
L.Gonnord and JPBabau  Real Time Systems, Wisla, Poland, Oct 2008

Runtime resource assurance and adaptation with
Qinna framework: a case study

Laure Gonnord∗, Jean-Philippe Babau
CITI / INSA-Lyon

F-69621 Villeurbanne Cedex - France
Email : {Laure.Gonnord, Jean-Philippe.Babau}@insa-lyon.fr

Abstract—Even if hardware improvements have increased the
performance of embedded systems in the last years, resource
problems are still acute. The persisting problem is the constantly
growing complexity of systems. New devices for service suchas
PDAs or smartphones increase the need for flexible and adaptive
open software. Component-based software engineering tries to
address these problems and one key point for development is the
Quality of Service (QoS) coming from resource constraints.In
this paper, we recall the concepts behind Qinna, a component-
based QoS Architecture, which was designed to manage QoS
issues, and we illustrate the developpement of a image viewer
application whithin this framework. We focus on the general
developpement methodology of resource-aware applications with
Qinna framework, from the specification of resource constraints
to the use of generic Qinna’s algorithms for negociating QoS
contracts at runtime.

I. I NTRODUCTION

The study takes place in the context of embedded handled
systems (personal digital assistants, mobile phones) whose
main characteristic is the use of limited resources (CPU,
memory).

In order to develop multimedia software on such systems
where the quality of the resource (network, battery) can vary
during use, the developer needs tools to:

• easily add/remove functionality (services) during compi-
lation or at runtime;

• adapt component functionality to resources, namely pro-
pose “degraded” modes where resources are low;

• evaluate the software’s performances: quality of provided
services, consumption ratefor some scenarios.

In this context, component-based software engineering ap-
pears as a promising solution for the development of such
kinds of systems. Indeed it offers an easier way to build
complex systems from base components ([1]), and thus we
are able to design resource components like others. The main
advantages are the re-usability of code and also the flexibility
of such systems.

The Qinna framework ([2], [3]) was designed to handle
the specification and management of resource constraints
problems during the component-based system development.
Variability is encoded into discrete implementation levels and
links between them. We can also encode quantity of resource
constraints. Qinna provides algorithms to ensure resource

∗ This work has been partially supported by the REVE project ofthe French
National Agency for Research (ANR)

constraints and dynamically adapt the implementation levels
according to resource availabilityat runtime.

In this paper, we present a case study using Qinna as proof
of concept. In Section II we present the main characteristics of
the case study which is an image remote viewer. In Section III
we recall Qinna’s main concepts, as introduced in [2] and
formalize them in a more generic way. We give an overview
of Qinna’s C++ implementation (Section IV), and then provide
the general implementation steps to develop a resource-aware
application with Qinna (Section V). We illustrate in the
particular case of the remote viewer application in SectionVI.

II. SPECIFICATION OF THE REMOTE VIEWER

Our case study is a remote viewer application whose high
level specification follows:

• The system is composed of a mobile phone and a remote
server. The application allows the downloading and the
visualization of remote images via a wireless link.

• The remote directory is reached via a ftp connection.
After connection, two buttons “Next” and “Previous” are
used to display images one by one. Locally, some images
are stored in a buffer. To provide a better quality of
service, some images are downloaded in advance, while
the oldest ones are removed from the photo memory.

• The application must manage different qualities of ser-
vices for the resources: shortage of bandwidth and mem-
ory, or disconnections of the ftp server. When needed it
can download images in lower quality (in size or image
compression rate).

• Different storage policies are possible, and there are many
parameters which can be modified; like the size of the
buffer, or the number of images that are downloaded
each time. We want to evaluate which policy is the best
according to a given scenario.

We aim to use Qinna for two main objectives: maintenance
of the application with respect to the different qualities of
service, and also the evaluation of the influence of the param-
eters on the non-functional behavior (timing performance and
resource usage) of the application.

