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General context

The rise of embedded systems and high performance computers generated new problems in high-level code
optimization, especially those around loops : optimization of embedded applications and program transformations
for high-level synthesis (HLS). Moreover, everything involving data storage is of prime importance as it impacts po-
wer consumption, performance, and for hardware, chip area. Thus, there is an increasing need for better scheduling
techniques for all kinds of programs, especially those manipulating a huge amount of data.

So far, the polyhedral model [3], a framework introduced in the late eighties, has been successfully applied
to a range of these compilation problems, such as (semi-)automatic parallelization and code generation [2] or
data movement optimization [1]. However, this powerful model hits its limit as soon as we are faced with irregular
programs (general while loops, unpredictable conditions). As a consequence, these powerful techniques have, for
the moment, only seen their use in limited (but still important) niches, because of the intrinsic restrictions.

The long term objective is to give a general way to reason and manipulate programs with general control flow
and complex data structures.

Objectives of the internship

Benchmarking extraction

The first objective of the internship is to extract from actual programs some “kernels” for which computing a
scheduling is challenging. Apart from non-regular programs/kernels (general while loops), we want to extract and
characterize middle-sized kernels with code operating on :

— Trees (binary trees, general trees) : tree traversals, with or without cuts, like in deep learning or symbolic

computing programs ;

— Linked lists, maps. Maps are definitely under interest since they are an essential step toward sparse ma-

trices, which are a common object in scientific computing (numerical simulations).

In fact, as shown previously, for these kinds of data structures (or at least the former ones), it seems quite easy
to properly define a notion of dependence, in a quite compact way. However combining data structures and control
is challenging since the dependence graphs may quickly become infinite thus hard to formally manipulate.

The objective of this first task is to construct a benchmark suite of interesting programs to schedule/optimize.
We might also modify benchmarks from the polyhedral literature to operate on lists and/or trees instead of arrays.
This task will be performed from a basis already done during a previous internship.

A new language for code optimisation

Once we have a collection of benchmarks, the next step is to define a common abstraction of the kernels and
important properties (such as dependences) to reason about within the compiler. The original source program
contains a lot of implementation details and language specific “noise” that can complicate static analysis. This
abstraction can take a form of a language of its own, and hence we call them a mini-language. We envison this
language to incorporate high-level operators on complex data structures inspired by functional languages (e.g.,
inductively defined data structures, “a la ML”).
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This activity will consist of defining a clean “abstract” semantics for our language, in order to avoid specific
implementation matters, but also permit the expression of the intrinsic parallelism of both control and data struc-
tures. The challenging operations such as, dependence analysis, instruction scheduling, and code generation, will
have to be performed on this mini-language. We expect the candidate to have enough time to at least express the
activity of scheduling with respect to the semantics of the new language. Formally, we aim to express the notion
of dependence, like the “happens-before” relation of the polyhedral model. We expect the intern to work on the

following tasks :

— Define semantics for the mini-language.

— Develop a notion of dependence, e.g., the happens-before relation defined for various other languages.

— Develop a notion of schedule, i.e., a compact characterization of when dynamic operations in the programs

written in the mini-language should be executed.

— Code generation given a program and its schedule.

— Formulating the legal space of schedules given the program and its dependences.
Note that we do not expect the intern to complete all the items listed above during this internship. We are likely to
work on the items in the order listed above, which also matches the expected difficulty, and expect to have initial
results on expressing the schedules.

The candidate should be familiar with Abstract Interpretation and other formal methods such as SMT-solvers
and/or rewriting.

Remark : This internship proposal is the first step of a more general research project financed by the
National Agency of Research (ANR). Successful intern is likely to have opportunities to continue as a PhD
student for the same project.
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