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Abstract

The goal of this paper is to translate (fragments of) the quantified discrete duration
calculus QDDC, proposed by P. Pandya, into symbolic acceptors with counters. Ac-
ceptors are written in the synchronous programming language Lustre, in order to
allow available symbolic verification tools (model-checkers, abstract interpreters) to
be applied to properties expressed in QDDC. We show that important constructs of
QDDC need non-deterministic acceptors, in order to be translated with a bounded
number of counters, and an expressive fragment of the logic is identified and trans-
lated. Then, we consider a more restricted fragment, which only needs deterministic
acceptors.
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1 Introduction

The classical way for showing the decidability of a temporal logic
(e.g.,[VW86,BVW94]) is to associate with each formula of the logic a finite
automaton which accepts exactly the models of the formula. This approach
allows also the study of the theoretical complexity of the decision problem.
Moreover, the resulting automata can be used for model-checking programs:
in order to verify that a program satisfies a formula, one can show the empti-
ness of the language recognized by the synchronous product of the program
(considered as a finite transition system) with the acceptor of the negation of
the formula (used as a property checker).
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Now, for practical program verification, this classical approach should be
revisited.

First, decision procedures are not always interesting, in practice. On one
hand, their complexity is generally prohibitive, and on the other hand, exact
verification is generally not achievable: programs are not finite state or are
too complex, so they must be abstracted [GL93,CGL94], and their verification
is therefore only conservative (i.e., negative results are inconclusive). This
means that there is no special reason to limit oneself to logics with finite state
acceptors: if we have tools for exact or conservative verification of infinite state
systems (e.g., [CH78], [JHR99], . . . ) they can be applied to the composition
of infinite state programs with infinite state property checkers.

Moreover, usual methods translate formulas into explicit automata. While
the size of these automata is generally not a problem — since simple formulas
produce small automata — it can be useful to get them encoded as symbolic
automata, i.e., transition relations or functions over state variables with initial
values. On one hand, such a symbolic encoding is more convenient if symbolic
model-checking techniques [CBM89,BCM+90] are applied. On the other hand,
the extension to infinite state automata is straightforward, just by considering
infinite domains for the state variables. A typical example is provided by many
versions of the duration calculus, where the formulas involving durations give
rise to bounded counters in the acceptors; the possible values of these counters
are enumerated in the explicit automata, while they could stay symbolic and
be naturally extended to unbounded counters.

The main purpose of this paper is to illustrate the idea of recognizing
models of formulas by symbolic automata, extending the expressive power
by considering infinite state acceptors, and using the results for conservative
verification by means of abstract interpretation [CC77,CH78]. We consider the
“Quantified Discrete Duration Calculus” QDDC introduced by P. Pandya 5

in [Pan01,Pan02,CP03].

We restrict ourselves to safety properties, which are those that can be ver-
ified by examining (an upper-approximation of) the reachable states. We first
notice that any formulas of QDDC cannot be recognized by a deterministic
symbolic automaton with a finite number of counters. We solve this prob-
lem by using non-deterministic acceptors, considered as ∀-automata [MP87],
which can still be used by verification tools: the targeted verification tools
proceed by showing that refusing states are not reachable. When the veri-
fication is only conservative, it is the only meaningful result we can obtain
(since the verdict is inconclusive otherwise). As a consequence, a sequence
is considered as accepted if it is accepted by all runs of the automaton on
it (it is the acceptance criterion of ∀-automata). With this idea in mind, we
identify a significant fragment of QDDC which can be easily translated into
symbolic acceptors.

5 see also www.tcs.tifr.res.in/~pandya/dcvalid.html.
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Non-deterministic acceptors are convenient for verification, but cannot be
used in other contexts, like property simulation and program testing. This
is why we examine also a more restricted fragment of the logic which can be
recognized by deterministic acceptors.

