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Abstract

The context of the proposal is the increasing need for methods and tools that are able to deal with the
massive parallelism now faced by the programmers. So far, methods and tools based on the polyhedral model
(a powerful representation for capturing the flow and the data of a program at the same time) suffer from their
lack of expressivity.

The objective of the proposal is to invent a way to reason about more general programs and data structures
(e.g., trees). We will explore adapting and extending the existing efficient scheduling techniques that have
been developed since the advent of the polyhedral model. The ambition is to develop a new framework with
new ideas that may come from other communities such as abstract interpretation, and rewriting systems.
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1 Context, objective of the proposition, positioning

1.1 Context

The rise of embedded systems and high performance computers generated new problems in high-level code
optimization, especially for loops, both for optimizing embedded applications and for transforming programs
for high-level synthesis (HLS). Moreover, everything involving data storage is of prime importance as it impacts
power consumption, performance, and for hardware, chip area. Thus, there is an increasing need for better
scheduling techniques for all kinds of programs, especially those manipulating a huge amount of data.

This general context puts this project at the intersection of the two axes that are “intensive computations
for numerical simulation” (axis 6) and “software science and technology” (axis 3) of the 7th challenge
“information and communication”.

So far, the polyhedral model [FL11], a framework introduced in the late eighties, has been successfully ap-
plied to a range of these compilation problems, such as (semi-)automatic parallelization and code generation
[Fea92a] or data movement optimization [DI15]. However, this powerful model hits its limit as soon as we are
faced with irregular programs (general while loops, unpredictable conditions). As a consequence, these pow-
erful techniques have, for the moment, only seen their use in limited (but still important) niches, because of
the intrinsic restrictions.

The long term objective is to give a general way to reason about and manipulate programs with general
control flow and complex data structures. The means we choose is to start with the current state of the poly-
hedral model. We are planning to enhance the framework theoretically and algorithmically in order to be able
to deal with more general programs. For the period of the current proposal, we are planning to investigate
general control flow and focus on specific data structures, such as trees.

The “instrument” (Jeune Chercheur) we choose for funding this project is particularly adapted since this
proposal is only the first step toward the long-term objective.

1.2 Summary of the scientific goals of the project

One key strength of the polyhedral model that has led to its success is its intermediate representation, where
control structures and data accesses are succinctly represented by polyhedra and affine mappings. When it
comes to analysis/transformation of irregular (non-affine) programs, several issues arise for the polyhedral
model:

• How to “abstract” a general program with the polyhedral representation? i.e., how to handle data, func-
tions, how conservative must the abstraction be?

• How do we schedule (find an execution order for the statements to be executed, and for the data to be
read/written) the obtained unified representation?

• How do we generate the program from this new unified representation and the new schedule?
As a specific objective of this project, we will explore how to handle complex control flow arising from vari-

ous data structures. Programs operating on data structures such as lists or trees often have regular control flow
which is not adequately captured by the polyhedral model. We call these programs with “hidden” regularities
covertly regular programs.

The ambition of the proposal is to develop a new framework based on the the polyhedral model and its
extensions for this class of programs. Moreover, we intend to preserve the main advantages of the polyhe-
dral model: a single mathematical object for representing both program and data, endowed with powerful
algorithmic techniques for reasoning about it.

We plan to incorporate new ideas coming from other domains of static analysis:
• From the abstract interpretation community: control flow, approximations, and also shape analysis:

abstract interpretation is one of the major techniques to approximate the behavior of programs.
• From the termination community: rewriting is one of the major techniques that are able to handle com-

plex data structures and also recursive programs.
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The main objective of this project is to design a general framework for reasoning about covertly regular
programs operating on complex data structures, in order to efficiently schedule and parallelize them.
For this purpose we shall use emerging ideas from three communities (compilation, static analysis, and
rewriting). We expect cross-fertilization of these topics.

1.3 Bibliography: related work

The topics of interest for our project are broad since we want to combine different techniques to enhance both
applicability and scalability of the polyhedral model. In this section we make a summary of the abundant
literature on polyhedral scheduling, the first attempts to extend its applicability, and also some previous work
of interest within the community of termination of rewriting systems. 1

The polyhedral model: a fundamental tool to reason about regular programs The polyhedral model is a
collection of techniques developed around a common intermediate representation of programs: integer poly-
hedra. Such a mathematical representation of programs inherits nice structural properties. For instance, when
loop transformations are represented as affine functions, compositions of transformations are also affine func-
tions due to their closure properties.

The polyhedral representation was linked to loop programs by an analysis proposed by Feautrier [Fea91].
This analysis provides exact dependence analysis information where statement instances (i.e., statements ex-
ecuted at different loop iterations) and array elements are distinguished. The exact dependence information
obtained through this analysis and the use of linear programming techniques to explore the space of legal
schedules [Fea92b] is what constitutes the base of the polyhedral model for loop transformations.

j

i

for (i = 0; i < N; i++)
for (j = i; j < N; j++)

S: A[j] = f(A[i], A[j]);

Domain(S) = {
i , j | 0 ≤ i ≤ j < N

}
Read(S 7→ A) = (i , j → i ); (i , j → j )

Write(S 7→ A) = (i , j → i )

Dep(S 7→ S) =


(i , j → i , i ) : i < j

(i , j → i −1, j ) : 0 < i

corner case : · · ·

Figure 1: An example of polyhedral representation. Loop nests that fit the polyhedral model can be viewed as
mathematical (constraint-based) objects, which can also be visualized geometrically.

Figure 1 illustrates the polyhedral representation with an example. The statement S is executed approx-

imately N 2

2 times during the execution of this loop. The triangular region expressed as a set of constraints,
called the domain of S, represents this set of dynamic execution instances. Accesses to array A from each of
these statement instances can be succinctly captured through affine functions of the loop iterators. The de-
pendences are also expressed as a function between two statement instances. 2 The key insight is that although
the specific dependences at a statement instance may differ, they are all captured by a function due to the reg-
ularity in the control flow. The figure illustrates dependences for two instances, where one of the dependences
(i , j → i , i ) has different lengths depending on the instance.

The “traditional” use of polyhedral techniques in optimizing compilers typically focuses on loop transfor-
mations. PLuTo [BHRS08] is a now widely used push-button tool for automatically parallelizing polyhedral
loop nests that tries to optimize locality in addition to parallelization. There is also significant work in data
layout optimization for polyhedral programs where analyses are performed to minimize the memory require-
ment [DSV05]. Polyhedral techniques for loop transformations are now adopted by many production level
compilers, such as GCC, IBM XL, and LLVM.

1Of course, other communities have different approaches to similar objectives of optimizing applications, we only describe here work
that is the most closely related to our project. We refer to additional sources of inspiration in Section 2.

2There are a number of ways to represent dependences in the polyhedral model. Here, we represent them as a function from consumer
instances to producer instances.
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Recently, polyhedral techniques are being applied to many different areas besides loop transformations.
One natural application of automatic parallelization techniques is in verification of given parallelizations where
the tools take parallelized programs as inputs, and use polyhedral analysis to guarantee the absence of parallel
bugs [BYR+11, YFRS13]. Another application of scheduling techniques is in synthesis of ranking functions for
proving program termination [ADFG10].

