
A. Gamatié and Gonnord , accepted to ACM Languages, Compilers, Tools and Theory for
embedded Systems (LCTES 2011, Chicago) ---------------------- ©2011 ACM

Static Analysis of Synchronous Programs in Signal for
Efficient Design of Multi-Clocked Embedded Systems

Abdoulaye Gamatié
LIFL - UMR CNRS/Lille1 8022 and Inria,
40 avenue Halley, Park Plaza - Bâtiment A,

59650 Villeneuve d’Ascq, France
abdoulaye.gamatie@lifl.fr

Laure Gonnord
LIFL - UMR CNRS/Lille1 8022,
Cité scientifique - Bâtiment M3

59655 Villeneuve d’Ascq Cedex, France
laure.gonnord@lifl.fr

Abstract
In this paper, we propose a sound abstraction for an efficient static
analysis of synchronous programs describing multi-clock embed-
ded systems in SIGNAL. This abstraction combines the Boolean
theory and numeric interval approximation to adequately address
clock relations defined as combinations of logical and numerical
expressions. Through a few examples, we show how the proposed
solution is used to determine absence of reaction captured by empty
clocks; mutual exclusion captured by two or more clocks whose as-
sociated signals never occur at the same time; or hierarchical con-
trol of component activations via clock inclusion. We also show this
analysis improves the quality of the code generated automatically
by the SIGNAL compiler, e.g., a code with smaller footprint, or a
code executed more efficiently thanks to optimizations enabled by
the new abstraction.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Formal methods, Correct-
ness proofs; C.3 [Computer Systems Organization]: Special-
Purpose and Application-Based Systems—Real-time and embed-
ded systems

General Terms Verification, Design, Reliability

Keywords Embedded systems, static analysis, abstraction, ab-
stract clocks, synchronous programming, compilation

1. Introduction
Modern embedded systems increasingly include multiple clock do-
mains in both their hardware and software parts. Typical examples
are multi-processor system-on-chip (MPSoCs) used in consumer
electronics to achieve high performance and energy efficiency by
implementing dynamic voltage and frequency scaling (DVFS) [27].
The frequencies of different computing elements, such as proces-
sors, dynamically vary to ensure as high as possible the quality
of service (QoS) of a system. The multiple clock domains result-
ing from this frequency variation offer a flexible way to address a
global performance/energy tradeoff in an MPSoC, via local deci-
sions about increasing or decreasing the frequency of a processor.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
LCTES’11 12-14 April, Chicago, IL, USA.
Copyright c© 2011 ACM [to be supplied]. . . $10.00

A similar observation is made at system level when designing em-
bedded applications by several autonomous functional blocks or
modules, running concurrently on different computation nodes, for
instance multi-rate tasks. Indeed, the computation overhead is re-
duced when modules are activated only when strictly required: a
module does not need to wake up frequently, according to a global
clock of a system, to check whether or not it has to execute; instead,
this should be dictated by a local clock of its computation node.

An interesting design solution regarding the above examples
consists in using globally asynchronous and locally synchronous
(GALS) architectures [9, 28] as illustrated in FIG. 1. Each com-
putation node holds its own clock providing a local (synchronous)
vision of time. The time scale according to which its associated
events are observed is not necessarily identical to those of the other
nodes. In FIG. 1, events are represented by bullets labelled with the
occurrence rank according to their corresponding time scale (a hor-
izontal line). The interactions between the three illustrated nodes
can be represented using synchronization relations between event
occurrences, e.g.: first event occurrence (tagged “0”) of node 1 and
third event occurrence (tagged “2”) of node 2, second event occur-
rence of node 1 and second event occurrence of node 3, etc. From
an overview of a system, these relations only yield a partial occur-
rence ordering of all observed events; while focusing on a node, all
its local events are totally ordered with respect its clock.

node 3

node 2

node 1

3210 4

0 2 51 6 73 4

0 1 2 3

Figure 1. A multi-clocked GALS system.

1.1 Synchronous approach for multi-clocked system design
Dealing with the correct design of embedded systems with multiple
clock domains at the hardware level is very complex because of
various factors, e.g., noise and jitter on clock signals, and skew
between data signal and clock signals. As a solution, the problem
can be addressed rather at a higher level. The abstract clock notion
provided by synchronous languages [4] offers the opportunity to

A. Gamatié and Gonnord , accepted to ACM Languages, Compilers, Tools and Theory for
embedded Systems (LCTES 2011, Chicago) ---------------------- ©2011 ACM

suitably address the problem. An abstract clock of a signal is
a discrete set of logical instants at which events occur on the
signal. Typically, the event occurrences at a node in FIG. 1 can
be characterized by an abstract clock. Then, the synchronization
relations between events of different nodes will be described as
clock relations. So, abstract clocks play a central role in the design
of multi-clocked embedded systems.

Some of these languages are LUSTRE [20], ESTEREL [5] and
SIGNAL [26]. They have been proposed in the early 80’s as an an-
swer to the reliable development of safety critical embedded sys-
tems. Today, they are successfully adopted by the European in-
dustry as illustrated by the use of the SCADE tool to develop the
Airbus A380 control and display system. Among the features that
make synchronous programming suitable for the design of safety-
critical systems, we can mention their mathematical foundation
that favors a precise semantics of programs, the ability to trust-
worthily reason on program properties, the possibility to automati-
cally generate correct-by-construction target implementations from
programs, and finally a wide range of supporting tools.

1.2 Multi-clocked models in SIGNAL

The design of multi-clocked embedded systems with a synchronous
language such as LUSTRE assumes a global clock providing the
time scale for all computation nodes. In terms of set of instants,
the activation clocks of nodes are strict subsets of the global clock.
While this synchronized model of a system is suitable for guaran-
teeing determinism, it enforces a monolithic vision of the whole
design so that one cannot focus on the activity of a given node re-
gardless of the reference (or global) clock of the system.

The design model adopted in the SIGNAL language is differ-
ent from that of LUSTRE and ESTEREL by enabling the description
of computation nodes without assuming any global clock in a sys-
tem. It is referred to as polychronous model [26]. Abstract clocks
particularly play a fundamental role in the polychronous design of
embedded systems in SIGNAL. They are used to describe all the
control part: activation triggering of components and interaction
between different components via clock relations, as illustrated in
FIG. 1. The control flow resulting from these clock relations also
serves to derive an optimized control structure in generated code.
Thus, the quality of the clock analysis has a strong impact on de-
sign correctness and efficiency. POLYCHRONY, the design environ-
ment of SIGNAL allows a designer to specify, analyze and auto-
matically generate code for multi-clocked systems, such as GALS.
Beyond the usual syntax or type checking, its compiler implements
powerful static analysis and optimizations, allowing for a correct
and efficient code generation. This analysis relies on a Boolean ab-
straction of programs, internally represented as binary decision di-
agrams (BDD) [8] for an efficient reasoning [2].

1.3 Problem statement: analysis of numerical properties
When the static analysis performed by the SIGNAL compiler ad-
dresses the clock properties of a program, defined with numerical
expressions, the current Boolean abstraction loses some relevant
information, which makes it quite inadequate for such a program.
This has a strong impact on the analysis precision and the qual-
ity of generated code. For instance, such a situation arrives when
defining in SIGNAL the activation clocks of a system as sets of
events that occur when the values of some data signals satisfy a
numerical property: activation of a (rescue) computation node in a
fault-tolerant GALS system when an data signal from an executing
node reach some particular value, activation of a node whenever
another computation node produces a periodic event, etc. In order
to address suitably this kind of property, an new abstraction is re-
quired, which fully takes into account the numerical part beyond
the Boolean part of SIGNAL programs.