III. D ESCRIPTION OF THEQINNA FRAMEWORK

A. Qinna’s main concepts

The framework designed in [2] and [3] has the following
characteristics:



L.Gonnord and JPBabau  Real Time Systems, Wisla, Poland, Oct 2008

• Both the application pieces of code and the resource
are components. The resource services are enclosed in
components likeMemory, CPU, Thread.

• The variation of quality of the provided services are
encoded by the notion ofimplementation level. The code
used to provide the service is thus different according to
the current implementation level.

• The link between the implementation levels is made
through an explicit relation between the implementation
level of the provided service and the implementation lev-
els of the services it requires. For instance, the developer
can express that a video component provides an image
with highest quality when it has enough memory and
sufficient bandwidth.

• All the calls to a “variable function” are made through
an existing contract that is negotiated. This negotiation
is made automatically through the Qinna components.
A contract for a service at some objective implemen-
tation level is made only if all its requirements can be
reserved at the corresponding implementation levels and
also satisfy some constraints called Quality of resource
constraints (QoR). If it not the case, the negotiation fails.

Figure 1. Architecture example

These characteristics are implemented through new compo-
nents which are illustrated in Figure 1: to each application
component (or group of components) which provide one or
more variable service Qinna associates aQoSComponent Ci.
The variability of a variable service is made through the useof
a correspondingimplementation level variable. Then,
two new components are introduced by Qinna to manage the
resource issues of the instances of thisQoSComponent:

• a QoSComponentBroker which goal is to realize the
admission of a component. The Broker decides whether
or not a new instance can be created, and if a service
call can be performed w.r.t. qthe uantity of resource
constraints (QoR).

• a QoSComponentManager which manages the adaptation
for the services provided by the component. It contains
a mapping table which encode the relationship between
the implementation levels of each of these services and
their requirements.

At last, Qinna provides a single component namedQoSDo-
main for the whole architecture. It manages all the service
requests inside and outside the application. The client of aser-
vice asks the Domain for reservation of some implementation
level and is eventually returned a contract if all constraints are
satisfied. Then, after each service request, the Domain makes
an acknowledgment only of the corresponding contract is still
valid.

B. Quantity of Resource constraints in Qinna

A Quantity of resource constraint (QRC) is a quantitative
constraint on a componentC and the service (si) it proposes.
QRCs are for instance formula on the total instance of a given
component type, of the total amount of resource (memory,
CPU) allocated to a given component. They are two types of
constraints, depending on their purpose:

• Component type constraints (CTC) express properties of
components of the same type and their provided services.

• Component instance constraints (CIC) express properties
of a particular instance of a component.

The management of these constraints is automatically done
at runtime, if the developer implements them in the following
way:

• In the QoSComponent, for each service, implement
the two functions:testCIC and updateCIC. The
former decides whether or not the call to the service can
be performed, and the later updates variables after the
function call. In addition, there must be an initialization
of the CICs formulas at the creation of each instance.

• Similarly, in theQoSComponentBroker, for each pro-
vided service, implement the two functionstestCTC
andupdateCTC.

Then, Qinna maintains resource constraints at runtime
through the following procedure:

• When the Broker forC is created, the parameters used in
testCTC are set.

• The creation of an instance ofC is made by the Broker
iff CTCcompo(C) is true. During the creation, the CIC
parameters are set.

• The CIC(si) and CTC(si) decision procedures are
invoked at each function call. A negative answer to one
of these decision procedures will cause the failure of the
currentcontract. We will detail the notion of contract in
Section III-D.

C. QoS Linking constraints

Unlike quality of resource constraints, linking constraints
express the relationship between components, in terms of qual-
ity of service. For instance, the following property is a linking
constraint: “ to provide thegetImages at a “good” level
of quality, theImageBuffer component requires a “big”
amount of memory and a “fast” network”. This relationship
between the different QoS of client and server services are
called QoS Linking Service Constraints (QLSC).