The paper is organized as follows: in Section 2 we recall the syntax and
semantics of QDDC. In Section 3 we define the symbolic acceptors we con-
sider, which will be described in the language Lustre [HCRP91], and we give
(Section 4) the intuition of the translation we have in mind. Sections 5 and
6 describe respectively the non-deterministic fragment and the deterministic
one, together with the translation into symbolic acceptors and some examples.

2 The logic QDDC

The “Quantified Discrete Duration Calculus” was proposed by P. Pandya in
[Pan01,Pan02,CP03]. Let use briefly recall its syntax and semantics:

Syntax:

Let Prop(3 p) be a finite set of propositional symbols. The set of propo-
sitional formulas is classically defined by

P ::= 0 | 1 | p | ¬P | P ∧ P | P ∨ P

Formulas of QDDC are inductively defined by:

D ::= dP e0 | ddP e | η op c | ΣP op c | D1 ∧D2 | ¬D | ∃p D | D1
_D2

where op ∈ {≤, <, =, >,≥} and c ∈ IN.

Semantics:

Models of propositions are states, i.e., functions from propositional symbols
to {true, false}. The meaning of propositions is standard. Models of formulas
are finite sequences of states (σ = σ0σ1 . . . σn). The meaning of a formula is
first defined on intervals of such sequences: an interval σ[b, e] = σbσb+1 . . . σe

is defined by a pair (b, e) of indices, such that 0 ≤ b ≤ e ≤ n:

σ[b, e] |= dP e0 iff b = e and σb |= P
σ[b, e] |= ddP e iff b < e and ∀i, b ≤ i < e, σi |= P
σ[b, e] |= η op c iff (e− b) op c
σ[b, e] |= ΣP op c iff Card{i | b ≤ i < e, σi |= P} op c
σ[b, e] |= ∃p D iff ∃σ′, σ′[b, e] |=D, and ∀i,∀q 6=p, σi(q) = σ′i(q)
σ[b, e] |= D1

_D2 iff ∃i, b ≤ i ≤ e, σ[b, i] |= D1 and σ[i, e] |= D2

The semantics of D1∧D2 and of ¬D is as usual. An interval satisfies dP e0
if it is reduced to a state which satisfies P ; an interval satisfies ddP e if all of its
states (except the last one) satisfy P ; an interval satisfies η op c if its length
η satisfies the relation op with c; an interval satisfies ΣP op c if the number
of its states which satisfy P satisfies the specified relation; an interval σ[b, e]
satisfies ∃p D if each of its states σi can be changed into a state σ′i which differs
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only in the value of p, in such a way that σ′[b, e] satisfies D; finally, an interval
satisfies D1

_D2 if it can be split into two intervals (sharing a junction state)
respectively satisfying D1 and D2.

Finally, a finite sequence σ = σ0σ1 . . . σn satisfies a formula D (noted
σ |= D) if and only if σ[0, n] |= D.

Derived operators:

As usual, some useful derived operators are proposed:

• Usual Boolean operators: true, false ∨, ⇒, ⇔,. . .

• ddP ee def≡ ddP e_dP e0 (right closure of the interval)

• 3D
def≡ true_D_true (eventually D)

• 2D
def≡ ¬3¬D (always D)

• P1
c→ P2

def≡ ¬3 ((ddP1ee ∧ η ≥ c)_[¬P2]
0) (whenever P1 has been continu-

ously true during c steps, P2 is true).

This logic was proven decidable in [Pan01]. Here, since we don’t bother
about decidability, we can also consider an extended version of the logic by
allowing:

• the constant c to be symbolic (parameter) in formulas like η op c, ΣP op c,
P1

c→ P2

• the propositions be extended by conditions on parameters (e.g., c1 ≥ c2).

3 Symbolic automata

Our goal is to define symbolic acceptors of formulas. Symbolic acceptors are
special cases of symbolic automata, that we define precisely now.