1.4 Contribution of this paper
We propose a sound Boolean-interval abstraction for the static anal-
ysis of synchronous programs defining multi-clocked embedded
systems in SIGNAL. Our solution permits an analysis that signif-
icantly enhances the quality of the subsequent code generated au-
tomatically by the compiler, e.g., a code with smaller footprint, or
a code executed more efficiently thanks to further optimizations. In
the new abstraction, every signal in a program is associated with a
pair of the form (clock, value), where clock is a Boolean function
and value is a Boolean or numeric function, abstracted as an inter-
val. Given the level of performance reached by recent progress in
Satisfiability Modulo Theory (SMT) [7], we use an SMT solver to
implement the reasoning on the new abstraction. We show through
a few examples, how relations between abstract clocks defined with
numerical and logical expressions can be adequately analyzed, to
determine for instance absence of reactivity captured by empty
clocks; mutual exclusion captured by two or more clocks whose
associated signals never occur at the same time; or hierarchical con-
trol of computation node activations via clock inclusion.

1.5 Outline
The remainder of this paper is organized as follows. Section 2 gives
an overview of SIGNAL and illustrates a simple yet typical exam-
ple. Section 3 discusses the current limitations of the static analy-
sis achieved by the SIGNAL compiler, regarding clock analysis and
code generation. Section 4 exposes an abstraction for improving
this static analysis by using first-order logic formulas. Section 5
presents an implementation of our solution, with an illustration on
a few examples. Section 6 discusses the proposed approach with re-
spect to related work. Finally, Section 7 gives concluding remarks.

2. Overview of the SIGNAL language features
SIGNAL [26] [15] is a data-flow relational language that handles
unbounded series of typed values (xt)t∈N, called signals, implicitly
indexed by discrete time, and denoted as x. For instance, a signal
can be either of Boolean or integer or real types. At any logical
instant t ∈ N, a signal may be present, at which point it holds a
value; or absent and denoted by ⊥ in the semantic notation. There
is a particular type of signal called event. A signal of this type
always holds the value true when it is present. The set of instants
at which a signal x is present is referred to as its clock, noted ^x. A
process is a system of equations over signals, specifying relations
between values and clocks of the signals. A program is a process.

2.1 Constructs of the language
SIGNAL relies on six primitive constructs: the core language. The
syntax of the constructs is given below, with some informal expla-
nations. The formal semantics is introduced in Section 2.2.

• Instantaneous relations: y:= R(x1,...,xn) where y, x1, ...,
xn are signals and R is a point-wise n-ary relation/function
extended canonically to signals. This construct imposes y, x1,
..., xn i) to be simultaneously present, i.e. ^y = ^x1 = ...=
^xn (i.e. synchronous signals), and ii) to hold values satisfying
y:= R(x1,...,xn) whenever they occur.
• Delay: y:= x $ 1 init c where y, x are signals and c is an

initialization constant. It imposes i) x and y to be synchronous,
i.e. ^y = ^x, while ii) y must hold the value carried by x on its
previous occurrence.
• Under-sampling: y:= x when b where y, x are signals and
b is of Boolean type. This construct imposes i) y to be present
only when x is present and b holds the value true, i.e. ^y = ^x ∩
[b] (where [b]∪ [¬b] = ^b and [b]∩ [¬b] = ∅), while ii) y holds

A. Gamatié and Gonnord , accepted to ACM Languages, Compilers, Tools and Theory for
embedded Systems (LCTES 2011, Chicago) ---------------------- ©2011 ACM

Table 1. Trace semantics for SIGNAL primitives.

process P semantics of P: [[P]]

y:= R(x1,...,xn)
{ T ∈ T ⊥{x1,...,xn,y}/ ∀t ∈ N,

(
∀i, T (t)(xi) = T (t)(y) =⊥

)
or(

T (t)(y) 6=⊥ and ∀i, T (t)(xi) 6=⊥ and T (t)(y) = R(T (t)(x1), . . . , T (t)(xn))
)
}

y:= x $ 1 init c

{ T ∈ T ⊥{x,y}/ ∀t ∈ N,
(
T (t)(x) = T (t)(y) =⊥

)
or(

T (t)(y) 6=⊥ and T (t)(x) 6=⊥ and T (t0)(y) = c and(
(t ≥ t0)⇒ (∃i, t = ti, T (ti+1)(y) = T (t)(x))

))
with t0 = inf{t/T (t)(x) 6=⊥} and ti+1 = inf{t/t > ti ∧ T (t)(x) 6=⊥} }

y:= x when b
{ T ∈ T ⊥{x,b,y}/ ∀t ∈ N,

(
T (t)(b) = true and T (t)(y) = T (t)(x)

)
or(

T (t)(b) 6= true and T (t)(y) =⊥
)
}

z:= x default y
{ T ∈ T ⊥{x,y,z}/ ∀t ∈ N,

(
T (t)(x) 6=⊥ and T (t)(z) = T (t)(x)

)
or(

T (t)(x) =⊥ and T (t)(z) = T (t)(y)
)
}

P1|P2 Assuming that [[P1]] ⊆ T ⊥X1, [[P2]] ⊆ T ⊥X2, { T ∈ T ⊥X1∪X2/ X1.T ∈ [[P1]] and X2.T ∈ [[P2]]}
P1 where x Assuming that [[P1]] ⊆ T ⊥X1, {T ∈ T ⊥X1−{x}/∃ T1 ∈ [[P1]], (X1− {x}).T1 = T}

the value of x at those logical instants. The sub-clock [b] (resp.
[¬b]) denotes the set of instants where b is true (resp. false).
• Deterministic merging: z:= x default y where z, y, x

are signals. This construct imposes i) z to be present when
either x or y are present, i.e. ^z = ^x ∪ ^y, while ii) z holds the
value of x uppermost, otherwise that of y.
• Composition: P ≡ P1|P2 where P1 and P2 are processes. It de-

notes the union of equations defined in processes, leading to the
conjunction of the constraints associated with these processes.
The composition operator is commutative and associative.
• Restriction (or Hiding): P ≡ P1 where x, where P1 and x are

a process and a signal. It states that x is a local signal of process
P1. The process P holds the same constraints as P1.

Some useful derived constructs The core language of SIGNAL
is expressive enough to derive new constructs of the language for
programming comfort and structuring. In particular, SIGNAL al-
lows one to explicitly manipulate clocks through some derived con-
structs that can be rewritten in terms of primitive ones. For in-
stance, the clock extraction statement y:= ^x, meaning y is de-
fined as the clock of x, is equivalent to y:= (x = x) in the core
language. A similar statement y:= when b, defining y as the set of
instants where the Boolean signal b is present and true, is equiva-
lent to y:= b when b. The clock union y:= x1 ^+ x2, rewritten
as y:= ^x1 default ^x2, denotes the set of instants at which at
least a signal xi occurs. In the same way, clock intersection y:= x1
^∗ x2 and difference y:= x1 ^− x2 are respectively defined as:
y:= ^x1 when ^x2 and y:= when(not(^x2) default ^x1).
The synchronizer x1 ^= x2 that constrains x1 and x2 to have
the same clock, is rewritten as (| x:= ^x1 = ^x2 |) where x.
The empty clock is denoted by ^0.

2.2 A denotational semantics of the language
We present the basic elements of a trace semantics [25] for SIG-
NAL. Let us consider a finite set X = {x1, . . . , xn} of typed vari-
ables called ports. For each xi ∈ X , Dxi is its domain of values.
In addition, we have:

D =

n⋃
i=1

Dxi and D⊥ = D ∪ {⊥},

where⊥ 6∈ D denotes the absence of value associated with a port at
a given instant. The domains D⊥xi

and D⊥X1
are defined in a similar

way with X1 ⊆ X .