Implementation Level To all provided services that can



L.Gonnord and JPBabau  Real Time Systems, Wisla, Poland, Oct 2008

vary according to the desired QoS we associate animple-
mentation level. This implementation level (IL) encodes which
part of implementation to choose when supplying the service.
These implementation levels are totally ordered for a given
service. As these implementation levels are finitely many, we
can restrict ourselves to the case of positive integers and
suppose that implementation level0 is the “best” level,1 gives
a lesser quality of service, and so on.

We assume that required services for a given service doesn’t
change according to the implementation level, that is, the call
graph of a given service is always the same. However, the
arguments of the required services calls may change.

Linking constraints expressionLet us consider a compo-
nent C which provides a services that requiresr1 and r2

services. Qinna permits to link the different implementation
levels between callers and callees. The relationship between
the different implementation levels can be viewed as a func-
tion which associates to each implementation level ofs an
implementation level forr1 and forr2:

QLSCs : N −→ N
2

IL 7−→ (IL1, IL2)

Thus, as soon as an implementation level is set for thes

service, the implementation level of all required services(and
all the implementation levels in the call tree) are set. Thishas
a consequence not only on the code of all the involved services
but on the arguments of the service calls as well.

Therefore, if a user asks for the services at some imple-
mentation level, the request may fail due to some behavioral
constraint. That’s why every request for a service must be
negotiated and the notion of contract will be accurate to
implement a set of a satisfactory implementation levels for
(a set of) future calls.

Implementation of linking constraints in Qinna The
links between the provided QoS and the QoS of the required
services are made through a table whose lines encode the
tuples of linked implementation levels:(ILs, ILr1

, ILr2
).

This “mapping” table is encoded in the QoSManager. The
natural order of the lines of the table is used to determine
which tuple to consider if the current negotiation fails.

Now we have all the elements to define the notion of
contract.

D. Qinna’s contracts

Qinna provides the notion ofcontract to ensure both behav-
ioral constraints and linking constraints.

When a service call is made at some implementation level,
all the subservices implementation level are fixed implicitly
through the linking constraints. As all the implementation
levels for a same service are ordered, the objective is to findthe
best implementation level that is feasible (w.r.t. the behavioral
constraints of all the components and service involved in the
call tree).

Contract Negotiation All service calls in Qinna are made
after negotiation. The user (at toplevel) of the service asks for

the service at some interval of “satisfactory” implementation
levels. Qinna then is able to find the best implementation
level in this interval that respects all the behavioral constraints
(the behavioral constraints of all the services involved inthe
call tree). If there is no intersection between feasible and
satisfactory implementation levels, no contract is built.In the
other case, a contract is made for the specific service. A
contract is thus a tuple(id, si, IL, [ILmin, ILmax], imp) de-
noting respectively its identifiant number, the referred service,
the current implementation level, the interval of satisfactory
implementation levels, and theimportance of the contract. This
last variable is used to sort the list of all current contracts and
is used for degradation (see next paragraph).

After contract initialization, all the service calls must respect
the terms of the contract. In the other case, there will be some
renegotiation.

Contract Maintenance and DegradationAfter each ser-
vice call the decision procedure for behavioral constraints are
updated. After that, a contract may not be valid anymore. As
all service calls are made through the Brokers by the Domain,
the Domain is automatically notified of a contract failure. In
this case, the Domain tries to degrade the contract of least
importance (which may be not the same as the current one).
This degradation has consequences on the resource and thus
can permit other service calls inside the first contract.

Basically, degrading a contract consists in setting a lesser
implementation level among the satisfactory ones, but which
is still feasible. If it is not possible, the contract is stopped.

Use of servicesEach call to a service at toplevel as conse-
quences on the contract which has been negociated for him.
We suppose that a contract is made before the first invocation
of the desired service. The verification could automatically
be done with Qinna, but is not not yet implemented. All the
notifications of failures are logged for the developer.

IV. Q INNA’ S COMPONENTS IMPLEMENTATION INC++

We implemented in C++ the Qinna components and algo-
rithms. These components are provided through classes which
we detail in this section.

