int idserv, int Iv, and af r ee. Each time the developer makes a call to
int irg, int Irg) adds the tuple(lv,irg,irq) an “implicit” resource function i(e. when the called

(the lv implementation level foidserv is linked to the function needs a significant amount of memory, like

Irq implementation level foirg service) in the mapping Di spl ayl mage), he has to calMerory. amal | I oc.
table foridseru. The Qinna’s C++ implementation provides some basic

. int Reserve(int idserv, int |v) isused for components like Memory, Network and CPU and their

the reservation of thélserv service at levell. It returns associated brokers. _
the local number of (sub) contract of the Manageror ~ * the creation of QoSComponent around the library func-

if the reservation has failed (due to resource constraints) tion Di spl ayl mage which is responsible (through its
broker) for the global amount of “quantity of resource”
QoSDomain The QoSDomain class provides functions for used for theDi spl ayl mage function.
managing contracts at toplevel: Both solutions need a precise knowledge of the libraries
. bool AddService(int service, int nbRg, functionsw.rtthe resource consumption. We assume tiat th
int nbMp, QoSManager *qm) adds the service developer has this knowledge since he designs a resource-
service with nbRg required services andnb)Mp aware application. Inour case study we used the first solutio

implementation levels, with associated managegr..

o i nt Reserve(QSConponent *conpo,int ns
, int Iv, int inp) is used for reservation of the We suppose that in the application all resources, including

servicens provided by the componenicompo at level hardware resources (Memory, CPU) or software ones (viewer,
lv and importanceémp. it returns the number of contractbuffer), are encoded by components. Here are the main steps
(in domain) if successful) otherwise. for integrating Qinna into an existing application desigie

« bool Free(int id) freesthe contract numbét (of C++:
domain). 1) Identify the variable serviceswhich are functions whose

V. METHODOLOGY TO USEQINNA

ManagerContract This class provides a generic struc-
ture for a subcontract which encodes a tuple of the form
< id,lv,xrq,v > whereid is the contract numbeip the
current level,rq is the component that provides the service
andv is a C++-vector that encode the levels of the required
services. This class provides access functions to thesbles
and a function to change the implementation level.

DomainContract This class provides a structure for con-
tracts at toplevel. A Domain contract is a tuple of the form
< di,i,lv,xrq > where di is the global identifier of the
contract,xrq is the manager associated to the component that
provides the service, is the local number of subcontract for
the manager, antb is the current level of the service.

B. Basic resource components

In the call graph of one service, leaves are physical re-
sources (Memory, CPU, Network). As all resources must

call may fail due to some resource reasons. They are of

two types:

« simple functions likeMenory. nmal | oc whose code
does not vary. They have a unique implementation
level.

« “adaptive” functions whose code can vary according to
implementation levels.

The first step is thus to identify the services whose quality

vary and associate to each of this servicamigue key,

and if the code vary, clearly identify the variant code
through a code of the form:

swi tch(i nmpl Level)

{

case O :

}

where implLevel is the associated (variable) attribute of
the host component for this service. We must identify

be encapsulated inside components, we need to encapsulate which variable services are required for each provided

the base functions into QoSComponents. For instance, the
Menory component must be encoded as a wrapper around

service, and the relationship between the different imple-
mentation levels.

the mal | oc function, and the associated broker basically2) Create Qinna components First, cut the source code

implements the CIC functions which decide if the global
amount of allocated memory is reached or not.

into QoSComponents that can provide one or more
QoSservices. As the QoS negotiation will only be

3

4

5

)

)

~—~

L.Gonnord and JPBabau - Real Time Systems, Wisla, Poland, Oct 2008

made between QoSComponents of different types, this
split will have many consequences on the QoS man-
agement. For each QoSComponentC (which inherits
from the QoSConponent class), the designer must
encode two classe€0SBr oker C and QoSManager C
which respectively inherit from th&€oSBr oker and
QoSManager generic classes. For the whole application,
the designer will directly use th€@oSDonei n generic
class.
Implement Quality of Resource constraints These
constraints are set in two different ways:
« The type constraints (CTC) for compone6t im-
plementation is composed of additional functions in
QoS BrokerC : i nit CTC which is executed at the

component, use the functioanager . AddReq
to link the required manager. Then use
Manager . AddLevQoSReq to set the linking
constraints.
d) Create QoSComponent instances by invoking
the corresponding reservation function
(Br oker . Reserve).
o Create the QoSDomain and add the services that are
used at toplevellorrai n. AddSer vi ce)
o Reserve services via the QoSDomain and save the
contracts’ numbers.