DEFINITION 1 (events). Given a non-empty set X1 ⊆ X , the set
of events on X1, denoted by EX1, is the set of all applications
(functions) m defined from X1 to D⊥X1

. 2

The expression m(x) = ⊥ means x holds no value while
m(x) = v means that x holds the value v, and m(X1) =
{m(x)/x ∈ X1}. The set of events on X1 is denoted by EX1 =
X1 → D⊥X1

, and the set of all possible events is therefore
E =

⋃
X1⊆X EX1 . By convention, the event on an empty set of

ports is represented by E∅ = {∅}.
DEFINITION 2 (traces). Given a non-empty set X1 ⊆ X , the set
of traces on X1, denoted by T ⊥X1 : N → EX1, is defined by the
set of applications T defined from the set N of natural numbers to
EX1 . 2

The set of all possible traces is T ⊥ =
⋃

X1⊆X T
⊥
X1. Moreover,

T∅ = 1 = N→ E∅.

DEFINITION 3 (trace restriction). Given a non-empty set X1 ⊆
X , and a set X2 ⊂ X1 with a trace T being defined on X1,
the restriction of T (t) to X2, noted X2.T : N → EX2 , satisfies:
∀t ∈ N, ∀x ∈ X2 X2.T (t)(x) = T (t)(x). 2

We have ∅.T ∈ T∅ (which is a singleton).
We also define the trace restriction (or projection) of set of traces
T to X ⊆ XT as follows: X.T = {X.T |T ∈ T }.

A process on a set of variables X1 ⊆ X is a set of constrained
traces on X1. In other words, it is a subset of T ⊥X1. The semantics
of statements defining a process P is denoted by a set of traces [[P]].
Each SIGNAL primitive construct defines an elementary process
whose trace semantics is given in Table 1.

2.3 Example: a bathtub model in SIGNAL

The simple SIGNAL process shown in FIG. 2 specifies the status of
a bathtub [6]. It has no input signal (line 02), but has three output
signals (line 03).

The signal level, defined at line 04, reflects the water level in
the bathtub at any instant. It is determined by considering two sig-
nals, faucet and pump, which are respectively used to increase and
decrease the water level. These signals are increased by one under
some specific conditions (lines 06 and 08), in order to maintain the
water level in a suitable range of values.

An alarm signal is defined at line 12 whenever the water over-
flows (line 10) or becomes scarce (line 11) in the bathtub. An addi-
tional “ghost” alarm is defined at line 13/14, which is not expected
to occur. Here, it is just introduced to illustrate one limitation of

A. Gamatié and Gonnord , accepted to ACM Languages, Compilers, Tools and Theory for
embedded Systems (LCTES 2011, Chicago) ---------------------- ©2011 ACM

the static analysis of SIGNAL. The clock of this signal is not com-
pletely specified in Bathtub. As stated in the previous section, this
clock is the union of those associated with the two arguments of the
default operator. The clock of the left argument is exactly known.
The clock of the right-hand one is contextual because the argument
is a constant (that is, a constant signal is always available when-
ever required by its context of usage): it is equal to the difference
of ghost alarm’s clock and first argument’s clock. Since, this dif-
ference cannot be defined exactly from the program, further clock
constraints on ghost alarm will be required from the environment
of Bathtub for an execution.

01:process Bathtub =
02:(?
03: ! integer level; boolean alarm, ghost_alarm;)
04:(|(| level := zlevel + faucet - pump
05: | zlevel := level$1 init 1
06: | faucet := zfaucet + (1 when zlevel <= 4)
07: | zfaucet := faucet$1 init 0
08: | pump := zpump + (1 when zlevel >= 7)
09: | zpump := pump$1 init 0 |)
10: |(| overflow := level >= 9
11: | scarce := 0 >= level
12: | alarm := scarce or overflow
13: | ghost_alarm:= (true when scarce when overflow)
14 default false |)|)
15: where
16: integer zlevel,zfaucet,zpump,faucet,pump;
17: boolean overflow,scarce;
18:end;

Figure 2. Bathtub model in SIGNAL.

3. Limitations of program analysis in SIGNAL

The static analysis of SIGNAL programs, referred to as clock cal-
culus, primarily aims at proving the consistency of clock relations
as well as the absence of cyclic data dependencies induced by pro-
gram definition. This is necessary in order to prove the reactivity
and the determinism of a modeled system. For instance, the pres-
ence of empty clocks in a program reduces its reactivity since the
concerned signals are always absent. Unless such behaviors are ab-
solutely required, they have to be avoided, in particular for the reac-
tivity of embedded real-time systems. Determinism is characterized
by the inference of a single master clock from a program. All sys-
tem events are observed according to this clock. Another property
is clock mutual exclusion, which ensures some events never occur
at the same time.

In SIGNAL, clocks are fundamentally the main means to express
control (synchronizations between signals). Together with their as-
sociated relations, they are formalized through a clock algebra [2].
In particular, the set of clocks associated with set inclusion forms
a lattice. Based on clock inclusion, the SIGNAL compiler computes
a clock hierarchy on which strongly relies the automatic code gen-
eration. However, for the under-sampling construct, remember that
the clock of the Boolean expression b is partitioned into [b] and
[¬b], which are referred to as condition-clocks. If b is defined by
a numerical expression such as an integer comparison, [b] and [¬b]
are seen as black boxes when compared separately to other clock
expressions. This reduces the power of the clock calculus analysis
whenever a program contains numerical expressions.

Example: analysis and code generation for bathtub FIG. 3 par-
tially shows the result of the clock calculus generated automati-
cally by the compiler. Here, we focus on two issues that the clock

analysis was not able to fix adequately. First, a clock constraint
is generated, stating that signals CLK_level, CLK_zfaucet and
CLK_zpump must have the same clock (lines 05–07), while sig-
nals CLK_zfaucet and CLK_zpump have exclusive clocks (lines
03–04). Second, at line 11, the right-hand side of the synchroniza-
tion equation about CLK ghost alarm should be (not CLK_29)
since the clock CLK_36 is empty by definition (line 10).

--
01:(| CLK_level := ^level
02: | CLK_level ^= alarm ^= zlevel^= faucet^= pump
02b: ^= overflow ^= scarce
03: | CLK_zfaucet ^= when (zlevel<=4)
04: | CLK_zpump ^= when (zlevel>=7)
05: | (| CLK_level ^= CLK_zpump
06: | CLK_level ^= CLK_zfaucet
07: |)%**WARNING: Clocks constraints%
08: | CLK_22 := when level>=9
09: | CLK_25 := when 0>=level
10: | CLK_36 := CLK_22 ^* CLK_25
11: | (| CLK_ghost_alarm ^= CLK_36 default (not CLK_29)
12: | CLK_29 := CLK_ghost_alarm ^- CLK_36
13: | (| ghost_alarm := CLK_36 default (not CLK_29)
14: |) |) ... |)
--

Figure 3. A sketch of the clock calculus result in POLYCHRONY.

The previous two issues illustrate typical limitations of the
Boolean abstraction in the clock calculus. This does not enable
to verify simple static properties of a program, such as clock ex-
clusion or emptiness, since numerical expressions are not suitably
abstracted. A more expressive clock analysis would detect the fact
that CLK_level, CLK_zfaucet and CLK_zpump must be empty
clocks in order to satisfy the clock constraints of the Bathtub
process. Section 5.3 discusses another issue about the hierarchical
control of component activations.

--
01: if (C_level)
02: { C_zfaucet = level <= 4;
03: C_zpump = level >= 7;
04: if ((C_zpump) != (C_level))
04b: polychrony_exception("...");
05: if ((C_zfaucet) != (C_level))
05b polychrony_exception(" ... ");
06: if (C_zfaucet) { faucet = zfaucet + 1; }
07: if (C_zpump) { pump = zpump + 1; }
08: level = (level + faucet) - pump;
09: overflow = level >= 9; scarce = 0 >= level;
10: alarm = scarce || overflow; ...