Limits of the polyhedral model, extensions Although the polyhedral model provides strong analysis capa-
bilities with many different applications, its main limitation is its applicability. The program must have regular
control flow, and in addition, it has to be fully affine. Specifically, loop bounds, array accesses, and if condi-
tions must be affine functions of the surrounding loop iterators and runtime constants. As an example, FFT
(Fast Fourier Transform) has a regular control flow, but cannot be represented with the polyhedral model be-
cause it is not fully affine. 3

Some attempts exists to extend the expressiveness of the polyhedral model, namely:
• Sparse Polyhedral Framework [VSHS14]. The SPF is an extension to the polyhedral model to deal with

sparse computation. Sparse matrices are represented using indirect array accesses, making polyhedral
analysis impossible, and an inspector/executor strategy is used to perform optimization at runtime. The
SPF represents runtime optimizations (such as data re-ordering) by introducing uninterpreted function
symbols to the polyhedral model. Similar approaches exploit the regularities of the data input. While
their work also extends the polyhedral framework to complex data structures and control-flow, we seek
to extend in another direction with more emphasis on static analysis and scheduling.

• Extensions to while loops and data-dependences. Benadberrahmane et al. [BPCB10] and Rajopadhye et
al. [RGK11] have developed techniques for extending the polyhedral framework to include while loops
and data-dependent controls. Their main contributions are (i) extension of the algebraic representation
of programs, and (ii) code generation from the extended representation. The schedule being explored
remains affine, and our work will complement their work to enrich the framework as a whole.

• Rational transducers. In an early work on this subject, Feautrier [Fea98] suggests automatic paralleliza-
tion for recursive programs operating on tree-shaped data structures via rational transducers. A limi-
tation of the approach is that it does not allow for object creation at runtime, a limitation that is not
present in our approach.

• Hybrid Approaches. Another approach is to mix static and dynamic analysis. Rus et al. [RRH03, RHAR06]
have proposed techniques to test for absence of dependences at run-time to parallelize loops. Jimborean
et al. [JCD+14] check for program regions at run-time, and optimize regions that were found to be poly-
hedral using run-time information. Barthou et al. [BCF97] propose a method to compute exactly direct
flow dependences for arbitrary programs, the behavior of dynamic control (while loops, non-affine ar-
ray accesses, pointers, etc.) being hidden into fuzzy parameters whose evaluation is left to execution.
This work has set the basis of a formal framework for hybrid analysis: what information is static, what
information is dynamic, which predicate to evaluate.

• Language Approaches. In the domain of High-Performance Computing, a large number of domain-
specific languages (DSL)/libraries/tools have been developed to cope with the complex communica-
tion patterns of highly parallel applications. For regular programs, intensive effort to generate efficient
code has been made on some kernels such as FFT (Spiral4, FFTW5), and stencil computations [CSB11,
TCK+11, BGK+12]. Then, algorithm recognition approaches [AB03, IAR14] can be helpful to let the com-
piler use automatically such libraries when the computation kernels are regular. In contrast, pure lan-
guage approaches let the programmer express the parallelism with an adequate abstraction, and then
rely on run-time systems to dynamically schedule tasks [MGR+12, ATNW09, GBP07, BBD+13]. These
techniques are designed to deal with programs that are not at all static/regular at compile-time, in con-
trast to the hidden regularity that we seek to take advantage of. Although polyhedral techniques are
applicable to stencil computations, FFT is currently out of the scope. Our ambition is to develop a frame-
work for capturing a wider range of programs that are still statically analyzable, in addition to the typical
class of programs that fit the polyhedral model (e.g., stencils, linear algebra, dynamic programming), to
algorithms based on trees and lists, which should include FFT as well.

3Although being able to automatically optimize FFT is our long term challenging objective, it is out of the scope of the CODAS project.
4http://www.spiral.net/
5http://www.fftw.org/
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Extending the polyhedral model for while loop programs: a first success During the past five years, Laure
Gonnord and Christophe Alias have with other collaborators gained experience in computing schedules from
general control flow graphs [ADFG10]. This work is important since, in essence, it is the initial inspiration for
the project.

Through the exploration of techniques to transform kernels with while loops into kernels with static loop
bounds (to make them acceptable for high-level-synthesis tools), the team encountered the problem of count-
ing the number of iterations of while loops and thus also their termination.

The main idea of this work was initially to explore the link between scheduling and termination [Dar10,
Dar11], through making a parallel between schedules and ranking functions. A schedule can be described as a
function that associates (logical) dates with operations that is strictly increasing from some starting date (say,
0). Similarly, a ranking function associates a non-negative expression to each computation of the program that
strictly decreases each time the program takes a transition (e.g., change in loop iterators). The main idea was
to use the previous work on multidimensional polyhedral loop scheduling [Fea92b], but in the larger scope of
general control flow graphs (instead of static for loops) and programs operating on numerical variables.

This work was further extended to deal with larger programs [AAG12], and scalability concerns were one
of the reasons that developed into a practical study [RAPG14]. More recently, we showed how to drastically
decrease the size of the constraint systems we solve while computing ranking functions [GMR15] using ideas
from the static analysis community (namely, counter-example guided refinement). Although the programs
addressed in this paper have complex control, the complex data structures are abstracted away by a coarse
abstraction. For instance, write operations are ignored, and read operations are assumed to return random
values.

Other approaches: a quick tour of the termination community As we mentioned previously, the problem
of scheduling is closely linked to the well-studied topic of termination. This motivates the investigation of the
benefits we may encounter from the rewriting community:

• Automated termination analysis for term rewrite systems (TRSs) [BN98] is a well-studied topic and has
given rise to several powerful, fully automatic, tools over the last years (e.g., AProVE, Mu-Term, TTT2).
TRSs are particularly suitable to represent complex data structures, such as lists or trees.

• Recently, two-stage approaches to termination analysis, harnessing the power of termination tools for
TRSs also for programming languages, have been proposed [GRS+11, OBvEG10, GSS+12]. In the first
stage, symbolic execution and abstraction on programming language level are used to over-approximate
all possible program executions. From this program analysis, one then extracts a TRS whose termination
implies the termination of the original program. In the second stage, termination of this TRS is analyzed
with existing tools.
This approach is currently limited mainly by scalability of the program analysis front-ends.

• Recently Fuhs et al. [FGP+09] proposed an extension of term rewriting by built-in predefined integers,
based on the observation that termination, in particular for imperative programs, often depends on
integer variables. This allows existing techniques for proving termination on integers to be combined
with techniques for term rewriting. Tools for analysis of term rewriting are now successfully applied for
termination analysis (e.g., for Java [OBvEG10, BMOG12] and C programs [SGB+17]).
This approach also suffers from scalability issues that will prevent its use in actual compilers.

In summary, the rewriting community has a long expertise in analyzing complex data structures, but the ap-
proach is still not mature enough to be embedded into compilers. However, the underlying techniques will be
our main source of inspiration to reason about such data.