VI. VIEWER IMPLEMENTATION USING QINNA

This case study is a proof of concept for using Qinna.

creation of the Broker, and which sets the decisioRor this specific application, we want to use Qinna for two
procedures parameters ;t&st CTC function to de- objectives:

termine whether a new instance can be created or not ;, the maintenance of the application with respect to the

anupdat eCTCto save modifications of the resources
after the creation. For each provided QoS servge
we add to new functiong:est CTC(i dsi) which is
executed before the call of a service and tells if the
service can be done, antpdat eCTC(i dsi) to be
executed after the call.

o The instance constraints (CIC) fot” are also
composed of three functions to encode in the
QoSComponentC': set Cl Cto set the resources con-
stants,t est CTC(i dsi) which is used to decide
if a service of identifianti ds can be called, and
updat eCTC(i dsi) to update the resource con-
straints after a call to the; function.

Implement the linking constraints. The links between

required services and provided service via implementa-

tion levels are set by the invocation of tBet Ser vi ce

and AddLevQoSReq functions of the managers. These

functions will be invoked at toplevel.

Modify the main file to initialize Qinna components

at toplevel. Here are the main steps:

o For each base resource (CPU, Memory, ...) A

a) Invoke the constructor for the associated Broker.

different qualities of service,

« the evaluation of the influence of the parameters on
the non-functional behavior (timing performance and

resource usage)

ewer — 12X

Image \

Fle View Help

5/8 Buffer is full, ready to display

SCONNECT| Pt server:

display image
display image
display image
display image
display image
display image

[PREVIOUS] [INIT

Figure 2. Screenshot of the viewer application

The functional part

The constructor’s arguments must contain the ini- The functional part of the viewer is developed with*Qt
tialization of internal variables for type constraintd@ C++ library which provides graphical components and

(the total amount of memory for example).

implementations of the ftp protocol). Figure 3 describes th

b) Create the associated Manager with the Broker B¥in parts of the standalone application. We chose to make

argument.

the downloading part via the ftp protocol. The wireless fgrt

c) Register the QoS services inside the Manager wiftpt encoded.

call to theSet Ser vi cel nf os function.

o TheFt pd i ent class makes a connection to an existing

d) Create QoSComponents instances via the use of ftp server and has a list of all distant images. It provides

the Br oker.reserve(...) function. The ar-

aget Sone function to enable the downloading of many

guments can be a certain amount of resource used files at once.

by the component.
o For all the other QoSComponents, the required com-
ponents first:
a) Create the associated Broker and Manager.
b) Set the services information.

o The | mageBuf f er class is responsible for the man-

agement of downloaded files in a local directory. As
the specification says, this buffer has a limited size
and different policy for downloading images. The class
provides the two functiondonext anddopr evi ous

c) If a service requires another service of another1http_”tr0”tech comiproducts/qt/

L.Gonnord and JPBabau - Real Time Systems, Wisla, Poland, Oct 2008

displaylmage setPixmap
£ i

ImageScreen —

Main

init() i .J\

A next/previous
Pt

l ImageViewer

initBuffer
te

ImageBuffer ‘

2L
Jdonext/doprevious!

downl/«\vadLisl

connect T T 'T getSome

—® — | con{necl
provided required FipClient C

get

Figure 3. Functional view of the application

which are asynchronous functions. A signal is thrown policy of the downloads. It has three implementation lev-
iffwhen the desired image is ready to be displayed. It els. We add calls tdlet wor k. bandwi dt h to simulate
eventually downloads future images in current directory. the network resources that are needed to download files.

o Thel mageVi ewer class is a high level component to « | nageBuff er. donext/ previ ous varies among
make the interface between the ftp and buffer classes to available memory: if there is not enough memory the
the graphics components. image is saved with high compression.

o Thel mageScr een class is responsible for the display
of the image in a graphic component nantgli xnmap.