/*production of level and alarm*/
11: C_106 = overflow && scarce;} ...
12: C_109 = (C_level ? C_106 : FALSE);
13: if (C_ghost_alarm)
14: { if (C_109) ghost_alarm = TRUE;
14b: else ghost_alarm = FALSE;
15: ... /* production of ghost_alarm */ } ...
--

Figure 4. A sketch of the C code generated by POLYCHRONY.

The above limitations also have an important impact on the
quality of the code generated automatically by the compiler since
it relies on the clock hierarchy resulting from the analysis. FIG. 4
sketches a C code generated automatically based on the clock anal-
ysis. The previous clock constraint is implemented by exception
statements (lines 04–05). This can be seen currently as the way
the compiler alerts a user that it was not able to solve some clock

A. Gamatié and Gonnord , accepted to ACM Languages, Compilers, Tools and Theory for
embedded Systems (LCTES 2011, Chicago) ---------------------- ©2011 ACM

constraints in a SIGNAL program and related to the exception state-
ments. Of course, such a C code is only useful for simulation.

Now, if the above C code is to be embedded in some real-life
system, its quality could be significantly improved by noticing that
since CLK_level, CLK_zfaucet and CLK_zpump should be empty
clocks, statements between lines 02 and 11 are never executed (and
consequently, the exception statements are useless). As a result, the
generated C code shown in FIG. 4 contains dead code. In a similar
way, the if statement at line 14/14b also contains a dead code
since the variable ghost_alarm is always set to false.

4. A Boolean-interval abstraction
We define an abstraction for SIGNAL program analysis. All con-
sidered programs are supposed to be in the syntax of the core lan-
guage, meaning that derived operators are replaced by their corre-
sponding primitive statements, and there is no imbrication of oper-
ators such as in equations 06, 08 and 13 in FIG. 2. Imbrication is
broken by using fresh variables.

4.1 Notations and restrictions
Let P be a SIGNAL program. We denote by XP = {x1, x2 . . . xn}
the set of all variables of P. We suppose that the variation interval,
representing the range of possible values of each numerical signal
xi ∈ XP , is given (see Section 5.1). With each variable xi (numer-
ical, Boolean or event), we associate two abstract values: x̂i and
x̃i encoding respectively its clock and values.

The abstract semantics of the program, is a set of couples of the
form (̂,˜) where:

• function ̂: XP → B = {true, false} assigns to a variable a
Boolean value;
• function ˜: XP → R ∪ B assigns to a variable a numerical or

Boolean value.

This abstract set is represented as a first order logic formula ΦP in
which atoms are x̃i and x̂i, and the operators are usual logic oper-
ators and integer comparison functions. Our abstraction is defined
for the following subset of numerical and Boolean expressions in
SIGNAL statements:

nexp ::= const | nexp ♦ nexp | var
bexp ::= true | false | not bexp | var | bexp

and bexp | bexp or bexp | nexp ./ nexp

where the symbols const and var respectively denote a constant
and a signal variable (x, y, . . .), ./∈ {<, >, =, >=, =>, /=}
and ♦ ∈ {+,*, -, /}.

We restrict ourselves to the above subset of numerical expres-
sions because it leads to a decidable class of formulas: quantifier-
free linear integer arithmetic (QF LIA) or quantifier-free linear real
arithmetic (QF LRA). We define an abstraction φ for these expres-
sions by induction on their structure as follows:

• atoms: given a signal x, if x is of Boolean or numeric type,
φ(x) = x̃; if x is of event type, φ(x) = true,
• φ(true) = true and φ(false) = false,
• φ(b1 and b2) = b1 ∧ b2; φ(b1 or b2) = b1 ∨ b2; φ(not b1) =
¬b1,
• φ(n <= c) =

(
x̃ ∈ φ(n)∧ x̃ ∈]−∞, c]

)
; φ(n < c) =

(
x̃ ∈

φ(n) ∧ x̃ ∈]−∞, c[
)
, where x 6∈ XP (x is a fresh variable),

• φ(n1 <= n2) =
(
x̃ ∈ φ(n1 − n2) ∧ x̃ ∈ [−∞, 0]

)
, x 6∈ XP ,

• φ(n1♦n2) = ♦̃(φ(n1), φ(n2)), an approximation of numer-
ical operations on intervals, corresponding to ♦ as defined
in [1]. For instance, the considered approximations on N are:
i+̃j ≡ [i− + j−, i+ + j+] for addition and i−̃j ≡ [i− −
j+, i+ − j−] where i− and i+ respectively denote the lower
and upper bounds of an interval i.

The φ function is used to compute numerical and Boolean safe
abstractions for our subset of expressions encountered in SIGNAL
statements.

4.2 Abstraction
We define ΦP as the intersection of the abstractions of statements
stmi of P:

ΦP =

n∧
i

Φ(stmi)

where n denotes the number of statements composed in P. In Table
2, we distinguish two possible definitions of Φ according to the
type of signal y in each equation: (1) when y is of numerical type
and (2) when y is of logical type.

Note in the abstraction of the delay construct, when y is of nu-
merical type, a classical interval analysis would perform the convex
union of the two intervals c̃ and x̃. Here, we avoid the approxima-
tion resulting from such a convex union by keeping the disjunction
as is. By applying the above rules, the following abstractions are
obtained for derived constructs for clock manipulation:
• Φ(y:= x1 ^+ x2) =

(
ŷ ⇔ x̂1 ∨ x̂2

)
∧ (ŷ ⇒ ỹ). Here,

we apply the default abstraction rule with x̃1 = x̃2 = true
(as xi are events), and simplify the result.

• Φ(y:= x1 ^* x2) =
(
ŷ ⇔ (x̂1 ∧ x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(y:= x1 ^- x2) =
(
ŷ ⇔ (x̂1 ∧ ¬x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(x1 ^= x2) = x̂1 ⇔ x̂2

Example: application to the bathtub example. Let us assume
that an interval-based abstract interpreter gives us the variation
intervals for the integer variables (see Section 5). Then, by applying
our abstraction to Bathtub (see FIG. 2), which is divided into P1

(lines 04 to 09) and P2 (lines 10 to 14) according to the process
hierarchy, we obtain ΦBathtub = ΦP1 ∧ΦP2 , where ΦP1 equals to:

(l̂evel ⇔ ẑlevel ⇔ f̂aucet ⇔ p̂ump) ∧ (l̃evel ∈ [1,+∞[)

∧ (z̃level ∈ [1,+∞[) ∧
(
f̂aucet ⇔ ̂zfaucet ⇔ (z̃level ∈]−∞, 4])

)
∧ (f̃aucet ∈ [0,+∞[) ∧ (˜zfaucet ∈ [0,+∞[) ∧ (p̃ump ∈ [0,+∞[)

∧
(
p̂ump ⇔ ẑpump ⇔ (z̃level ∈ [7,+∞[)

)
∧ (z̃pump ∈ [0,+∞[)

For ΦP2 , we first rewrite equation at line 13/14 as follows:

(| y1 := true when scarce | y2 := y1 when overflow
| ghost_alarm := y2 default false |)

Then, we obtain that ΦP2 equals to:

(̂overflow ⇔ l̂evel ⇔ ŝcarce) ∧
(˜overflow ⇔ (l̃evel ∈ [9,+∞[)

)
∧ (s̃carce ⇔ (l̃evel ∈]−∞, 0]) ∧ (âlarm ⇔ ŝcarce ⇔ ̂overflow)

∧ âlarm ⇒
(
ãlarm ⇔ (s̃carce ∨ ˜overflow)

)
∧
(
ŷ2 ⇔ (s̃carce ∧ ˜overflow ∧ ŝcarce ∧ ̂overflow)

)
∧ (ŷ2 ⇒ ỹ2) ∧ (ĝhost ⇔ (ŷ2 ∨ f̂alse))

∧
(
ĝhost ⇒

((
ŷ2 ∧ (g̃host ⇔ ỹ2)