If V is a finite set of typed variables, let ValV be the set of valuations
of variables in V , i.e., the set of functions from variables to their respective
sets of values. Let S (state variables), I (input variables), and O (output
variables) be three disjoint sets of variables.

A symbolic automaton on S+I+O is given by an initial state sinit ∈ ValS ,
and two functions next : ValS × ValI 7→ ValS (transition function) and out :
ValS ×ValI 7→ ValO (output function). A run of the automaton is a sequence
(s0, i0, o0), (s1, i1, o1), . . . , (sn, in, on) of triples from ValS × ValI × ValO, such
that s0 = sinit and for each `, s`+1 = next(s`, i`), and o` = out(s`, i`). Notice
that we consider deterministic automata, in the sense that a run is completely
determined by the sequence of inputs i0, i1, . . . , in.

To emphasize the fact that states as well as transition and output functions
are given symbolically, we will describe these automata using the syntax of
Lustre [HCRP91]:

4



Gonnord, Halbwachs, Raymond

Each output variable, say x, will be described by an equation “x = exp”
where the expression “exp” is made of constants, input variables, usual arith-
metic, Boolean, conditional operators, and references to previous values of
variables (noted “pre(y)”). Since the previous value of a variable is unde-
fined at the very first step (initial state), expressions can be given an initial
value: “e0 -> e1” has initially the value of “e0”, and then the value of “e1”
forever. With respect to the model of symbolic automata defined above, previ-
ous variables are state variables and the first argument of each “->” operator
contributes to the definition of the initial state. Here are some examples of
definitions that we will use in the rest of the paper (other examples can be
found in the appendix):

• Let us define an output after p which is true if p is true or has been true in
the past:

after p = p or (false -> pre(after p))

• Now, we want the output nb q since p to be the number of times q has been
true since the last time p was true:

nb q since p = if p then (if q then 1 else 0)
else if after p then (pre(nb q since p)) + (if q then 1 else 0)
else 0

We will often use functional versions of these programs, thus writing
after(p) and nb since(q,p), in order to apply them to various arguments (this
is allowed by the notion of node in Lustre).

Now, a symbolic acceptor is a symbolic automaton with only one, Boolean,
output variable, say a. In general, input variables are Boolean, and represent
the values of atomic propositions. An acceptor of a formula D will be such
that (i0, i1, . . . , in) |= D if and only if the output sequence (a0, a1, . . . , an)
returned by the automaton in response to inputs (i0, i1, . . . , in), is such that
an = true.

4 Recognizing models of formulas with symbolic accep-
tors

In this section, we illustrate the kind of translation we want to perform, and
the way we intend to use it. With each formula we will associate an acceptor,
taking as inputs the values of the atomic propositions, possibly the numerical
parameters when the extended version of the logic is considered, and an ad-
ditional Boolean input, say b, which is true at the beginning of the interval of
interest. The output of the acceptor is true whenever the formula is satisfied
by the interval elapsed since the last step when b was true (by convention, it
is also true before the first occurrence of b). We first consider some examples
of such translations.
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4.1 Some examples

(i) Let us consider the formula ddpee. The acceptor output must be true before
the first occurrence of b, take the value of p whenever b is true, and remain
true as long as p is true:

a = not after(b) or (if b then p else (p and pre(a)))

(ii) The formula D = p
c→ q states that q is true whenever p has been

true during c steps. Intuitively, an acceptor of this formula should manage a
counter (an integer state variable), say x, which is set to 0 when p is false,
incremented whenever p is true, and reset when b is true (beginning of the
interval). Then the output becomes false when the counter is greater or equal
to c and q does not hold; it can only come back to true when a new interval
starts:

a = not after(b) or ((b or (true -> pre(a)) and (age p < c or q)));
age p = if p then (if b then 1 else (0 -> pre(age p)+1)) else 0;

An important remark is that, in this automaton, the counter is an integer
variable, and that the delay c can be symbolic. To expand it into an explicit
automaton would require the value of c to be fixed and known, and the counter
to be expanded into c explicit states. But if we use a verification tool dealing
with numbers, the automaton can remain symbolic, and we can even try to
prove properties parameterized by c.