A. Qinna’s components for the management of services

QoSComponent The QoSComponent class provides
generic constructors and destructors, and contains a private
structure to save the current implementation levels of the
component provided service. All QoS components will inherit
from this class.

QoSBroker The QoSBroker class contains a private struc-
ture to save the references to all the corresponding com-
ponents it is responsible for. It provides the two functions
Free(QoSComponent* refQc) and Reserve(...).
As testCIC andupdateCIC functions signature depends
of each component/service, these functions will be provided
in each instance of QoSBroker.

QoSManagerThe QoSManager class contains all informa-



L.Gonnord and JPBabau  Real Time Systems, Wisla, Poland, Oct 2008

tion for the service provided by its associated component. It
provide the following public functions:

• bool SetServiceInfos(int idserv,
QoSComponent *compo, int nbreq, int
nbmap) initializes the manager for theidserv service,
provided by*compo, with nbreq required services and
nbmap different implementation levels. Returntrue if
successful,false otherwise.

• bool AddLevQoSReq(int idserv, int lv,
int irq, int lrq) adds the tuple(lv, irq, lrq)
(the lv implementation level foridserv is linked to the
lrq implementation level forirq service) in the mapping
table for idserv.

• int Reserve(int idserv, int lv) is used for
the reservation of theidserv service at levelil. It returns
the local number of (sub) contract of the Manager or0
if the reservation has failed (due to resource constraints).

QoSDomainThe QoSDomain class provides functions for
managing contracts at toplevel:

• bool AddService(int service, int nbRq,
int nbMp, QoSManager *qm) adds the service
service with nbRq required services andnbMp

implementation levels, with associated manager∗qm.
• int Reserve(QoSComponent *compo,int ns
, int lv, int imp) is used for reservation of the
servicens provided by the component∗compo at level
lv and importanceimp. it returns the number of contract
(in domain) if successful,0 otherwise.

• bool Free(int id) frees the contract numberid (of
domain).

ManagerContract This class provides a generic struc-
ture for a subcontract which encodes a tuple of the form
< id, lv, ∗rq, v > where id is the contract number,lv the
current level,rq is the component that provides the service
and v is a C++-vector that encode the levels of the required
services. This class provides access functions to these variables
and a function to change the implementation level.

DomainContract This class provides a structure for con-
tracts at toplevel. A Domain contract is a tuple of the form
< di, i, lv, ∗rq > where di is the global identifier of the
contract,∗rq is the manager associated to the component that
provides the service,i is the local number of subcontract for
the manager, andlv is the current level of the service.

B. Basic resource components

In the call graph of one service, leaves are physical re-
sources (Memory, CPU, Network). As all resources must
be encapsulated inside components, we need to encapsulate
the base functions into QoSComponents. For instance, the
Memory component must be encoded as a wrapper around
the malloc function, and the associated broker basically
implements the CIC functions which decide if the global
amount of allocated memory is reached or not.

Sometimes, the basic functions are encapsulated in higher
level components. For instance, a high level library might
provide aDisplayImage function which makes an explicit
call tomalloc, but this call is hidden by the use of the library.
In this particular case, the management of basic resource
functions can be done in two different but equivalent ways:

• the creation of a “phantom” Memory component which
provides the two servicesamalloc (for abstract malloc)
and afree. Each time the developer makes a call to
an “implicit” resource function (i.e. when the called
function needs a significant amount of memory, like
DisplayImage), he has to callMemory.amallloc.
The Qinna’s C++ implementation provides some basic
components like Memory, Network and CPU and their
associated brokers.

• the creation of QoSComponent around the library func-
tion DisplayImage which is responsible (through its
broker) for the global amount of “quantity of resource”
used for theDisplayImage function.

Both solutions need a precise knowledge of the libraries
functions w.r.t the resource consumption. We assume that the
developer has this knowledge since he designs a resource-
aware application. In our case study we used the first solution.