)
∨
(
¬ŷ2 ∧ ¬g̃host

)))
4.3 Concretisation
Let us recall that X = {x1, . . . xn} denotes the set of all P vari-
ables. Intuitively, a valuation satisfying Φ captures the numerical

A. Gamatié and Gonnord , accepted to ACM Languages, Compilers, Tools and Theory for
embedded Systems (LCTES 2011, Chicago) ---------------------- ©2011 ACM

Table 2. Boolean-Interval abstraction of SIGNAL primitives.

process P abstraction of P: Φ(P)

y:= R(x1,...,xn)

∧n

i=1(ŷ ⇔ x̂i) ∧
(
ŷ ⇒ ỹ ∈ φ(nexp)

)
(1)∧n

i=1(ŷ ⇔ x̂i) ∧
(
ŷ ⇒

(
ỹ ⇔ φ(bexp)

))
(2)

where R(x1,...xn) is denoted by either nexp or bexp.

y:= x $ 1 init c

{ (
ŷ ⇔ x̂

)∧ (
ŷ ⇒ (ỹ = x̃ ∨ ỹ = c)

)
(1)(

ŷ ⇔ x̂
)∧ (

ŷ ⇒ (ỹ ⇔ (c̃ ∨ x̃))
)

(2)

y:= x when b

{ (
ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)

)∧ (
ŷ ⇒ ỹ = x̃

)
(1)(

ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)
)∧ (

ŷ ⇒ (ỹ ⇔ x̃)
)

(2)

y:= x default z

(
ŷ ⇔ (x̂ ∨ ẑ)

)∧(
ŷ ⇒

(
(x̂ ∧ (ỹ = x̃)) ∨ (¬x̂ ∧ (ỹ = z̃))

))
(1)(

ŷ ⇔ (x̂ ∨ ẑ)
)∧(

ŷ ⇒
(
(x̂ ∧ (ỹ ⇔ x̃)) ∨ (¬x̂ ∧ (ỹ ⇔ z̃))

))
(2)

P1|P2 ΦP1 ∧ ΦP2

P where x ∃x̃,∃x̂ . ΦP

and Boolean values of signals at a given logical instant. Given a
valuation v = (̂ , ˜), where all variables have been assigned
some values, we first construct a set of events whose values are
assigned accordingly: Svalid(v) = {S ∈ EX |∀i, S(i) = if (x̂i =
false) then ⊥ else x̃i}. The set of all “valid” events is defined
as Svalid(Φ) = ∪v|=ΦSvalid(v). Finally, the concretisation of Φ is
the set of traces whose instantaneous values always verify Φ :

Γ(Φ) = {T ∈ TX |∀t, T (t) ∈ Svalid(Φ)} (1)

Now, the set of constraints resulting from the abstraction of a
given program P is viewed as assumptions on this program. It is
used to prove properties such as clock emptiness (x^=0) or signal
synchronization (x1^=x2). Note that a property is itself defined as
a SIGNAL process.

We delegate the proofs to satisfiability modulo theory (SMT)
solvers that adequately deals with Boolean and integer formulas.
SMT [12] is the problem of determining whether a given first order
formula Φ is satisfiable with respect to an underlying decidable
first order theory. As in our case, Φ belongs to a decidable theory,
SMT solvers give two kinds of answers: sat when the formula has a
model (there exists a valuation that satisfies Φ) or unsat otherwise.

4.4 Soundness of the abstraction
Our abstraction is sound, in the sense that it preserves the behaviors
of the abstracted programs: if a property is true on the abstraction,
then it is also the case on the program.

PROPOSITION 1. Given a program P and a formula ϕ in which
atoms are x̂i and x̃i (xi ∈ XP), if ΦP ⇒ ϕ, then [[P]] ⊆ Γ(ϕ). P
is said to satisfy ϕ. 2

The proof is done thanks to the following lemma:

LEMMA 1. For all SIGNAL program P, [[P]] ⊆ Γ(ΦP) 2

PROOF 1 (Lemma 1). By induction on the structure of P:
• functions/relations: P ≡ y:=f(x1,...,xn). We first consider

the case where y is a numerical signal. Let f̃ be the abstraction
of the f function, i.e., f̃(x̃1, . . . , x̃n) = φ(f(x1, . . . , xn)).
Thanks to the definition of φ, f̃ is an over-approximation of
f. Let Φ be the abstraction of P, Φ =

∧n
i=1(ŷ ⇔ x̂i) ∧ ỹ ∈

f̃(x̃1, . . . , x̃n). If v = (,̂˜) is a valuation satisfying Φ:
• either ∀i, x̂i = false and ŷ = false, and ỹ, x̃i hold any

value;

• or ∀i, x̂i = true and ŷ = true and ỹ ∈ f̃(x̃1 . . . , x̃n);

Svalid(Φ) is the set of all valuations of the previous form.
Now, given a trace T of [[P]] and t0 ∈ N, either ∀i T (t0)(y) =
T (t0)(xi) =⊥ or T (t0)(y) = f(T (t0)(x1), . . . , T (t0)(xn)) ∈
f̃
(
T (t0)(x1), . . . , T (t0)(xn)) (SIGNAL semantics and over-

approximation of f), which means in both cases that T ∈
Γ(ΦP).
When y is a Boolean signal, [[P]] ⊆ Γ(ΦP) is similarly proved.

• for the delay, under-sampling and merging constructs, the
same proof sketch holds. It is not detailed here due to lack
of space.

• composition: P ≡ P1|P2. We have [[P]] ⊆ [[P1]] ⊆ Γ(ΦP1)
by applying the induction hypothesis. In a similar way, we
also have [[P]] ⊆ Γ(ΦP2). Then, [[P]] ⊆ Γ(ΦP1) ∩ Γ(ΦP2).
Since Γ(ΦP1) ∩ Γ(ΦP2) ⊆ Γ(ΦP1 ∧ ΦP2), we have [[P]] ⊆
Γ(ΦP1 ∧ ΦP2) = Γ(ΦP1|P2) = Γ(ΦP).

• restriction: P ≡ P1 where x. By definition, we have [[P]] ⊆
[[P1]] on XP1−{x}. On the other hand, by induction [[P1]] ⊆
Γ(ΦP1). Since Γ(ΦP1) ⊆ Γ(∃x̂, ∃x̃ . ΦP1), we obtain [[P]] ⊆
Γ(ΦP).

Now, we prove Proposition 1:

PROOF 2. Let T ∈ [[P]]. According to Lemma 1, T ∈ Γ(ΦP),
which means ∀t, T (t) ∈ Svalid(ΦP) (Formula (1) defining the
concretisation). As ΦP ⇒ ϕ, every valuation v satisfying ΦP also
satisfies ϕ. Any event S of Svalid(ΦP) belongs to Svalid(ϕ), hence
∀t, T (t) ∈ Svalid(ϕ). Finally, we have T ∈ Γ(ϕ) (Formula (1)
again).

5. Implementation
We present the different steps of our approach, and the tools we use
to implement it. Then, we illustrate them on Bathtub.

5.1 Analysis flow implementation
From a global point of view, our approach takes a program P as
input. Different tools are combined to achieve a suitable abstraction
of P and to prove properties, mainly those which are not addressed
by the SIGNAL compiler. Finally, the satisfied properties are made
explicit in P so that the compiler can exploit them for a more precise
static analysis and efficient code generation. FIG. 5 summarizes the
different steps.