(iii) Now, consider the formula 2((η > c) ⇒ (Σp ≥ d)) stating that p occurs
at least d times in any interval longer that c. We can use counters, like above,
to measure the length of an interval and count the number of occurrences of
p. The problem is that fresh counters should be created, at least after each
occurrence of p (since one can easily see that each step after an occurrence
of p can start a “worst case” interval for the formula), and these counters
should be managed until the counter of p’s occurrences reaches the value d.
As a consequence, the standard approach would need d pairs of counters, and
would not work if d is symbolic.

To solve this problem, for this kind of formulas, we will use non determin-
istic acceptors. Instead of using an unbounded number of counters, such an
acceptor freely chooses to start an observation (in the specific case above, this
choice could be restricted to the initial step and the steps after each occur-
rence of p, but this restriction is useless for verification). Now the semantics
is that the formula is satisfied if the acceptor accepts the input whatever be
its non deterministic choices (it can be seen as a ∀-automaton [MP87]).

4.2 Non deterministic acceptors

Our symbolic acceptors are deterministic, but we can use them as non-
deterministic acceptors by adding auxiliary inputs: the set I of inputs is

6



Gonnord, Halbwachs, Raymond

Prog

Acc
a

Acc
a

Prog

k

(b)(a)

Fig. 1. Using acceptors in program verification

split into J + K, where variables in J are classical inputs, while those in
K are additional Boolean inputs called “oracles”. Now, an input sequence
(j0, j1, . . . , jn) (j` ∈ ValJ ) will be accepted if and only if, for any sequence
(k0, k1, . . . , kn) (k` ∈ ValK), the output sequence (a0, a1, . . . , an) returned by
the automaton in response to inputs ([j0, k0], [j1, k1], . . . , [jn, kn]), is such that
an = true.

Coming back to the previous example, an acceptor of the formula
2((η > c) ⇒ (Σp ≥ d)) is given by the following code, where k is an oracle:

length = nb since(true, k);
nb p = nb since(p, k);
a = not after(b) or b or ((true -> pre(a)) and (length < c or nb p ≥ d));

Of course, in the finite state case, deterministic acceptors have the same
expressive power as non deterministic ones, but if we want to keep them sym-
bolic, non-deterministic automata cannot be determinized. As a consequence,
while deterministic acceptors can easily be complemented (simply by negating
their output), it is not the case of non-deterministic ones.

4.3 Use in verification

The verification tools we have in mind (e.g., those dedicated to Lustre pro-
grams: Lesar [RHR91] or NBac [JHR99]) are specialized for safety properties:
they consider the synchronous composition of the program and the acceptor
of the property (as in Fig. 1.a), and explore the reachable states set (or an
upper approximation of this reachable set) of this composition to show that
bad states cannot be reached. In other words, they try to show that, whatever
be the inputs, the output is always true.

In this framework, non deterministic acceptors can easily be used: oracles
are just additional free inputs (Fig. 1.b), and the verification tools will work
as before as long as oracles are universally quantified.

Example: Let us consider the following QDDC formula, which is obviously

a tautology:
(
p

c→ q ∧ d ≥ c
)
⇒ (p

d→ q)

A way of proving this property is to submit the following acceptor — where
we use the acceptor of p

c→ q given in Section 4.1, and where the oracle b,
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represents the beginning of an interval of interest — to a verification tool
(here, there is no program to verify), with the goal of showing that the output
is always true:

a1 = not after(b) or ((b or (true -> pre(a1)) and (age p < c or q)));
a2 = not after(b) or ((b or (true -> pre(a2)) and (age p < d or q)));
age p = if p then (if b then 1 else (0 -> pre(age p)+1)) else 0;
a = not(a1 and d≥c) or a2;

As a matter of fact, both Lesar and NBac prove it quite instantly, in spite
of the fact that the property is parameterized by c and d. (end of example)

5 A fragment recognizable by non-deterministic accep-
tors

In this section, we present a fragment of QDDC for which we can build non
deterministic acceptors, and use these acceptors in program verification as
shown in the previous section. A said before, oracles can only be universally
quantified. Now, in QDDC, there are two constructs which would need exis-
tentially quantified oracles, namely ∃p D and D1

_D2. As a consequence, the
fragment will be restricted to negations of formulas containing such constructs.