1.4 Challenges, innovation, stumbling blocks

In this project, we propose to investigate how existing techniques from static analysis (and verification) and
rewriting can be used in the context of polyhedral analysis to extend it to more complex data structures (we do
not want to abstract our programs in TRSs). As far as we know, despite the quite abundant research work in
the subject, this is the first time this multidisciplinary solution is explored.

The main difficulty we may encounter is the fact that there is no explicit computation of a scheduling in
the state-of-the-art rewriting-based termination methods. Moreover, our application domain (compilation)
imposes us some scalability issues that are less under consideration in the static analysis (and termination)
communities. We might have to make some compromise between precision and scalability.
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These challenges make a significant leap beyond the scope of current polyhedral analysis. Enlarging the
data-parallelism expressed in the polyhedral model will lead to many new opportunities, even beyond the
scope of this project.

Despite extensive prior research on the general topic of scheduling, there is huge room for improvement.
We propose to revisit a more fundamental problem by defining a framework to reason properly about
data and control at the same time.
The novelty in this project is in the combination of existing scheduling techniques (from the compilation
community) with other techniques coming both from static analysis and from term rewriting, applied
to the general problem of efficient compilation and scheduling of programs. As far as we know, this
multidisciplinary project is the first attempt to combine rewriting techniques and scheduling.

1.5 National and International positioning

High performance computing and Polyhedral model The polyhedral model, as a formalism for loop anal-
yses and transformation, has most of its experts located in France. Among many existing teams and projects,
we cite PIPS (analysis, source-to-source), PARKAS (tasks extraction), CAMUS (speculative loop transforma-
tions), COMPSYS (analysis, high-level-synthesis), CAIRN (high-level-synthesis), SYNCHRONE (verification)
and CORSE (hybrid analysis/transformations). Most of them actively participate in the development of poly-
hedral libraries (e.g., PolyLib, ISL, PIP, Aspic).

Among them, PARKAS, CAMUS, and CORSE address the problem of handling legacy code by developing
techniques to detect regularities not explicitly exposed by the language:

• PARKAS has several contributions that combine run-time systems, data-flow languages, and code trans-
formations. The goal being to:1) exploit the data-flow model to enhance run-time efficiency (for sched-
ule, synchronization and memory management); 2) exploit compiler ability to coarsen (either statically
or dynamically) granularity whenever possible. The PARKAS team shares our vision that the future gain
of performance via static compilation will be allowed by reasoning on intermediate representations or on
language expressiveness, like the activity we develop in Section 2.2.2

• CAMUS develops APOLLO, a compiler framework that performs dynamic and speculative loop trans-
formations. They exploit two ideas:1) detect affine memory accesses for codes that do not necessarily
have access functions that are affine; 2) split the iteration space into chunks expecting sub-parts to show
affine behavior (while the full space does not necessarily). This technique is linked to our work since it
can deal with programs with lists; however, it cannot be easily extended to non-regular accesses like in
tree traversals, which are under consideration in this project.

• CORSE has two research directions related to CODAS. The first one aims at developing new hybrid (stat-
ic/dynamic) analysis and transformation techniques. This direction exploits the following idea: detect
affine dependences for codes that do not necessarily have memory accesses that are affine (more gen-
eral than 1 of CAMUS but do not handle partially affine code as for 2 of CAMUS). The second research
direction aims at combining affine with irregular dimensions (that can be enumerated either statically
or dynamically in an inspector/executor way). The team is currently considering other iterators than
standard numerical ones (such as topological order of tree, ordered list, unordered set, etc.) as Abstract
Data Types, for optimization purposes, following the pioneer work of A. Cohen [Coh99]. This last activity
is closely linked with the one described in Section 2.2.2.

Streaming languages The research on streaming languages is also related to the CODAS project. There are
two main trends in this area, not necessarily in the polyhedral context:

• The definition of static streaming languages, where there is a focus on the ability to compute schedules
during compilation (here the scheduling activity is more coarse-grained than the one addressed by CO-
DAS, as they schedule tasks). Among them we can cite Σ-C (from CEA, [GSLD11]) that implements the
Cyclo-Static DataFlow model (CSDF [EL94]). This kind of languages usually suffers from a lack of ex-
pressiveness, especially when the programmer aims to define some regularities at the interfaces (I/Os),
or during communication of data (for instance, in Σ-C there is no simple way to express that some data
will be used more than once). Thus the expressiveness of such languages may benefit from the CODAS
project while still remaining fully static.

2017 - ANR JCJC CoDaS - Detailed Proposal - 6/20



• Some other teams/people focus more on the expressiveness of the language itself. The OpenStream
language [PC13], introduced by Antoniu Pop, is one the most prominent products of this area of research.
Indeed, the language allows the programmer to express and use all kinds of data and communication
since scheduling is done dynamically. Here again, such languages may benefit from the results of the
CODAS project because being able to do more static analyses at compile time means more efficiency
at run time. However, the static analyses we may propose have to be both precise and efficient, and
combine well with the dynamic ones.

Termination of term rewrite systems (TRS) and certification Over the last 10–15 years, research in fully
automated termination analysis for term rewriting has flourished, and mature tools to automatically find a
(dis)proof of termination have been developed at several sites internationally.

• The Research Group Computer Science 2 (LuFG Informatik 2) at RWTH Aachen, Germany is the main
development site of the termination analysis tool called AProVE [GAB+17]. AProVE was the most power-
ful tool for termination of standard and innermost term rewriting at the Termination Competition 2016.
A specialty of the group is the application of rewriting to termination analysis of real-life programming
languages: AProVE can analyze termination for programs in Java, C, Haskell, and Prolog by a translation
to term rewriting (with built-in integers) and then proving termination of the resulting rewrite system.
In CODAS we intend to use a similar idea, however we want to represent only the data dependences as
a rewrite system and not the full program. We expect that this difference leads to significant benefits for
efficiency in termination proving for the generated (significantly smaller) rewrite systems.

• The Computational Logic group at the University of Innsbruck, Austria develops both the termination
analysis tool TTT2 [KSZM09] and the Isabelle Formalization of Rewriting (and corresponding termina-
tion techniques) IsaFoR [TS09]. The latter is used to extract the automated certification tool CeTA for
termination proofs from IsaFoR. In this way, correctness of termination proofs for rewriting found by
untrusted tools can automatically and efficiently be checked against a formalization in a proof assistant.
The combination of this approach with the one of CODAS could be considered in a more long-term
project that will have also the objective to certify the result of our method. For the time of CODAS, we
consider certification as out of scope.

• Salvador Lucas’ group at the Technical University of Valencia (Universidad Politécnica de Valencia),
Spain develops the termination analysis tool Mu-Term [AGLN11]. At the Termination Competition 2016,
Mu-Term was the most powerful tool for proving termination of context-sensitive rewriting and opera-
tional termination of conditional rewriting.

None of these teams address the problem of compiler optimization. However, some of them try to focus
on applicability. We expect that we can contribute to this community by providing a new way to reason about
programs.

Let us also cite the new ANR project VOCAL, 6 which proposes to develop the first certified data structure
library (in OCaml). The expected output will definitely be of interest for our project since there will be a clean
implementation of classic data structures and iterators operating on them.