1. Pre-computation of variation intervals. This step aims at
computing the variation intervals for all numerical variables of
a given SIGNAL program. For input signals, the corresponding

A. Gamatié and Gonnord , accepted to ACM Languages, Compilers, Tools and Theory for
embedded Systems (LCTES 2011, Chicago) ---------------------- ©2011 ACM

Interval
Pre-Analyzer

SIGNAL
Program

Abstraction &
Property
Definition

SMT
Solver

Identification
of Proven
Formulas

SIGNAL
Compiler

SIGNAL
Program

C, C++,
Java

 Code

1

5

3

4

2

Figure 5. An overview of our approach: steps and tools.

intervals are assumed to be known. First, the program is com-
piled into a counter automaton in which all Boolean values are
abstracted. This step is an adaptation of the algorithm presented
in [18] and is very similar to the compilation of LUSTRE pro-
grams into OC [21],[22]. Afterwards, we apply the classical ab-
stract interpretation on the interval lattice [10] to compute an
over-approximation of the variation interval of each numerical
signal. For that, we use the INTERPROC tool [24], which imple-
ments this technique.

2. Abstraction and property generation. The input program is
translated according to the abstraction definition provided in
Section 4. In addition, clock synchronization and clock empti-
ness properties are produced according to the program variables
and translated as well. For the moment, this step is performed
manually, even though its implementation is straightforward.

3. SMT-based analysis. We delegate the proof of the above prop-
erties against the program abstraction to an SMT solver that
adequately deal with Boolean and numerical formulas. As the
considered formulas belong to decidable theories, this solver
gives two kinds of answers: sat when the formula has a model
(there exists a valuation that satisfies it); or unsat otherwise.
The formulas obtained from the previous step are encoded in the
SMTLIB common format [3], as an input for SMT solvers. For
our example, we consider the Yices [13] solver, which is one
of the best two solvers dealing with unquantified linear integer
arithmetic in the last SMTCOMP competition([30]).
The output of Yices determined the result of the applied static
analysis. This result can be exploited for a better code genera-
tion, as addressed by the next step.

4. Concretisation of proven formulas for composition with the
program. For all proven clock properties that the compiler is
not able to address, we consider a possible SIGNAL program
that belongs to their concretisation. Then we compose this pro-
gram with the initial program, without changing its semantics
[26]. The result of the composition is to be compiled.

5. Clock analysis and code generation. The result of the previous
step is a program semantically equivalent to the initial one. The
advantage is that the compiler can exploit it in a more adequate
way so as to permit the proof of intricate clock properties
involving numerical expressions. This has a direct and strong
impact on the quality of the code generated by the compiler.

5.2 Application 1: clock equivalence, exclusion and emptiness
Let us illustrate the previous analysis flow on Bathtub (FIG. 2).

In the first step, we only focus on the subset of statements
which are defined between the lines 04 and 09. These statements
cover the definition of all numerical signals of the program. Their
compilation provides the automaton shown in FIG.6 (x′ means

the value of x after assignment). After interval analysis on this
automaton, we get: level, zlevel ∈ [1,+∞], faucet, zfaucet ∈
[0,∞], pump, zpump ∈ [0,+∞].

The second step of our method then computes the abstraction of
the Bathtub program thanks to the information computed in step
1. The obtained formula ΦBathtub is the one already provided in
Section 4.2. Furthermore, we have to generate clock synchroniza-
tion and clock emptiness properties (formula ϕ) from the program.
Among these properties, let us focus on the following:
1. pump and faucet have disjoint clocks: ¬(f̂aucet ∧ p̂ump)
2. The water cannot overflow and be scarce at the same time:
¬
(
s̃carce ∧ ˜overflow ∧ ŝcarce ∧ ̂overflow

)
3. alarm and level have the same clock: âlarm ⇔ l̂evel

In the third step, we encode the formula ΦBathtub∧¬ϕ, where ϕ
denotes the property to be checked. For instance, to check whether
or not the signals alarm and level are synchronous, we use
ϕ = âlarm ⇔ l̂evel. With the Yices SMT-solver, we get
unsat, which means that ΦBathtub |= ϕ. Thanks to Proposition 1,
the property ϕ is satisfied by Bathtub. Here, the previous three
formulas are proven.

In the fourth step, the program Bathtub is composed with
programs that belong to the set of concretisations ofϕ. For property
“the water cannot overflow and be scarce at the same time”, a
possible concretisation is the program:

true when scarce when overflow^=^0.

Finally, we obtain the process in FIG. 7.

--
01:process Bathtub_Bis =
02:(?
03: ! integer level; boolean alarm, ghost_alarm;)
04:(|(| level := zlevel + faucet - pump

...
13: | ghost_alarm := (true when scarce when overflow)
13b: default false |)
14: |(| true when scarce when overflow ^= ^0 |) |)
15: where
16: integer zlevel,zfaucet,zpump,faucet,pump;
17: boolean overflow,scarce;
18:end;
--

Figure 7. Bathtub model composed with one clock constraint.

In step 5, the compiler can now exploit the proven properties
for an enhanced clock calculus and code generation. For the pro-
gram of FIG. 7, the compiler is able to infer that the value of the
ghost_alarm signal is always equal to false, as illustrated in
FIG. 8. This is represented at lines 08 and 09.

01:(| CLK_level := ^level
02: | CLK_level ^= alarm ^= zlevel^= faucet^= pump
02b: ^= overflow ^= scarce
03: | CLK_zfaucet ^= when (zlevel<=4)
04: | CLK_zpump ^= when (zlevel>=7)
05: | (| CLK_level ^= CLK_zpump
06: | CLK_level ^= CLK_zfaucet
07: |)%**WARNING: Clocks constraints%
08: | (| CLK_ghost_alarm ^= ghost_alarm
09: | (| ghost_alarm := not CLK_ghost_alarm |)
10: |) ... |)

Figure 8. A sketch of the clock calculus for Bathtub Bis.

A. Gamatié and Gonnord , accepted to ACM Languages, Compilers, Tools and Theory for
embedded Systems (LCTES 2011, Chicago) ---------------------- ©2011 ACM

t4

{
pump′ = zpump+ 1,

faucet′ = faucet

t3

{
pump′ = zpump,

faucet′ = zfaucet+ 1

t2

{
pump′ = zpump,

faucet′ = faucet

t1

level′ = zlevel + faucet− pump,

zlevel′ = level, zfaucet′ = faucet,

zpump′ = pump

t0

zlevel′ = 1, level′ = 1,

zfaucet′ = 0, faucet′ = 1,

zpump′ = 0, pump′ = 0

init

A

t0

B

C

U

V

W

t1

4 ≤ zlevel ≤ 7 → t3

zlevel ≥ 7 → t4

zlevel ≤ 4 → t2
t1

→ t3

4 ≤ zlevel ≥ 7zlevel ≤ 4 → t2
zlevel ≥ 7 → t4

t1

→ t4

zlevel ≥ 7

zlevel ≤ 4 → t2

4 ≤ zlevel ≤ 7 → t3

Figure 6. Bathtub integer kernel, after compilation.

Nevertheless, there still exist some unsolved clock constraints
in FIG. 8. Returning to step 4, we compose the Bathtub process
with all the proven clock properties concretised by the following
programs:
• faucet ^* pump ^= ^0

• true when scarce when overflow ^= ^0

• alarm ^= level

Then, we obtain the process Bathtub_Ter shown in FIG. 9.
The result of its analysis performed by the compiler is in FIG. 10.

01:process Bathtub_Ter =
02:(?
03: ! integer level; boolean alarm, ghost_alarm;)
04:(|(| level := zlevel + faucet - pump

...
13: | ghost_alarm := (true when scarce when overflow)
13b: default false |)
14: |(| true when scarce when overflow ^= ^0
15: | faucet ^* pump ^= ^0
16: | alarm ^= level |) |)
17: where
18: integer zlevel,zfaucet,zpump,faucet,pump;
19 boolean overflow,scarce;
20:end;

Figure 9. Bathtub model composed with all clock constraints.