V. M ETHODOLOGY TO USEQINNA

We suppose that in the application all resources, including
hardware resources (Memory, CPU) or software ones (viewer,
buffer), are encoded by components. Here are the main steps
for integrating Qinna into an existing application designed in
C++:

1) Identify the variable serviceswhich are functions whose
call may fail due to some resource reasons. They are of
two types:

• simple functions likeMemory.malloc whose code
does not vary. They have a unique implementation
level.

• “adaptive” functions whose code can vary according to
implementation levels.

The first step is thus to identify the services whose quality
vary and associate to each of this services aunique key,
and if the code vary, clearly identify the variant code
through a code of the form:

switch(implLevel)
{
case 0 :

...
}

where implLevel is the associated (variable) attribute of
the host component for this service. We must identify
which variable services are required for each provided
service, and the relationship between the different imple-
mentation levels.

2) Create Qinna components. First, cut the source code
into QoSComponents that can provide one or more
QoSservices. As the QoS negotiation will only be



L.Gonnord and JPBabau  Real Time Systems, Wisla, Poland, Oct 2008

made between QoSComponents of different types, this
split will have many consequences on the QoS man-
agement. For each QoSComponentC (which inherits
from the QoSComponent class), the designer must
encode two classes:QoSBrokerC andQoSManagerC
which respectively inherit from theQoSBroker and
QoSManager generic classes. For the whole application,
the designer will directly use theQoSDomain generic
class.

3) Implement Quality of Resource constraints. These
constraints are set in two different ways:
• The type constraints (CTC) for componentC im-

plementation is composed of additional functions in
QoSBrokerC : initCTC which is executed at the
creation of the Broker, and which sets the decision
procedures parameters ; atestCTC function to de-
termine whether a new instance can be created or not ;
anupdateCTC to save modifications of the resources
after the creation. For each provided QoS servicesi,
we add to new functions:testCTC(idsi) which is
executed before the call of a service and tells if the
service can be done, andupdateCTC(idsi) to be
executed after the call.

• The instance constraints (CIC) forC are also
composed of three functions to encode in the
QoSComponentC: setCIC to set the resources con-
stants,testCTC(idsi) which is used to decide
if a service of identifiantids can be called, and
updateCTC(idsi) to update the resource con-
straints after a call to thesi function.

4) Implement the linking constraints. The links between
required services and provided service via implementa-
tion levels are set by the invocation of theSetService
andAddLevQoSReq functions of the managers. These
functions will be invoked at toplevel.

5) Modify the main file to initialize Qinna components
at toplevel. Here are the main steps:

• For each base resource (CPU, Memory, . . . )

a) Invoke the constructor for the associated Broker.
The constructor’s arguments must contain the ini-
tialization of internal variables for type constraints
(the total amount of memory for example).

b) Create the associated Manager with the Broker as
argument.

c) Register the QoS services inside the Manager with
call to theSetServiceInfos function.

d) Create QoSComponents instances via the use of
the Broker.reserve(...) function. The ar-
guments can be a certain amount of resource used
by the component.

• For all the other QoSComponents, the required com-
ponents first:

a) Create the associated Broker and Manager.
b) Set the services information.
c) If a service requires another service of another

component, use the functionManager.AddReq
to link the required manager. Then use
Manager.AddLevQoSReq to set the linking
constraints.

d) Create QoSComponent instances by invoking
the corresponding reservation function
(Broker.Reserve).

• Create the QoSDomain and add the services that are
used at toplevel (Domain.AddService)

• Reserve services via the QoSDomain and save the
contracts’ numbers.

VI. V IEWER IMPLEMENTATION USING QINNA

This case study is a proof of concept for using Qinna.
For this specific application, we want to use Qinna for two
objectives:

• the maintenance of the application with respect to the
different qualities of service,

• the evaluation of the influence of the parameters on
the non-functional behavior (timing performance and
resource usage)

Figure 2. Screenshot of the viewer application

A. The functional part

The functional part of the viewer is developed with Qt1

(a C++ library which provides graphical components and
implementations of the ftp protocol). Figure 3 describes the
main parts of the standalone application. We chose to make
the downloading part via the ftp protocol. The wireless partis
not encoded.