Static analyses for High Performance Computing (HPC) Some individual papers have already explored the
idea of using techniques developed for verification purposes in compilers:

• Botinčan et al. [BDJ13] and Hurlin [Hur09] have developed the idea that separation logic proofs can be
used to automate the parallelization of sequential code.

• The work by Winterstein et al. [WBC14] parallelizes programs with complex data structures, with HLS as
motivation.
However, the reported run-times indicate that the technique is too costly for our purposes.

The effort to use more powerful static analyses coming from other communities is a current trend in the
HPC community, and clearly the CODAS project follows this general idea. However, the idea of combin-
ing rewriting techniques with polyhedral scheduling techniques remains a novel idea yet to be explored.

6Accepted in 2015, http://www.agence-nationale-recherche.fr/projet-anr/?tx_lwmsuivibilan_pi2%5BCODE%5D=

ANR-15-CE25-0008
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2 Scientific and technical program, project organization

2.1 Scientific objectives of the project

Scheduling covertly regular programs, an objective for optimization Being able to schedule programs with
complex data structures has a strong impact on compiler optimizations. In this project, our focus is to study
covertly regular programs manipulating complex data structures. The objective of this section is to provide
simple examples of optimizations a compiler could apply by reasoning about complex data structures.

Lists As a first example, let us have a look at the piece of a Java program in Figure 2.

public c l a s s MyList {
private i n t val ;
private MyList next ;
/ / . . . c o n s t r u c t o r s and a l l t h a t . . .

public s t a t i c void foo ( MyList mylist ) {
for ( MyList curr = mylist ; curr != null ; curr = curr . next ) {

curr . val = curr . val + 1 ; / / S1

}
for ( MyList curr = mylist ; curr != null ; curr = curr . next ) {

System . out . print ln ( curr . val ) ; / / S2

} } }

Figure 2: Bare-bones list iteration in Java – initial program. We could have written the same using while loops
and iterators, we choose here to make the structural manipulations more directly visible.

In this program, the content of a list is modified, and then printed, with two successive loops. For each of
these loops, let us use i to denote the i -th iteration of the list traversal. If we reason about dependences, then
these two loops have the following dependences:

• For each of these two loops, the operation performed on element i of the loop must happen after the
operation performed on element i − 1. Recall that as we have a list, there is a structural dependence
between an element and its next, which we shall explain in Remark 1.

• The second while loop iteration i depends on the i th iteration of the first loop.

public c l a s s MyList {
. . .

public s t a t i c void foo ( MyList mylist ) {
for ( MyList curr = mylist ; curr != null ; curr = curr . next ) {

curr . val = curr . val + 1 ; / / S1

System . out . print ln ( curr . val ) ; / / S2

} } }

Figure 3: Bare-bones list iteration in Java – optimized program

With the dependence information, we are able to apply loop fusion, resulting in another version of the
program, depicted in Figure 3. This transformation is commonly used in optimizing compilers. However,
finding and computing such dependences for programs involving lists and other data structures is still an
open problem. Pattern matching may be sufficient for simple examples, but our objective is to find a general
solution to reason about this type of data.

Trees In Figure 4, we depicted another example of a recursive program operating on binary trees 7

7A nicer object-oriented version could have an abstract class Tree with two subclasses InnerNode (with 2 children) and Leaf (with 0
children). The scheduling problem, however, would be analogous.
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public c l a s s Tree {
private i n t val ;
private Tree l e f t ;
private Tree r i g h t ;

public i n t treeMax ( ) {
i n t leftMax = Integer .MIN_VALUE; / / S1

i n t rightMax = Integer .MIN_VALUE; / / S2

i f ( t h i s . l e f t ! = null ) {
leftMax = t h i s . l e f t . treeMax ( ) ; / / S3

}
i f ( t h i s . r i g h t ! = null ) {

rightMax = t h i s . r i g h t . treeMax ( ) ; / / S4

}
return Math .max( t h i s . val , Math .max( leftMax , rightMax ) ) ; / / S5

} }

Figure 4: Finding the max of a binary tree in Java

This function computes recursively the maximum value of an integer binary tree. Clearly, the computation
of the maximum of a tree depends on the computation of each of its children. However, the computation of
the max of each child is independent from the other. We can thus transform the code in order to expose the
parallelism, obtaining the program of Figure 5. With such explicit parallelism, an optimizing compiler may
generate optimized code (here, generate thread-based code, for instance).

public i n t treeMax ( ) {
i n t leftMax = Integer .MIN_VALUE; / / S1

i n t rightMax = Integer .MIN_VALUE; / / S2

i f ( t h i s . l e f t ! = null ) {
leftMax = t h i s . l e f t . treeMax ( ) ;

} | | / / S3 | | S4

i f ( t h i s . r i g h t ! = null ) {
rightMax = t h i s . r i g h t . treeMax ( ) ;

}
return Math .max( t h i s . val , Math .max( leftMax , rightMax ) ) ; / / S5

}

Figure 5: Finding the max of a binary tree in Java, modified version

Remark 1 The objective of the proposal is to provide a way to optimize actual codes. As a result, we want to keep
the data structures as they are declared and used by the programmer. To clarify this, let us have a look on this
simple ML-like program operating on a list:

List.map (fun x-> x+1) mylist

Despite the fact that this program could be transformed and optimized by using a parallel for operating on an
array, we want to keep the structural dependence “cell → nextcell”, because of the complexity of memory layout
changes. In the current program, the consequence is that there is no possible parallelization of the computation.
We will not make any change to the data, but only on iterators that operate on them. However, as the example
of Figure 3 shows, depending on the context, there might be another schedule of the program. We are conscious
that this might cause some missed opportunities for optimization, thus we will be very careful about this.

Expressing dependences and schedules with term rewriting In this section we detail the motivation for
using term rewriting as inspiration for expressing dependences on data structures and manipulating them.
The exploration of this relationship is the base point of the current proposal.
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In imperative languages, data structures like structs, records, and even classes can be represented
as terms (if there is no aliasing). For instance, the Java object [1,2,3] of type MyList defined in Figure 2
corresponds to the following term t0:

t0 =MyList(1,MyList(2,MyList(3,null))) (1)

Similar to array entries, we would also like to address particular “entries” of a term, i.e., its subterms. Recall
that to address entries of an n-dimensional array, we use vectors (i1, . . . , in) ∈Nn as indices or “positions”. Then
for an array A, we say that A[i1]. . .[in] is the “entry” at the array’s position (i1, . . . , in). For terms, we can use
a similar notion which are positions. For our list t0, we have Pos(t0) = {ε,1,2,21,22,221,222}, which give an
absolute way to access each element or sublist. For instance, 21 denotes the first element of the sublist [2,3],
thus the integer 2. We can remark that sublists have positions of the form 2k 8.

Analogous to programs on arrays in the polyhedral framework used e.g. in Figure 1, we can now consider
the positions of a term that a statement S accesses. In analogy to arrays, for now it suffices to consider those
positions p that are labeled with MyList (i.e., positions p where we can access an entry at position p1, the child
of the list node that carries the int value at the node).