01: (| CLK_ghost_alarm := ^ghost_alarm
02: | CLK_ghost_alarm ^= ghost_alarm
03: | (| ghost_alarm := not CLK_ghost_alarm |)
04: |);%^0 ^= level ^= alarm
04b ^= zlevel ^= zfaucet ^= zpump
05: ***WARNING: null clock signals%

Figure 10. A sketch of the clock calculus for Bathtub Ter.

The whole set of constraints inferred by the compiler is now
restricted to the only fact that the ghost_alarm signal is always
equal to false. The compiler has also detected that the clocks of
the other signals are all empty (line 04/04b in FIG. 10). Finally,
the corresponding generated code is provided in FIG. 11, where the
dead code is avoided.

--
01: { ghost_alarm = FALSE;
02: /* produce output value
03: for the signal ghost_alarm */ } ...
--

Figure 11. A sketch of the C code for Bathtub Ter.

5.3 Application 2: control structure optimization
Our abstraction is also usable for optimizing the control structure
of of the code generated by the SIGNAL compiler. As discussed
in Section 3, the clock hierarchy resulting from the static analysis
of programs has a strong impact on the quality of the generated
code. Since clocks are considered as trigger events for different
actions described in a program, they are translated as conditional
statements in generated code, for instance in C.

Given two clocks clk 1 and clk 2 such that clk 2 is a sub-
clock of clk 1, the corresponding code is sketched in FIG. 12: the
conditional statement corresponding to clk 2 is embedded in that
associated with clk 1 to reflect the clock inclusion. By this way,
whenever the triggering condition of clk 1 is false, there is no need
to test the triggering condition of clk 2 because it is necessarily
false due to the clock inclusion. Avoiding such tests optimizes the
execution of generated code. Notice that a major advantage of the
multi-clock model addressed by SIGNAL is to avoid the systematic
trigger testing inherent to synchronized embedded systems with a
global clock. This reduces the computation overhead resulting from
the repeated wake up of computation nodes on the global clock tick
in order to check whether or not they are active.

clk_1

clk_2
clk_3

 if (clk_2)

 { ... };

 { ... };

 if (clk_3)

 { ...;

if (clk_1)

 if (clk_2 && clk_3)

 { if (clk_i)

 { ... };

 ...;

 }

 ...; }

clk_i

Figure 12. Clock hierarchy-based code generation.

A. Gamatié and Gonnord , accepted to ACM Languages, Compilers, Tools and Theory for
embedded Systems (LCTES 2011, Chicago) ---------------------- ©2011 ACM

Currently, when clocks are defined by numerical expressions,
the static analysis of the SIGNAL compiler fails to optimize the
control structure in the way discussed above. Let us consider the
program defined in FIG. 13, where two signals b1 and b2 of event
type, are defined according to the value of an integer signal i. The
event b1 occurs when the value of i is between -10 and 10, while
b2 occurs when i is between -5 and 5. One can straightforwardly
deduce that the clock of b2 is a subset of the clock of b1.

--
01: process Inclusion =
02: (? integer i;
03: ! event b1, b2;)
04: (| b1 := when ((i<10) and (i>-10))
05: | b2 := when ((i<5) and (i>-5))
06: |);
--

Figure 13. Bathtub model composed with one clock constraint.

The clock hierarchy computed by the compiler is depicted in
FIG. 14. While the clocks of b1 and b2 appear to be sub-clocks of
that the clock of i, the clock hierarchy between b1 and b2 is not
reflected. This leads to a control structure in generated code where
the trigger testing related to b2 is always performed, even though
that of b1 is false while it is unnecessary.

����������

clk_i

clk_b1 clk_b2 if (clk_b2)

 { ... };

 { ... };

 }

 if (clk_b1)

 { ...;

if (clk_i)

Figure 14. Clock hierarchy for Inclusion process.

Actually the above situation can be avoided for an optimized
code by enabling a finer analysis (not with a Boolean abstraction
only) of the numerical expressions defining the clocks of b1 and
b2. This can be solved easily by considering our abstraction. The
formula to be proven (fourth step in the proposed flow) encodes the
clock inclusion of b1 and b2 (in SIGNAL, b1 ^* b2 ^= ^b2):(

b̂1 ⇔ (i > −10 ∧ i < 10)
) ∧(

b̂1 ⇔ (i > −5 ∧ i < 5)
) ∧(

(b̂1 ∧ b̂2) ⇔ b̂2
)

By verifying this formula, the clock hierarchy can be modified
in the compiler as shown in FIG. 15, from which an optimized code
is generated.

����������

clk_i

 if (clk_b1)

 { ...;

if (clk_i)

clk_b1

clk_b2

 { ...;

 if (clk_b2)

 { ... };

 }

 }

Figure 15. Optimized clock hierarchy for Inclusion process.

The previous examples (Applications 5.1 and 5.3 demonstrate
the relevance of our abstraction for analyzing clock properties
that combine both logical and numerical expressions. For in-
stance, checking the mutual exclusion between multiple compu-
tation nodes whose activation conditions consists of such clocks, is

useful to address sharing problems in a GALS system. In addition,
establishing that some nodes or events in a system never occur,
via empty clocks, can serve to guarantee that undesired behaviors
never happen, or conversely to detect that some expected behaviors
are never observed. Concerning the code generated automatically
by the SIGNAL compiler, the gain expected in terms of optimiza-
tions is also important. On the one hand, dead code elimination is
made possible thanks to information resulting from the analysis of
our abstraction. It is usually of high importance in compilers[11].
On the other hand, the control conditions of the code are better
organized thanks to their evaluation in the abstraction. As a result,
optimized control structures can be derived, as it is done in [14] by
identifying regions in a control flow graph.

6. Related work
In [16, 17], an interval-based data structure referred to as interval-
decision diagram (IDD) is considered for the analysis of numeri-
cal properties in SIGNAL programs. While the main idea is similar
to that of this paper, the choice of SMT solvers appears however
more judicious. First, in IDDs, intervals are only defined on inte-
gers. As a result, to deal with other numerical types such as reals,
IDDs require a prior encoding into integers. With SMT solvers, a
wide range of arithmetic theories are made possible, which allows
a more expressive analysis without much effort compared to IDDs.
Second, from a practical point of view, the integration of IDDs in
the SIGNAL compiler is more difficult since it requires a very care-
ful coupling with the other data structures used during the static
analysis. One important question is how to make efficient and cost-
less the management of binary decision diagrams (BDDs), which
are part of IDDs and are already present in the compiler. In this
paper, we rather consider a non intrusive solution that consists in
deducing additional information from an initial program specifica-
tion with SMT solvers. This therefore enables the compiler to have
an explicit and rich set of constraints for a better program analysis
and code analysis by using its current clock calculus technique.

Another tentative of combining numerical and Boolean tech-
niques has been done for LUSTRE verification. In [23], the tech-
nique used is a dynamic partitioning of the control flow obtained
by LUSTRE compilation (which contains a few number of control
points) with respect to some constraints coming from the proof
goal. Conversely, our approach is not dependent on a proof goal,
and the Boolean variables are not hidden in the control (except for
the step 1). In addition, LUSTRE compilation [21] suffers from the
same lack of precision concerning numerical variables. Indeed, no
numerical analysis is done during compilation. Hence, our method
could be considered for improvement.

In [19], SMT is used to verify safety properties on LUSTRE pro-
grams. The authors consider a specific form of LUSTRE language
and propose a modeling in a typed first order logic with uninter-
preted function symbols and built-in integers and rationals. While
this work also aims at benefiting from SMT solving in synchronous
programming, it misses all useful clock analysis achieved by the
SIGNAL compiler in our case. Such an analysis includes suitable
heuristics to address multi-clocked specifications. Neither an SMT
solver nor the LUSTRE compiler makes this analysis possible.