• TheFtpClient class makes a connection to an existing
ftp server and has a list of all distant images. It provides
agetSome function to enable the downloading of many
files at once.

• The ImageBuffer class is responsible for the man-
agement of downloaded files in a local directory. As
the specification says, this buffer has a limited size
and different policy for downloading images. The class
provides the two functionsdonext anddoprevious

1http://trolltech.com/products/qt/



L.Gonnord and JPBabau  Real Time Systems, Wisla, Poland, Oct 2008

Figure 3. Functional view of the application

which are asynchronous functions. A signal is thrown
if/when the desired image is ready to be displayed. It
eventually downloads future images in current directory.

• The ImageViewer class is a high level component to
make the interface between the ftp and buffer classes to
the graphics components.

• The ImageScreen class is responsible for the display
of the image in a graphic component namedQPixmap.

• Themain class provides all the graphics components for
the Graphical User Interface.

B. Integration of Qinna

Now that we have the functional part of the application,
we add the following resource components: Memory, and
Network which are QoSComponents that provide variable
services. We only focus on these two basic resources. The
Network component is only linked to the FtpClient, whereas
Memory will be shared between all components. For Memory,
the only variable service isamalloc which can fail if the
global amount of dedicated memory is reached ; this function
has only one implementation level. For Network, the provided
functionget can fail if there is too much activity on network
(notion of bandwidth).

Then we follow the above methodology in the particular
case of our remote viewer.

Identification of the variable services (step 1)
Now as the variable services for low level components have

been identified, we list the following adaptive services forthe
functional part:

• ImageScreen.displayImage varies among mem-
ory, it has three implementation levels which correspond
to the quality of the displayed image. We add calls
to Memory.amalloc function to simulate the use of
Memory.

• Ftpclient.getsome’s implementation varies among
available memory and the current bandwidth of network.
If there is not enough memory or network, it adapts the

policy of the downloads. It has three implementation lev-
els. We add calls toNetwork.bandwidth to simulate
the network resources that are needed to download files.

• ImageBuffer.donext/previous varies among
available memory: if there is not enough memory the
image is saved with high compression.

Creation of the QoSComponents (step 2)
The resource components are QoSComponents. Then,

the three componentsImageScreen, FtpClient and
ImageBuffer are QoSComponents which provide each one
variable service.Imageviewer andMain are QoSCompo-
nents as well. Figure 4 represents now the structure of the
application at this step.

For the sake of simplicity, we only share Memory into
two parts, a part forImageBuffer and the other part for
imageBuffer. That means that each of these components
have their own amount of memory.

Resource constraints (steps 3 and 4)
The quantity of resource constraints we have fixed are

classical ones (bounds for the memory instances, unique
instantiation for theimageScreen component, no more than
80 percent of bandwidth for the ftpClient, etc). The QLSC
are very similar to those described in [2] for a videogame
application. Here we show how we have implemented some
of these constraints in our application.

• Quantity of resource constraints The imageScreen
component is responsible for the unique service
display_image (display the image on the graphic
video widget). Here are some behavioral constraints we
implemented for this component:
– There is only one instance of the component once.
– The display function can only display images with size

lesser or equal to1200 ∗ 800.
– There is only one call to the display function once.
These type constraints are easily implemented in the asso-
ciatedimageScreenBroker in the following way: the
constraint “maximum of instance” requires two private



L.Gonnord and JPBabau  Real Time Systems, Wisla, Poland, Oct 2008

Figure 4. Application with Qinna

attributesnbinstance and nbinstancemax which
are declared and initialized at the creation of the Broker
with values 0 and 1. Then the reservation of a new
imageScreen by the Broker is done after checking
whether or notnbinstance+1 ≤ nbinstancemax. If all
checks are true, it reserves the instance and increments
nbinstance.
The checking of memory is done by setting the
global amount of memory forImageBuffer and
imageBuffer in local variables which are set to0 at
the beginning of each contract, and updated each time the
functionamalloc is called.
These constraints are rather simple but we can imagine
more complex ones, provided they can be checked with
bounded complexity (this is a constraint coming from the
fact the Qinna components will also be embedded).