For the statements S1 and S2 from Figure 2, we get the following dependences:

Dep(S1 7→ S1) = None

Dep(S2 7→ S1) = (2i → 2i )

Dep(S2 7→ S2) = (2i → 2 j ) : i > j

From these dependences, we want to obtain a similar schedule we could obtain with manipulating the
polyhedral framework, in this case:

Θ(S1(2i )) = (i ,0)

Θ(S2(2i )) = (i ,1)

and then perform code generation, whose expected output is depicted in Figure 3.
We can represent trees similarly. An object of class Tree is represented by Tree(val, left,right) for some

terms val, left, right that represent its attributes (so at position 2 we have left, and at position 3 we have right).
We have the following “interesting” dependences between statements:

Dep(S5 7→ S3) = (p → p2)

Dep(S5 7→ S4) = (p → p3)

In other words, to return the result for the “iteration” (recursion, actually) at position p, we need to know the
result for positions p2 and p3. These dependences can be rephrased with rewrite rules:

dep(Tree(val, left,right)) → dep(left)

dep(Tree(val, left,right)) → dep(right)

Instead of the positions from the earlier dependence considerations, we now look at the term shapes that we
have at these positions. Here val, left, right are variables.

To get a schedule, we need to show that these rewrite rules terminate. A widely used technique for proving
termination of term rewrite systems is the synthesis of polynomial interpretations [Lan79, BCL87, FGM+07],
which map function symbols and terms to polynomials. An automatic tool like AProVE could synthesize the
following interpretation Pol:

Pol(dep) = x1

Pol(Tree) = x2 +x3 +1

Then the termination proof consists of checking whether Pol(l ) > Pol(r ) holds for all rules l → r .9 From that
termination proof, we should be able to extract a valid schedule, and then obtain the desired code.

The preliminary paper [AFG16] describes this relationship between schedules and termination proofs, and
derives an estimation on the parallel complexity of the given programs. This paper can be viewed as a first step
toward a more complete formalization of the problem.

8Here ak stands for repeated concatenation: a0 = ε and an+1 = aan . Even though positions are sequences of numbers, we are not
doing multiplications with them!

9Here it suffices to consider our rewrite rules as dependency pairs [AG00], which allows us to use a polynomial interpretation that is
independent of some of its arguments, e.g., Pol(Tree) = x2 +x3 +1 does not depend on x1.
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2.2 Executive summary of the project and task organization

This project studies the scheduling of programs in the presence of complex data structures. We propose to
use the polyhedral model as a baseline to represent data dependences and formalize the notion of schedule,
and to build on existing work of the rewriting termination community to properly reason about complex data
structures. The objective is to find a compact solution to represent data and computations at the same time,
and then to provide algorithms to schedule programs from this representation. The research will be an exper-
imental loop from benchmarks to theory followed by experimental evaluation.

The combination of precise (yet costly) reasoning about data structures based on term rewriting
and more efficient program reasoning based on the polyhedral model and its extensions will en-
hance the performance and precision of scheduling tools, making them useful on a wider class of
systems. The organization of the project is an experimental loop from applications to theory and
back to applications. The “Young researcher project” is adapted to this first proof-of-concept.

The project is divided into 4 parts, which are summarized below:
• The extraction of challenging benchmarks (Section 2.2.1): middle-sized, “covertly regular” programs

with data structures beyond arrays.
• The formal definition of the scope of our study (Section 2.2.2): which data structures are under study.

Definition of a mini-language and its semantics, then definition of what is a schedule on this language.
• The study of the relationship between control and data structures, and the extension of the scope of

existing rewriting techniques and scheduling techniques. In this task we will properly define analysis
and optimization for programs with complex data structures. This task is detailed in Section 2.2.3.

• The implementation of a prototype analyzer/compiler for our mini-language (Section 2.2.4) that imple-
ments some of the previous analyses. As a milestone, prove termination of rewrite systems obtained
from benchmark programs with complex data structures.

All these tasks are detailed in the next sections. The risk management is done for each of these tasks.
Figure 6 depicts the time organization.

Milestone M0 M6 M12 M18 M24 M30 M36 M42

Task 1 M1 -> M6

Task 2 M4 -> M12
T2.1 M4 -> M12

T2.2 M6 -> M12

Task 3 M10 -> M36

T3.1 M10 -> M36

T3.2 M10 -> M36

Task 4 M30 -> M42

T4.1 M30 -> M42

T4.2 M36 -> M42

Figure 6: Organization of the different tasks of the CODAS project

2.2.1 Task 1: Collecting benchmarks: Extraction of covertly regular kernels

The objective of this task is to extract from actual programs some “kernels” for which computing a sched-
ule is challenging. Apart from non-regular programs/kernels (general while loops), we want to extract and
characterize middle-sized kernels with code operating on:

• Trees (binary trees, general trees): tree traversals, with or without cuts, like in deep learning or symbolic
computing programs.

• Linked lists, maps. Maps are definitively of interest since they are an essential step toward sparse matri-
ces, which are a common object in scientific computing (numerical simulations).
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In fact, as shown previously, for the above data structures, it seems quite easy to properly define a notion
of dependence, in a quite compact way. However, combining data structures and control is challenging since
the dependence graphs may quickly become infinite, thus hard to formally manipulate.

As a result, in Task 1 we propose to find more kernels of this kind, from real-world applications, or at least,
coming from benchmarks of the literature, namely:

• Open source generalist programs: such programs are widely available and known, and thus amenable to
meaningful data structure extraction. Among them, the SPEC benchmarks 10 for intensive computations
and the Kraken benchmark from Mozilla for more general applications 11 will be of interest.

• More specialized benchmarks from the polyhedral scheduling literature, for instance Polybench. 12 We
will use these benchmarks essentially to measure the performance of our algorithms in the simple case
where the classical polyhedral model for scheduling is immediately applicable.

• Signal processing algorithms, like radio signal modulation or channel allocation algorithms within latest-
generation radio protocols (e.g., LTE13) exhibit irregular programs on large data structures [DMRM14].

• Worklist algorithms, such as abstract interpreters or graph algorithms, also have some hidden regulari-
ties that can be exploited [PNK+11].

Such programs are widely available and known, and thus amenable to meaningful comparisons between ex-
isting approaches. Furthermore, we strongly believe that the state-of-the-art benchmarks of the polyhedral
compilation community will not be sufficient as they only fit the polyhedral model. The very first step of the
project will thus be an experimental phase to construct a benchmark of interesting programs to schedule. We
might also modify benchmarks from the polyhedral literature and add some computation on lists and/or trees.

What we want to extract in this activity are codes for which the cost of the overall computation exceeds the
cost of changing iterators. Typically, improving computations on sparse matrices would mean changing the
ordering of the computation steps between different dense blocks, on which classical fine-grain paralleliza-
tion/optimization could be performed.

Although the main part of the task will be manual (and benefit from our joint experience with HPC bench-
marks), we may in some cases use algorithm recognition approaches [AB03, IAR14, ATD04] to automatically
detect regular kernels. Of course, they will not suffice to discover non-polyhedral kernels. Other techniques
(e.g., profiling) could also be useful to discover computation-intensive kernels in general programs. We will
typically take inspiration from frameworks to detect potential parallelism at runtime, e.g., APOLLO [CSRB+17].