An important work is the polyhedral-based static analysis for
synchronous languages of [6]. The authors give a technique based
on fix-point iteration on a lattice combining Boolean and affine con-
straints. Our technique is less precise because it only uses interval
approximation. However, the complexity in our case is lesser and
the implementation is much simpler.

Finally, a relevant study presented in [29], concerns the defini-
tion of a clock language CL aiming to capture the static control part
of SIGNAL programs. The author also considers SAT decision pro-
cedures to prove clock properties. However, statements involving

A. Gamatié and Gonnord , accepted to ACM Languages, Compilers, Tools and Theory for
embedded Systems (LCTES 2011, Chicago) ---------------------- ©2011 ACM

the delay construct are not taken into account in this study. This
reduces the scope of the proposed analysis. Our proposition covers
all SIGNAL programs and offers more expressivity than CL.

7. Conclusion
In this paper, we presented a combination of the synchronous ap-
proach with SMT solving for a powerful static analysis of embed-
ded system specifications. We considered the SIGNAL language for
behavior description. The analysis achieved by its compiler, which
is based on Boolean abstraction, has been extended in our approach
by defining a more expressive mixed Boolean-interval abstraction.
This makes it possible to suitably address both numerical and logi-
cal properties specified via abstract clock relations and data depen-
dencies. Clocks play a central role in SIGNAL: they fundamentally
express the control in programs and typical properties of embed-
ded systems, such as reactivity or determinism, are dealt with by
analyzing clock relations. In addition, their related properties are
extensively exploited by the SIGNAL compiler for optimizing the
automatic code generation process. We showed, in a pragmatic way,
how the new abstraction combined with SMT solving and interval
abstract interpretation techniques infers useful information, which
strongly help the compiler to solve more clock constraints and gen-
erate higher quality code, e.g., by avoiding dead code. A prototype
tool-chain has been proposed for this purpose.

Among the perspectives to this work, we mention the enhance-
ment of the current prototype tool-chain by making it fully auto-
matic. This will be validated on more case studies. We will investi-
gate the automatic generation of the proof goals, as this step needs
for the moment the developer expertise.

Acknowledgments
The authors wish to thank the anonymous referees for their useful
comments on this paper. They also would like to thank Jan Reineke
for his valuable suggestions to improve the contents of this paper.

References
[1] G. Alefeld and J. Hertzberger. Introduction to Interval Computation.

Academic Press, NY, 1983.
[2] T. Amagbegnon, L. Besnard, and P. Le Guernic. Arborescent

canonical form of Boolean expressions. Technical Report 2290,
INRIA, June 1994. URL www.inria.fr/rrrt/rr-2290.html.

[3] C. Barrett, S. Ranise, A. Stump, and C. Tinelli. The Satisfiability
Modulo Theories Library (SMT-LIB). www.SMT-LIB.org, 2008.

[4] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic,
and R. de Simone. The synchronous languages twelve years later. In
Special issue on Embedded Systems, IEEE, 2003.

[5] G. Berry. The foundations of ESTEREL. In Proof, Language and
Interaction: Essays in Honour of Robin Milner. MIT Press, 2000.

[6] F. Besson, T. Jensen, and J.-P. Talpin. Polyhedral analysis for
synchronous languages. In Proceedings of the 6th International
Symposium on Static Analysis, volume 1694 of Lecture Notes in
Computer Science, pages 51–68. Springer-Verlag, September 1999.

[7] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook
of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and
Applications. IOS Press, Amsterdam, The Netherlands, 2009.

[8] R. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE transactions on computers, C-35(8):677–691, August 1986.

[9] D. Chapiro. Globally Asynchronous Locally Synchronous Systems.
PhD thesis, Stanford University, 1984.

[10] P. Cousot and R. Cousot. Static determination of dynamic properties
of programs. In Proceedings of the Second International Symposium
on Programming, pages 106–130. Dunod, Paris, France, 1976.

[11] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently computing static single assignment form and the control

dependence graph. ACM Trans. Program. Lang. Syst., 13:451–490,
October 1991. ISSN 0164-0925.

[12] L. de Moura and N. Bjorner. Satisfiability Modulo Theories: An
Appetizer. In Brazilian Symposium on Formal Methods (SBMF’2009),
Gramado, Brazil, August 2009.

[13] B. Dutertre and L. de Moura. Yices sat-solver. http://yices.csl.
sri.com/, 2009.

[14] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization. ACM Trans. Program.
Lang. Syst., 9:319–349, July 1987. ISSN 0164-0925.

[15] A. Gamatié. Designing Embedded Systems with the SIGNAL
Programming Language: Synchronous, Reactive Specification.
Springer, New York, 2009. ISBN 978-1-4419-0940-4.

[16] A. Gamatié, T. Gautier, and P. Le Guernic. Towards static analysis
of SIGNAL programs using interval techniques. In Synchronous
Languages, Applications, and Programming (SLAP’06), March 2006.

[17] A. Gamatié, T. Gautier, and L. Besnard. An Interval-Based Solution
for Static Analysis in the SIGNAL Language. In 15th IEEE
Conference and Workshop on Engineering of Computer Based Systems
(ECBS’2008), Belfast, Northern Ireland, pages 182–190, April 2008.

[18] L. Gonnord and N. Halbwachs. Abstract acceleration to improve
precision of linear relation analysis. Research report, Verimag,
03 2010. URL http://laure.gonnord.org/pro/papers/
rr-verimag10.pdf.

[19] G. Hagen and C. Tinelli. Scaling up the formal verification of LUSTRE
programs with smt-based techniques. In FMCAD ’08: Proceedings of
the 2008 International Conference on Formal Methods in Computer-
Aided Design, pages 1–9, Piscataway, NJ, USA, 2008. IEEE Press.
ISBN 978-1-4244-2735-2.

[20] N. Halbwachs. A synchronous language at work: the story of LUSTRE.
In 3th ACM-IEEE International Conference on Formal Methods and
Models for Codesign (MEMOCODE’05), Verona, Italy, july 2005.

[21] N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying
real-time systems by means of the synchronous data-flow program-
ming language LUSTRE. IEEE Transactions on Software Engineering,
18(9):785–793, September 1992.

[22] N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-time
systems using linear relation analysis. Formal Methods in System
Design: An International Journal, 11(2):157–185, August 1997.

[23] B. Jeannet. Dynamic partitioning in linear relation analysis.
application to the verification of reactive systems. Formal Methods in
System Design, 23(1):5–37, July 2003.

[24] G. Lalire, M. Argoud, and B. Jeannet. Interproc : an interprocedural
analyzer for imparative languages. http://pop-art.inrialpes.
fr/people/bjeannet/bjeannet-forge/interproc, 2009.

[25] P. Le Guernic and T. Gautier. Advanced Topics in Data-Flow
Computing, chapter Data-Flow to von Neumann: the SIGNAL
approach, pages 413–438. Prentice-Hall, J.-L. Gaudiot and L. Bic
eds., 1991.

[26] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann. Polychrony for System
Design. Journal for Circuits, Systems and Computers, 12(3):261–304,
April 2003.

[27] G. Magklis, G. Semeraro, D. Albonesi, S. Dropsho, S. Dwarkadas,
and M. Scott. Dynamic frequency and voltage scaling for a multiple-
clock-domain microprocessor. Micro, IEEE, 23(6):62 – 68, November
2003. ISSN 0272-1732. doi: 10.1109/MM.2003.1261388.

[28] J. Muttersbach, T. Villiger, and W. Fichtner. Practical design of
globally asychronous locally synchronous systems. In International
Symposium on Advanced Research in Asynchronous Circuits and
Systems (ASYNC’00), pages 52–61, 2000.

[29] M. Nebut. Specification and analysis of synchronous reactions.
Formal Aspects of Computing, 16(3):263–291, august 2004.

[30] A. Stump and M. Deters. The SMT-COMP 2009 Website, 2009.
http://www.smtcomp.org/2009.