« Themai n class provides all the graphics components f%
the Graphical User Interface.

Creation of the QoSComponents (step 2)

The resource components are QoSComponents. Then,
e three component$ nageScreen, FtpCient and

| mageBuf f er are QoSComponents which provide each one
B. Integration of Qinna variable servicel magevi ewer andMai n are QoSCompo-

) .. nents as well. Figure 4 represents now the structure of the
Now that we have the functional part of the application, plication at this step.

we add the_following resource components: l\/l_emory,_ané),:Or the sake of simplicity, we only share Memory into
Network which are QoSComponents that provide variabjg,, parts, a part fol mageBuf f er and the other part for

services. We only focus on these two basic resources. ThgageBuf f er . That means that each of these components
Network component is only linked to the FtpClient, whereas, e their own amount of memory.

Memory will be shared between all components. For Memory,)

the only variable service iamal | oc which can fail if the ~ Resource constraints (steps 3 and 4) .

global amount of dedicated memory is reached ; this function 1he quantity of resource constraints we have fixed are

has only one implementation level. For Network, the progideF'@ssical ones (bounds for the memory instances, unique

functionget can fail if there is too much activity on networkinstantiation for the mageScr een component, no more than

(notion of bandwidth). 80 percent. qf bandwidth for thg ftp(;hent, etc). Tr_le QLSC
Then we follow the above methodology in the particuls®™® Very similar to those described in [2] for a videogame

case of our remote viewer. application. Here we show how we have implemented some

of these constraints in our application.

Identification of the variable services (step 1) « Quantity of resource constraints The i mageScr een
Now as the variable services for low level components have component is responsible for the unique service
been identified, we list the following adaptive servicestfue di spl ay_i mage (display the image on the graphic
functional part: video widget). Here are some behavioral constraints we
o I mageScr een. di spl ayl mage varies among mem- implemented for this component:
ory, it has three implementation levels which correspond — There is only one instance of the component once.
to the quality of the displayed image. We add calls — The display function can only display images with size
to Menory. amal | oc function to simulate the use of lesser or equal ta200 * 800.
Memory. — There is only one call to the display function once.

o Ftpclient. get sone’s implementation varies among These type constraints are easily implemented in the asso-
available memory and the current bandwidth of network. ciatedi mageScr eenBr oker in the following way: the
If there is not enough memory or network, it adapts the constraint “maximum of instance” requires two private

L.Gonnord and JPBabau - Real Time Systems, Wisla, Poland, Oct 2008

e — P ——
i i i i setPizxmap
i Main :—C *— ImageScreen —

i i H !

L — - 'l""'j S I ——

1mateh JT\ T oext/previous

H i a:i Buffer ——————————— %
: i : i
E ImageViewer : i i
] —(—— !

D N X

e

!

+ '

BufferMemory

. Memory ,;'
service with variable quality N -
i(......._._._._,.i QoS Compeonent conpect
LS ! ¢ - ect g I —— ll
C) QeSCompenent instance i —e Network ;
| —C(o— |
Figure 4. Application with Qinna
attributesnbi nst ance and nbi nst ancenmax which the get function with 20% bandwidth. This call is
are declared and initialized at the creation of the Broker made through the use of thihr ead. t hr ead with
with values0 and 1. Then the reservation of a new implementation leveR (more active wait).