5.1 Syntax

The propositions are as before: P ::= 0 | 1 | p | ¬P | P ∧ P | P ∨ P
Then we need a first intermediate class of formulas, which can be comple-
mented without raising translation problems:

N ::= dP e0 | ddP e | η op c | ΣP op c | ¬N

with op ∈ {≤, <, =, >,≥} and c being an integer constant or a parameter.
As second class of formulas will give rise to existentially quantified oracles:

E ::= N | E1 ∨ E2 | E1 ∧ E2 | ∃p E | E1
_E2

Finally, the properties are: C ::= ¬E

5.2 Translation into non-deterministic acceptors

Our goal is to associate with each formula C an acceptor AC , which will take
as inputs I the sequences J of values of the propositional formulas, a Boolean
b indicating the beginning of the interval of interest, and a set of oracles K.
The output is considered as a function a = AC(b,J ,K). It is important to
assume that the acceptor is triggered only once, since it is not reentrant. So
the oracles used to start formulas will be transformed into starters: a starter
is a Boolean which is true only once.
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Propositions:
We first define (in the opposing ta-

ble) the acceptors AP for proposi-
tions, which return true at step ` if
the proposition is true at step `.

P AP (I)
p p
¬P ′ not AP ′(I)

P1 ∧ P2 AP1(I) and AP2(I)
P1 ∨ P2 AP1(I) or AP2(I)

Formulas N :

We first introduce some useful operators (they are all given in the appendix):

• always since(P,Q) returns true if P has been always true since the last oc-
currence of Q;

• nb since(P,Q) returns the number of occurrences of P since the last occur-
rence of Q;

• strict after(P) returns true if P has been true in the strict past.

• starter(b) transforms an oracle b into a starter:
starter(b) = b and not strict after(b).

Then the acceptor AN is defined inductively by the following table:

N AN(b, I)
dP e0 AP (I) and b
ddP e strict after(b) and pre(always since(AP (I),b))
η op c nb since(true,b) op c

ΣP op c nb since(AP (I),b) op c
¬N ′ not AN ′(b, I)

Formulas E :

Acceptors of formulas E distinguish between real inputs (J ) and oracles (K).

AN(b,J ,K) = AN(b,J ∪ K)
AE1∨E2(b,J ,K) = AE1(b,J ,K) ∨ AE2(b,J ,K)
AE1∧E2(b,J ,K) = AE1(b,J ,K) ∧ AE2(b,J ,K)
A∃p E(b,J ,K ] {p}) = AE(b,J ] {p},K)
AE1

_E2
(b,J ,K ] {b′}) = AE2(starter(b

′) ∧ AE1(b,J ,K),J ] {b′},K)

Formulas C :

Finally, the acceptor of a formula C = ¬E is just: not AE(b,J ,K).

Top-level acceptance:

Recall that the satisfaction of a QDDC formula by a sequence
σ = σ0σ1 . . . σn is defined by σ |= D iff σ[0, n] |= D
So, the top-level acceptor of a formula C is AC(true -> false,J ,K), since the
“starter” true -> false is true only at the first step.

In [DG03], this translation is proven correct, i.e.:
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σ |= D, |σ| = n ⇔ ∀K̃,AD (̃b, J̃ , K̃) = truen, where

• b̃ = true.(false)n−1, the flow being true only at the initial instant;

• J̃ are the values imposed by σ to the variables of the set J .