Means Task 1 is scheduled from month 1 to month 6 of the proposal. We plan to hire a Master student (first
year or second year) to help us with this activity.

All the members of the project have experience with experimentally directed research. The four implied
people here will be Laure Gonnord, Lionel Morel, Fabrice Rastello, and Tomofumi Yuki.

Fabrice Rastello is an experienced collaborator on this topic. He has a strong background in designing
compilers and currently leads a project on dynamic compilation, which strongly relies on proper extraction of
information at compile time or at execution time. Lionel Morel has experience in analysis of dataflow programs
and design of dataflow runtimes. In particular, he will help widen the application scope of the project towards
signal processing applications. Tomofumi Yuki has experience in working with polyhedral benchmarks. He is
a contributor to the PolyBench, the most commonly used benchmark suite for polyhedral approaches. He is
also in the process of collecting larger scale applications with almost polyhedral regions, which may include
interesting code regions for this project as well. Laure Gonnord has developed many static analyses inside the
LLVM framework. Her experience in program manipulation and slicing might be of great interest for this task.

Risks The risks for this task are low: all implied people have experience with use and design of suitable
benchmark sets. There are huge polyhedral benchmark sets, and (particularly also open-source) software for
scientific computations in all kinds of application domains (weather forecast, data-centric applications, . . . ).

10https://www.spec.org/benchmarks.html
11https://wiki.mozilla.org/Kraken
12https://sourceforge.net/projects/polybench/
13Long-Term Evolution standard for next generation wireless protocols, http://www.3gpp.org/technologies/

keywords-acronyms/98-lte
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Deliverable We plan to extract from these benchmarks a new series of non-polyhedral kernels of interest and
to publish these benchmarks in a research report as well as on the project’s website.

2.2.2 Task 2: Definition of the scope of our study, and formalization of the problem

The objective of this task is to decouple our theoretical study from the implementation part. We will:
• properly define a language of interest and validate its expressiveness;
• then, we will define the scheduling problem based on our abstract representation.

Task 2.1: Definition Based on the previous benchmarking activity, this task will define the scope of our study.
From the benchmarks, we will define which data structures are of interest, and what operations we want to
perform on them. Then, we will define a mini-language to avoid implementation details or language speci-
ficities. This language will incorporate high-level operators on complex data structures inspired by functional
languages (e.g., inductively defined data structures, “à la ML”). The advantages of such a mini-language are:

• The notions of higher level constructs are now implemented in Scala and Java. Map, reduce are already
well-used coding patterns for end-users.

• High level operators such as map, iter, already expose some dependence information (map iterators are
parallel loops, . . . ), which might be very helpful to properly define the notion of dependence of compu-
tations in our language.

• Rewriting techniques are strongly linked to functional languages. Restricting to ML-style data structures
(i.e., trees without sharing/aliasing) simplifies the task for the analysis, of course: this kind of complex
data can directly be represented as labeled trees, i.e., terms. Sharing/aliasing analysis is an orthogonal
problem subject to active ongoing research [BCC+07] since the seminal work [JM82].

This activity will consist of defining a clean “abstract” semantics of our language, in order to avoid specific
implementation matters, but also permit the expression of the intrinsic parallelism of both control and data
structures. We might find some inspiration of course in ML-based semantics of the literature and also in the
previous work of project member Lionel Morel on array iterators and their compilation in the synchronous
language Lustre [Mor07] (in fact, the notion of data dependence is also crucial in synchronous languages).
Finally, we believe that the previous work of Barthou et al. [BCC00] which proposes (for scalars and arrays, but
with non-affine accesses) the concept of maximal static expansion to capture the data structures’ behavior,
might be a good starting point to study the current limits of power of dependence analysis.

We will also have to demonstrate that our language and our (abstract) semantics do not narrow our study
too much (for instance, is avoiding dynamic creation or sharing an overly strong restriction?), and that the
programs under study could easily be developed in other known languages (such as C). One main difficulty of
this task is to define a semantics that will express the characteristics of the data structures under study:

• With enough precision to be able to derive dependences.
• Simple enough to be able to reason easily about it.

Task 2.2: Formalization of the problem Once we have a suitable semantics, we have to express what the
notion of a scheduling means for this semantics. Formally, we aim to express the notion of dependence, like
the “happens-before” relation of the polyhedral model. This notion of scheduling will enable us to construct
a dependence graph of a given program under analysis. As we show in Section 2.1, we will explore how the
notion of position could help us to define a compact representation of data dependences and control-flow
dependences; then we might be able to define a proper definition of what scheduling means, by extending the
notion we already have on the polyhedral model or its extension to while loops ([ADFG10]). We might also get
some inspiration from the parallelization of functional programs proposed in [RGP16].

Remark 2 About commutativity and associativity In this proposal, we focus on program transformations pre-
serving the flow dependences, hence the computation (defined as Herbrand equivalence in [AB03]). Even though
program transformations modulo equational properties (associativity, commutativity, etc.) open a number of
opportunities for code optimization, many challenges still need to be addressed for regular programs before ir-
regular programs can be considered. For example, the PhD work of Guillaume Iooss [IAR14, IRAZ14] points out
many open problems for semantic tiling, a transformation modulo associativity/commutativity.
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Means We plan to overlap this activity with Task 1, during M4 to M12.
This activity will be collaborative. In this task, the hired PhD student will be helped by Christophe Alias,

Laure Gonnord, Carsten Fuhs, Lionel Morel and Tomofumi Yuki, who have strong experience in defining op-
erational semantics and analysis.

Christophe Alias has experience in dealing with associativity and commutativity, and also in defining poly-
hedral-based solutions. Laure Gonnord has experience in sequential C-based and synchronous languages
semantics. Carsten Fuhs has experience in semantics for Prolog tailored to program analysis [SESK+12]. Li-
onel Morel has experience in the design of high-level array operators and their compilation to parallel loops.
Tomofumi Yuki has experience with parallel programming languages and their semantics, and he has recently
worked on semantics for the X10 language being developed by IBM Research.

Risk One of the potential risks is to define a limited scope for the study and a formalization that is purely
theoretical and too narrow to be effective on real code. To avoid this pitfall, Task 1 is essential and will be
repeated at the end of Task 2 for a less coarse benchmark which will be adapted to the defined scope of analysis.

In case we do not manage to express relationships in a unified way, we could also:
• compute approximations of the transitive closure of dataflow dependences (with the help of abstract

interpretation);
• devise several specialized frameworks, each tailored to specific classes of scenarios.
In any case, we will make sure to inform our formalization(s) already in Task 2 by suitable examples from

practice.

Deliverable The definition of the semantics will be published in a research report. The unified notion of de-
pendence for abstract data structures might be published at a workshop on compilation, like IMPACT (Work-
shop of Polyhedral Compilation Techniques), or conference, such as CC (Compiler Construction).