i mgeScreen by the Broker is done after checking Thus if the available bandwidth is too low, a negotiation
whether or notbinstance +1 < nbinstancemaz. If all - or an existing contract will fail because of the resource
checks are true, it reserves the instance and incremegdgistraints. The creation of the contract may fail because a

nbi nst ance. thread cannot be provided at the desired implementatia.lev

The checking of memory is done by setting the o)))
global amount of memory forl mageBuffer and Modification of toplevel (step 5) This part is straight-
i mageBuf f er in local variables which are set @ at forward. The only choices we have to make are the relative

the beginning of each contract, and updated each time @&@ount of resource (Memory, Network) which are allocated
functionanal | oc is called. to each QoSComponents. The test scenario is detailed in

These constraints are rather simple but we can imagif@ction VI-D.
more complex ones, provided they can be checked with
bounded complexity (this is a constraint coming from th€. Some statistics

fact thelenna components will also be embedded). The viewer is written in 4350 lines of code, the functional
%)Silltlsntrg][g iﬁga(rj?;fgtrsence between quality of resourcpart taking roughly 1800 lines. The other lines are Qinna’s
. o . eneric components (1650 loc.), 600 lines of code for the new
constra!nts and linking _constralnts, we show here t%}mponents (imagescreenBroker, imageScreenManetgdr
constral.nts for theFt.p(:l hent.. get Some: and 300 lines of code for the test scenarios. The binary is
— The implementation leveD corresponds ta3 suc- 5is0 much bigger 4.7Mbytes versus 2Mbytes without Qinna.

cessive downloads with thiget wor k. get function. ;5 5innais costly, but all the supplementary lines of code
The function has a unique implementation level buf, ot need to be rewritten. because:

each call to it is made with60 as argument, to
model the fact it require60% of the total bandwidth. *°
These three calls are made through the use of the
Thr ead. t hr ead with implementation leved (quick
thread, no active wait).
— The implementation levell corresponds t®2 calls
to the get function with 40% of bandwidth each °
time. These two calls are made through the use of
the Thr ead. t hr ead with implementation levell We think that the cost of Qinna in terms of binary code can
(middle thread, few active wait). be strongly reduced by avoiding the existing redundancy in
— The implementation level corresponds ta call to our current implementation.

Generic Qinna components, algorithms, and the basic
resource components are provided with Qinna.

« The decision functions for Quality of service constraints
could be automatically generated or be provided as a
“library of common constraints”.

The initialization at toplevel could be computed-aided
through user-friendly tables.

L.Gonnord and JPBabau - Real Time Systems, Wisla, Poland, Oct 2008

Moreover, Qinna’s implementation can be viewed as art, by giving a general development scheme to use Qinna,
prototype to evaluate the resource use and the quality afd illustrating it on a case study. The resulting applarati
service management. After a preliminary phase with the ehas a resource-aware application, whose resources camstrai
implementation used to find the best linking constraints, ware guaranteed at runtime, and whose adaptation to vatyabil
can imagine an optimized compilation through glue cod#f service is automatically done by the Qinna components,
which neither includes brokers nor managers. through the notion of contracts. At last, we are able to eatalu

at runtime the threshold between contractualised resarde
D. Results the real amount of resource effectively used.

We realized a scenario with a new component whoseThis work has shown the effectivity of Qinna with respect to
only objective is to use the basic resources Memotiie programming effort, and the performance of the modified
and Network. This Test C component provides only application.
the foobar function at toplevel. This function has Future work include some improvements of Qinna’s C++
two implementation levels, and requires two functiongomponents, mainly on data structures, in order to decrease
ScreenMenory. amal l oc and Network.get. The the global cost of Qinna in terms of binary size, and more
whole application provides four functions at toplevelspecific and detailed resource components, in order torbette
Test C. f oobar, | mageVi ewer . donext (and fit to the platform specifications.
doprevious) and |nageScreen.displayi mage. From the theoretical point of view, there is also a need for
Three contracts are negotiated, in the following imporéan@ way to manage the linking constraints. The developer has
order: f oobar first, then donext and doprevi ous, still to link the implementation levels of required and pided
then di spl ayi mage. We made the three contracts andervices, and the order between all implementations lasels
download and visualize images at the highest qualitiesabutfixed by him as well. The tuning of all these links can only
some point the foobar function causes the degradation of the done though simulation yet. We think that some methods
contract for displayimage, and the images are then shownlike controller synthesis ([10]) could be used to discovex/a
a degraded version, like the Eiffel tower on Figure 2. optimal order and linking relations w.r.t. some constmsuch