5.3 Examples

Let us first consider the formula ¬(ddpe_ddqe). From our rules, we get

• Addpe_ddqe(b, p, q, b
′) = Addqe(starter(b

′) ∧ Addpe(b, p, q), p, q, b
′)

• Addpe(b, p, q) = strict after(b) and pre(always since(p,b))

• Addqe(b
′′, p, q, b′) = strict after(b”) and pre(always since(q,b”))

(with b′′ = starter(b′) ∧ Addpe(b, p, q))

So (introducing “local variables” e and b” for clarity) we can translate the
formula into

a = not e;
e = strict after(b”) and pre(always since(q,b”));
b”= starter(b’) and strict after(b) and pre(always since(p,b));

As an other example, we have already considered the formula 2((η > c) ⇒
(Σp ≥ d)) motivating the introduction of non-deterministic acceptors. Trans-
lated into basic QDDC, this formula becomes

¬(true_(η > c ∧ Σp < d)_true)

and falls into our fragment. Its translation (after simplification) gives

a = not e;
e = starter(b’) and nb since(true,starter(b)) > c and

nb since(p,starter(b)) < d;

where b’ is an oracle used to start the counters nb since.

Finally, the whole example of “mine pump” given in [Pan01] falls into our
fragment, showing that this fragment is of practical interest.

6 A deterministic fragment

An recognized advantage of expressing safety properties by means of acceptors
written in a programming language (like Lustre), is that these acceptors can
be executed: they can be tested with various input sequences to check that
they express well the initial intuition; they can also be run with the program,
for testing or “runtime verification” [HR02] purposes. Now, this is not the case
of our non-deterministic acceptors, which can only be used in connection with
a verification tool. This is why it is also interesting to look for a fragment of
the logic that be translated into deterministic acceptors. This is the purpose
of this section.
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First, we have to come back to the sources of non-determinism in QDDC.
If we forget about the construct ∃pD (which is completely non deterministic),
we are left with the “chop” construct, whose non-determinism comes from
the arbitrary split of the considered interval. Now, in real specification, it
appears that the “chop” is very often used deterministically: for instance
in ddP e_dQe0, the interval is split into itself and its last state. The basic
idea of our deterministic fragment is to replace the “chop” by a deterministic
restriction, called “then”, where D1 then D2 means that the interval consists
of a maximal interval satisfying D1 followed by an interval satisfying D2. Now,
the notion of maximal interval can only be handled for some kind of formulas
for D1: we will restrict ourselves to formulas which can only change from true
to false when the interval increases. We first define these formulas, noted G.

6.1 Syntax and semantics

Propositions P are as before.

The fragment G:

As announced, formulas G can only become false when the time passes:

G ::= begin(P ) | ddP e | η ≤ c | ΣP ≤ c | age(P ) ≤ c | G1 ∧G2 | G1 ∨G2

The only new constructs are begin(P ) — which tells that the first state
of the interval satisfies P — and age(P ) ≤ c — telling that P has been
continuously true for less than c steps:

σ[b, e] |= begin(P ) iff σb |= P
σ[b, e] |= age(P ) ≤ c iff e−m ≤ c

where m =

{
max{i | b ≤ i ≤ e, σi |= ¬P} if ¬P occurred in [b, e]
b− 1 otherwise

The full fragment:

The formulas of our deterministic fragment are called F :

F ::= G | end(P ) | G then F | F1 ∧ F2 | ¬F

The new operators are defined as follows:

σ[b, e] |= end(P ) iff σe |= P
σ[b, e] |= G then F iff ∃m, b ≤ m < e, σ[b, m] |= G, σ[b, m + 1] 6|= G,

σ[m + 1, e] |= F

6.2 Translation into deterministic acceptors

The acceptors AP of propositions are as before. For formulas G, we only
define the acceptors for begin(P ) and age(P ) ≤ c, the other cases are as
before:
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Abegin(P )
(b, I) = after(b and AP (I))

Aage(P )≤c(b, I) = age(AP (I),b) ≤ c

where age(p,b) stands for:

age p b = if after(b) and p then (0 ->pre(age p b)) +1
else 0

The acceptor of a formula F is
inductively defined by the op-
posing table, where “first(b,p)”
stands for “after(b) and p and
pre(always since(not p, b))” and is
true at the first occurrence of p
following b.