2.2.3 Task 3: Combining rewriting techniques and classical scheduling techniques

In this task, we will study the relationship between control and data structures, based on our experiments and
also our background in static analyses. The main objective here is to extend the scope of scheduling techniques
and rewriting techniques:

• In the domain of polyhedral scheduling techniques, we want to develop a compact representation of
program (and data structure) dependences which still permits efficient analyses and the computation of
legal schedules.

• In the domain of rewriting, we want to extend the ideas from polyhedral analysis to consider also com-
plex inductively defined data structures. In this setting, data is represented as terms, and the depen-
dences will be represented as a term rewrite system. To cater for programs that operate both on inte-
gers/arrays and on complex data structures, we will also consider suitable extensions of standard term
rewriting with built-in data structures (like in, e.g., [FGP+09, KN13]) to obtain a unified representation.

For these tasks, we plan to focus initially on one or two data structures, e.g. linked lists and binary trees. The
goal is then to lift the gained experience to more general structures (general trees, possibly involving arrays).

Remark 3 Computing transitive closures In the polyhedral model, dataflow dependences can always be mod-
eled by affine relations source → target. The point is to find direct dataflow dependences: the smallest affine
relation whose transitive closure is the flow-dependence relation. This is usually referred to as dataflow analy-
sis. Feautrier provides a general solution for regular programs [Fea91] with ILP solving. Later, Barthou provides
a generalization to arbitrary programs by introducing fuzzy parameters [BCF97], the point being to eliminate
as many fuzzy parameters as possible. From dataflow analysis, many analyses can be applied: array liveness
[ABD07], equivalence checking [BFR02, AB03], code generation [BF98], etc. Some of these analyses may require
a transitive closure to “walk through” direct dataflow dependences, as for equivalence checking. But we believe
that dependence analysis is far less difficult than dataflow analysis and using a transitive closure would be an
overkill. Actually, the trade-off is better expressed by the fuzzy parameters of [BCF97]. How to eliminate them?
We believe that abstract interpretation (which requires, in a way, a transitive closure) could be helpful.
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Task 3.1: Develop compact representations The objective of this part is to provide a way to reason about
data structures and control at the same time, while still being compact and efficient.

We may find a source of inspiration in the current state-of-the-art techniques for proving termination of
term rewrite systems. In particular, term rewriting is very suitable for tree-shaped data (i.e., no sharing/“deep
aliasing”) [OBvEG10]. It is also useful for analyzing termination of DAG-shaped data (also known as trees-
with-sharing) [BOG11]. In contrast, it is not as useful when cycles are allowed.

The AProVE termination tool uses a dedicated shape analysis for Java to distinguish these shapes and con-
struct a dedicated term rewriting instance from them. However, despite the fact that the approach used to
handle programs with loops by instrumentation with integer variables for the length of the cycles has shown
its applicability for verification purposes [BMOG12], we advocate for a different approach because our final
objective is to enable program transformations for optimization. The main drawback of rewriting techniques
based on integer encoding is that it breaks the link between the initial program structure and the system used
to prove termination. Therefore it is difficult to directly use the result of the termination proofs for our needs.

Moreover, we also believe that we must avoid as far as possible “brutal” encodings of the entire program as
rewrite systems since they can be too costly for compilation purposes (the results of the Termination Compe-
tition and our recent comparison with Termite 14 show prohibitive timings).

Thus our idea, as we show in Section 2.1, is not to encode the whole program as a TRS, but to focus more on
the idea of dependence, which is the crucial notion for scheduling. What we expect from this approach is that
expressing only data dependences as TRS, or, at least, adapting the existing effective algorithms from TRSs to
our scheduling problem, will avoid the non-scalable translation from whole programs to TRS.

public c l a s s Tree {
private i n t value ;
private Tree [ ] children ;

}

Remark 4 (General trees) As soon as we can handle binary trees, the step to
arbitrary tree-shaped data objects should be quite straightforward. One small
challenge could then still be to combine recursive types and arrays (which are
after all part of the polyhedral model), as in the Java class to the right.

Task 3.2: Adapt polyhedral scheduling techniques to programs with lists or trees This task is the core of
our project. From the compact representations of the data and control dependences obtained in Task 3.1, we
want to design algorithms to infer schedules.

The link between scheduling and rewriting in the polyhedral model has been observed through the notion
of system of recurrence equations (SRE, [Qui84, KMW67, Raj89]). A polyhedral program can be represented
as a set of equations of the form: A0[~i ] = f (A1[u1(~i )], . . . , An[un(~i )]),~i ∈ D , where each Ak is a single assign-
ment array, the uk express the flow dependences depicted in Figure 1 (red arrows), and D is a convex (integer)
polyhedron. The rewrite system A0[~i ] → f (A1[u1(~i )], . . . , An[un(~i )]) is convergent and normalizes to the (array
of) value(s) computed by the program. Also, it captures exactly the flow dependence, and from that model
we are able to schedule computations. Based on an analogous representation (like in Section 2.1) from the
output of Task 3.1, we will then derive scheduling techniques that still apply to recursive programs iterating
through complex data structures, like the one depicted in Figure 5. For that purpose, we might find inspiration
in the previous work of Cohen and Collard on parallelizing recursive programs and programs with trees [CC98]
(however, we do not want to use context-free grammars, which might be too expensive).

We may also find some inspiration in the area of separation logic: indeed this community has already con-
ducted some research on using static analysis for parallelization in the presence of complex data structures
[BDJ13, Hur09, WBC14]. However, we do not plan to look at the difficult problem of extracting complex infor-
mation automatically from C-like programs, which would imply complex aliasing pre-analysis. This kind of
pre-analysis is an orthogonal problem which we will not consider in this project.

Means We plan to overlap this activity with Task 2 and Task 4, from M10 to M36.
This topic is the heart of our project. This will be the main topic for the PhD student we want to hire.

The activity will be collaborative. In this task, the hired PhD student will be helped by Laure Gonnord and
Tomofumi Yuki, Carsten Fuhs for Task 3.1, and Christophe Alias and Lionel Morel for Task 3.2.

Christophe Alias has a strong background in designing scheduling techniques and optimization for High-
Level-Synthesis, and his experience in actual implementation in compilers will be a great help in order to
design applicable algorithms. Carsten Fuhs is an expert in term rewriting and its applications in program

14http://termite-analyser.github.io/
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analysis. His background in termination analysis for term rewriting will also be very useful for making the
connection between termination proof techniques for rewriting and corresponding program schedules. Laure
Gonnord has a strong background in abstract interpretation to compute over-approximated transitive clo-
sures. Lionel Morel brings his expertise on identification of data dependencies for high-level array operators.

Risk The risk of this task is low to medium: we already have a fairly clear idea of how to represent depen-
dences for iteration and recursion over lists or tree-shaped data. How to compute a scheduling from them or
introduce some approximations due to statically unknown data still remains a challenge; however we could at
least find classical patterns and provide ad-hoc solutions from them.

Deliverable The combination of polyhedral techniques with rewriting techniques to deal with programs with
lists and trees will be published first as a research report, and it will most probably be of interest for conferences
like CC (Compiler Construction) or FSCD (Formal Structures in Computation and Deduction), the successor
conference of RTA (Rewriting Techniques and Applications).