The gap between the characteristics of the contract and #we“minimal variability”, “best reactivity”etc..
effective resource usage can be make through the use of loginally, some theoretical work would be necessary in order
functions provided by the Qinna implementation. to use Qinna as a prediction tool, and provide an efficient

compilation into “glue code”.
VII. RELATED WORKS

Other works also propose to use a development framework REFERENCES

to handle resource variability. In [4] and [5], the authoor [1] M. Sparling, “Lessons learned through six years of cong-based

. development,"Commun. ACM, vol. 43, no. 10, 2000.
pose a model-based framework for developplng self-adaptat [2] J.-C. Tournier, “Qinna: une architecture a base de awsapts pour la

programs. This approach uses high-level specificationadas = gestion de la qualite de service dans les systémes enésamabiles,’
on temporal logic formula to generate program monitors. At Ph.D. dissertation, INSA-Lyon, 2005.

. . - 3] J.-C. Tournier, V. Olive, and J.-P. Babau, “Towards aayic manage-
runtime, these monitors catch the system events and agiva ment of QoS constraints in embedded systemsy\inkshop QoSCBSE,

the reconfiguration. This approach is similar to us excegt th in conjunction with ADA 03, Toulouse, France, June 2003.
it mainly deals with hybrid automata and there is no notiori4]l L. Tan, “Model-based self-monitoring embedded systevita temporal

. . . L logic specifications,” inProceedings of the 20th IEEE/ACM Interna-
of contract degradation nor generic algorithm for negammat tional Conference on Automated Software Engineering (ASE’05), 2005.

The expression and maintenance of resource constraints[s$ I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanath4Runtime
also considered as a fundamental issue, so much work deals assurance based on formal specifications,Pinceedings of the Inter-

. . . A national Conference on Parallel and Distributed Processing Techniques
with this subject. In [6], the author use a probabilistic ag@eh and Applications (IPDPS 99), 1999.

to evaluate the resource consumed by the program paths). H. Koziolek and V. Firus, “Parametric Performance Cants: Non-
Some other works in the domain of verification try to prove Markovian Loop Modelling and an Experimental Evaluation, Formal

e . . Foundations of Embedded Software and Component-Based Software
conformance of one program to some specmcatlon - N [7]' Architectures (FESCA), ser. Electronical Notes in Computer Science,

for instance, the authors use synchronous observers t@enco Vienna, Austria, 2006.
and verify logical time contracts. At last, the QML |anguage[7] F. Maraninchi and L. Morel, “Logical-time contracts foeactive em-

. . . bedded components,” 80th EUROMICRO Conference on Component-
([8],[9]) is now well used to express QoS properties. This g i Sofware Engineering Track, ECBSE'04, Rennes, France, Aug.

last approach is complementary to our one since it provides 2004.

a language which could be compiled into source code fdBl S. Frelund and J. Koistinen, “Quality of services speeifion in
distributed object systems design,” noceedings of the 4th conference

QoSComponents or Brokers. on USENIX Conference on Object-Oriented Technologies and Systems
(COQTY). Berkeley, CA, USA: USENIX Association, 1998.
VIII. CONCLUSION AND FUTURE WORK [9] —, “QOml : A language for quality of service specificatipHPL-98-

. . 10, Tech. Rep., 1998.
In this paper, we have presented a case SIUdy using F. M. K. Altisen, A. Clodic and E. Rutten, “Using conttet synthesis to

software architecture Qinna which was designed to handle re " puild property-enforcing layers,” iEuropean Symposium on Program-
source constraints during the development and the exa@wooitio ming (ESOP), April 2003.
embedded programs. We focused mainly on the development