• QoS Linking constraints
To illustrate the difference between quality of resource
constraints and linking constraints, we show here the
constraints for theFtpClient.getSome:

– The implementation level0 corresponds to3 suc-
cessive downloads with theNetwork.get function.
The function has a unique implementation level but
each call to it is made with60 as argument, to
model the fact it requires60% of the total bandwidth.
These three calls are made through the use of the
Thread.thread with implementation level0 (quick
thread, no active wait).

– The implementation level1 corresponds to2 calls
to the get function with 40% of bandwidth each
time. These two calls are made through the use of
the Thread.thread with implementation level1
(middle thread, few active wait).

– The implementation level2 corresponds to1 call to

the get function with 20% bandwidth. This call is
made through the use of theThread.thread with
implementation level2 (more active wait).

Thus if the available bandwidth is too low, a negotiation
or an existing contract will fail because of the resource
constraints. The creation of the contract may fail because a
thread cannot be provided at the desired implementation level.

Modification of toplevel (step 5) This part is straight-
forward. The only choices we have to make are the relative
amount of resource (Memory, Network) which are allocated
to each QoSComponents. The test scenario is detailed in
section VI-D.

C. Some statistics

The viewer is written in 4350 lines of code, the functional
part taking roughly 1800 lines. The other lines are Qinna’s
generic components (1650 loc.), 600 lines of code for the new
components (imagescreenBroker, imageScreenManageretc.)
and 300 lines of code for the test scenarios. The binary is
also much bigger 4.7Mbytes versus 2Mbytes without Qinna.

Thus Qinna is costly, but all the supplementary lines of code
do not need to be rewritten, because:

• Generic Qinna components, algorithms, and the basic
resource components are provided with Qinna.

• The decision functions for Quality of service constraints
could be automatically generated or be provided as a
“library of common constraints”.

• The initialization at toplevel could be computed-aided
through user-friendly tables.

We think that the cost of Qinna in terms of binary code can
be strongly reduced by avoiding the existing redundancy in
our current implementation.



L.Gonnord and JPBabau  Real Time Systems, Wisla, Poland, Oct 2008

Moreover, Qinna’s implementation can be viewed as a
prototype to evaluate the resource use and the quality of
service management. After a preliminary phase with the whole
implementation used to find the best linking constraints, we
can imagine an optimized compilation through glue code
which neither includes brokers nor managers.

D. Results

We realized a scenario with a new component whose
only objective is to use the basic resources Memory
and Network. This TestC component provides only
the foobar function at toplevel. This function has
two implementation levels, and requires two functions:
ScreenMemory.amalloc and Network.get. The
whole application provides four functions at toplevel:
TestC.foobar, ImageViewer.donext (and
doprevious) and ImageScreen.displayimage.
Three contracts are negotiated, in the following importance
order: foobar first, then donext and doprevious,
then displayimage. We made the three contracts and
download and visualize images at the highest qualities, butat
some point the foobar function causes the degradation of the
contract for displayimage, and the images are then shown in
a degraded version, like the Eiffel tower on Figure 2.

The gap between the characteristics of the contract and the
effective resource usage can be make through the use of log
functions provided by the Qinna implementation.

VII. R ELATED WORKS

Other works also propose to use a development framework
to handle resource variability. In [4] and [5], the author pro-
pose a model-based framework for developping self-adaptative
programs. This approach uses high-level specifications based
on temporal logic formula to generate program monitors. At
runtime, these monitors catch the system events and activates
the reconfiguration. This approach is similar to us except that
it mainly deals with hybrid automata and there is no notion
of contract degradation nor generic algorithm for negociation.