F AF (b, I)
end(P ) after(b) and AP (I)

G then F AF (first(not AG(b, I), I))
F1 ∧ F2 AF1(b, I) and AF2(b, I)
F1 ∨ F2 AF1(b, I) or AF2(b, I)
¬F not AF (b, I)

6.3 Examples

Let us show some examples of formulas using the “chop” operator, and which
fall into the deterministic fragment:

• ddP e_dQe0 is equivalent to ddP e ∧ end(Q)

• p
c→ q can be rewritten into 2(( age(p) ≤ c)∨q), meaning that the formula is

satisfied if and only the acceptor “age(p, true->false)≤c or q” always returns
true.

7 Conclusion

This work does not intend to be a theoretical one. Of course, as soon as we
consider automata extended with unbounded counters, the expressive power is
maximal, and we can encode any kind of properties involving infinite memory.
However, such an encoding is of little practical interest.

We wanted to connect the way synchronous programs are often specified
by means of synchronous observers, with formalisms better known in the TCS
community. This is why we chose to translate a logic belonging to a wide com-
munity (the duration calculus family [CHR91]), or at least useful fragments
of it, into our observers.

Our initial inspiration was [Ray96], which is a very efficient translation of
rational expressions into Lustre acceptors. It appeared soon that the same
technique cannot be applied to automata with counters: the linear cost of
the translation performed in [Ray96] was obtained thanks to reentrant ac-
ceptors (the same component of the acceptor can be activated several times
while running). This is not possible for extended automata. This is why the
present work diverges significantly from [Ray96], particularly because we had
to consider non-deterministic automata with oracles.

We wanted also to defend the idea that, in practice, there is no need to
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restrict oneself to decidable logics, nor to finite state acceptors. Abstraction
and approximation are routinely used to deal with programs, and there is no
reason not to apply them also to properties. In particular, automata extended
with counters are extremely powerful and useful, and more and more tech-
niques are proposed to handle them (e.g., [BW94], [CJ98], [JHR99], [FS00],
. . . ).

Acknowledgements: We are indebted to Paritosh Pandya, for having initiated
this work, and for many helpful discussions.
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Appendix: Usual temporal operators in Lustre

after(p)
returns true after or at the first oc-
currence of p

after(p) =
if p then true
else (false -> pre(after(p)));

strict after(p)
returns true strictly after the first oc-
currence of p

strict after(p) =
if (false ->pre(p)) then true
else (false -> pre(strict after(p)));

starter(b)
transforms b into a single occurence
starter

starter(b) =
b and not strict after(b)

first(p,b)
returns true at the first occurrence of
p following an occurrence of b

first(p,b)= p and never p;
never p =

if b then true
else if (false -> pre(p))then false
else (false -> pre(never p))

always since(p,b)
returns true if p has been continu-
oulsy true since the last occurrence
of b; returns also true before the first
occurrence of b

always since(p,b) =
if b then p
else if after(b) then

(p and pre(always since(p,b)))
else true

nb since(p,b)
counts the number of occurrences of
p since the last occurrence of b; re-
turns 0 before the first occurrence of
b

nb since(p,b) =
if b then (if p then 1 else 0)
else if after(b) then

(pre(nb since(p,b))) +
if p then 1 else 0

else 0

age(p,b)
counts the time elapsed since the lat-
est of the occurrence of b (assumed
to be unique) and the last occurrence
of not p

age(p,b) = if after(b) and p then
(0 ->pre(age(p,b))) + 1

else 0
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