The expression and maintenance of resource constraints is
also considered as a fundamental issue, so much work deals
with this subject. In [6], the author use a probabilistic approach
to evaluate the resource consumed by the program paths.
Some other works in the domain of verification try to prove
conformance of one program to some specification : in [7],
for instance, the authors use synchronous observers to encode
and verify logical time contracts. At last, the QML language
([8],[9]) is now well used to express QoS properties. This
last approach is complementary to our one since it provides
a language which could be compiled into source code for
QoSComponents or Brokers.

VIII. C ONCLUSION AND FUTURE WORK

In this paper, we have presented a case study using the
software architecture Qinna which was designed to handle re-
source constraints during the development and the execution of
embedded programs. We focused mainly on the development

part, by giving a general development scheme to use Qinna,
and illustrating it on a case study. The resulting application
is a resource-aware application, whose resources constraints
are guaranteed at runtime, and whose adaptation to variability
of service is automatically done by the Qinna components,
through the notion of contracts. At last, we are able to evaluate
at runtime the threshold between contractualised resourceand
the real amount of resource effectively used.

This work has shown the effectivity of Qinna with respect to
the programming effort, and the performance of the modified
application.

Future work include some improvements of Qinna’s C++
components, mainly on data structures, in order to decrease
the global cost of Qinna in terms of binary size, and more
specific and detailed resource components, in order to better
fit to the platform specifications.

From the theoretical point of view, there is also a need for
a way to manage the linking constraints. The developer has
still to link the implementation levels of required and provided
services, and the order between all implementations levelsis
fixed by him as well. The tuning of all these links can only
be done though simulation yet. We think that some methods
like controller synthesis ([10]) could be used to discover the/a
optimal order and linking relations w.r.t. some constraints such
as “minimal variability”, “best reactivity”etc..

Finally, some theoretical work would be necessary in order
to use Qinna as a prediction tool, and provide an efficient
compilation into “glue code”.

REFERENCES

[1] M. Sparling, “Lessons learned through six years of component-based
development,”Commun. ACM, vol. 43, no. 10, 2000.

[2] J.-C. Tournier, “Qinna: une architecture à base de composants pour la
gestion de la qualité de service dans les systèmes embarqués mobiles,”
Ph.D. dissertation, INSA-Lyon, 2005.

[3] J.-C. Tournier, V. Olive, and J.-P. Babau, “Towards a dynamic manage-
ment of QoS constraints in embedded systems,” inWorkshop QoSCBSE,
in conjunction with ADA’03, Toulouse, France, June 2003.

[4] L. Tan, “Model-based self-monitoring embedded systemswith temporal
logic specifications,” inProceedings of the 20th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE’05), 2005.

[5] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan, “Runtime
assurance based on formal specifications,” inProceedings of the Inter-
national Conference on Parallel and Distributed Processing Techniques
and Applications (IPDPS’99), 1999.

[6] H. Koziolek and V. Firus, “Parametric Performance Contracts: Non-
Markovian Loop Modelling and an Experimental Evaluation,”in Formal
Foundations of Embedded Software and Component-Based Software
Architectures (FESCA), ser. Electronical Notes in Computer Science,
Vienna, Austria, 2006.

[7] F. Maraninchi and L. Morel, “Logical-time contracts forreactive em-
bedded components,” in30th EUROMICRO Conference on Component-
Based Software Engineering Track, ECBSE’04, Rennes, France, Aug.
2004.

[8] S. Frølund and J. Koistinen, “Quality of services specification in
distributed object systems design,” inProceedings of the 4th conference
on USENIX Conference on Object-Oriented Technologies and Systems
(COOTS). Berkeley, CA, USA: USENIX Association, 1998.

[9] ——, “Qml : A language for quality of service specification,” HPL-98-
10, Tech. Rep., 1998.

[10] F. M. K. Altisen, A. Clodic and E. Rutten, “Using controller synthesis to
build property-enforcing layers,” inEuropean Symposium on Program-
ming (ESOP), April 2003.