2.2.4 Task 4: Prototyping

The goal of this task is to implement the first version of analysis and code generation techniques and evaluate
on some middle-sized examples. Scheduling is only the first step towards optimization of complex programs.

Task 4.1 Validate on termination As a first milestone, we want to validate that the generated term rewrite
systems for the dependences can indeed easily be analyzed and proved terminating by existing termination
provers like AProVE, Mu-Term, or TTT2. From these termination proofs, we will synthesize a corresponding
schedule. Even in the worst cases, where TRSs are not proven to be terminating, we might find interesting de-
pendences during the proof process. Since we already have considerable experience in empirical evaluations
of termination analysis tools, this task is very suitable as a first step.

Task 4.2 Code generation (prototype) Based on the schedules found in Task 4.1, we want to generate corre-
sponding optimized code for our programming language. When scheduling is placed in the context of program
optimization, it is also necessary to develop techniques for reflecting the new schedule. One approach is to
perform code generation based on the program representation and the schedule such that the execution order
of the generated code matches that defined by the schedule. In the domain of optimizing compiler research,
it is almost mandatory to provide empirical evaluations for proposed optimizations, which can be facilitated
by developing code generators. Although our main objective in this project is scheduling, we would also like
to start preliminary exploration of this tightly coupled problem.

We will first explore possible implementations of the schedules by manually editing/writing pieces of pro-
grams. The development of a first prototype is planned. The prototype may be limited to some subsets of the
programs/schedules that we develop, and the full treatment of the code generator will be left as future work.
The benchmarks under study will also be provided as test cases for future implementations.

The challenging part of this task is how to implement a kind of parallelism that is no longer only “loops+do-
all” (i.e., the “map” pattern). OpenMP then appears as an appropriate back-end since it provides “do-all” fine-
grain parallelism as well as task parallelism. The balance between these two kinds of parallelism will also be
an interesting research problem in this task.

Remark 5 About hardware characteristics The code generator must be able to target different hardware plat-
forms with different characteristics (e.g., caches, number of cores, and so on) to obtain highly efficient code. For
low-level optimizations, such as vectorization, we plan to benefit from back-end compilers, e.g., by exposing
vectorization-friendly loops. As a higher level design knob, we plan to provide grouping of tasks as a tunable pa-
rameter, similar to tile sizes in loop tiling. This allows us to fine-tune the amount of parallelism in the generated
code to specific platforms.

Means We plan to overlap this activity with Task 3, from M30 to M42.
The involved people will be the PhD student together with the other project participants. The activity will

be led by Carsten Fuhs (Task 4.1) and Tomofumi Yuki (Task 4.2). Carsten has significant experience in experi-
mental evaluations in the field of termination proving, as also highlighted by his active role in the preparations
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of the tool AProVE for the annual Termination Competition. Tomofumi has contributed to the development of
the AlphaZ system that uses many techniques from the polyhedral model, including code generators.

Risk The risk of this task is low to medium: in this task as well as the other ones we only target intra-
procedural optimization (the case is already difficult enough), and thus the obtained TRSs should be small
enough so that performance of the termination analysis tools should not be problematic. For code generation,
the risk is higher, but we should at least come to a solution that allows complete code generation for the most
simple programs with little modifications to state-of-the-art polyhedral code generators such as CLooG 15.

Deliverable The whole technique with experimental evaluation as a proof of concept might be of interest
of larger-scope top-tier conferences like POPL or PLDI. During this period, we will also write the end-project
report.

2.3 Partners description and relevance, complementarity

Short Bio of the investigator http://laure.gonnord.org/pro/. Laure 16 received her PhD degree in com-
puter science from the University Joseph Fourier (Grenoble), in 2007. She has been an assistant professor at
the University of Lille, and currently holds an assistant professor position at University Lyon 1/UCBL. Her main
research interests lie in the design of static analyses, with emphasis on the automatic synthesis of numerical
invariants and application in compilation (scheduling) and termination proofs. She belongs to the ROMA joint
team of the LIP laboratory (ENS Lyon). She has already published in major conferences on static analysis or
compilation. She will also benefit from the fruitful discussions with the Plume members of the laboratory,
some of them being specialists in programming languages semantics and rewrite systems.

She will be the main advisor 17 of the hired Phd student, who will be co-advised by Lionel Morel.
The publications of the investigator cover many topics from embedded systems design to program verifi-

cation and code optimization. The major publications of interest for this proposal are detailed in the appendix.

The principal investigator, Laure Gonnord is member of ROMA, a common research project-team of
LIP (Laboratoire de l’Informatique du Parallélisme) and Inria. The team is located at Ecole normale
supérieure de Lyon (ENS Lyon) in Lyon, France, which will be the unique partner of this proposal. Laure
Gonnord has experience in Program Analysis for verification and optimization purposes. Her major pub-
lications in large-impact conferences (PLDI, OOPSLA) show a growing interest for applicability and scal-
ability of the analyses she proposes.
Moreover, Laure Gonnord has experience in collaborating with researchers from different communities
(synchronous languages, compilation, static analyses, software engineering). Therefore, she is fully able
to coordinate this project and to bridge the research interests of other people involved in the project.

Collaboration This proposition is a “Young researcher” proposition, so only the first partner (ENS Lyon) will
benefit from the funding. However, other people will be involved in the project as collaborators coming with
their own funding.

• Christophe Alias. http://perso.ens-lyon.fr/christophe.alias. Christophe received his PhD
degree in Computer Science from University of Versailles in 2005. His PhD topic was related to the
equivalence of programs expressed as systems of affine recurrence equations (SARE). Then, he worked
as a postdoctoral researcher at Ohio State University (USA) on data layout optimization for SIMD opti-
mization. He is now a permanent researcher (CR1) at INRIA. His research interests include polyhedral
compilation techniques and high-level-synthesis. Recently, he co-founded the XtremLogic startup com-
pany, which aims at spreading his research results to industry. Christophe Alias’s expertise both in formal
methods and in high-level hardware synthesis of applications will be very useful for us. Christophe’s re-
search projects also include the study of complex data structures to optimize their silicon compilation.

15http://www.cloog.org/
16A more detailed CV can be found in the appendix.
17Her “Habilitation à Diriger les Recherches” is scheduled for Autumn 2017.
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• Carsten Fuhs. http://www.dcs.bbk.ac.uk/~carsten/. Carsten defended his PhD on automation of
termination proofs for term rewrite systems in 2011 at RWTH Aachen University and has been a lecturer
at Birkbeck, University of London since 2015. He is one of the main developers of the automatic termi-
nation analysis tool AProVE18, which is among the leading tools in the annual International Termination
Competition19. AProVE pioneered the two-stage approach for proving program termination with front-
ends to convert from programming languages to term rewrite systems with built-in integers and back-
ends to prove termination of these integer rewrite systems [FGP+09]. Carsten Fuhs has been invited to
teach a course on Proving Program Termination via Term Rewriting in the Advanced Track of the Inter-
national School on Rewriting 2017. 20 The collaboration with Carsten will benefit from his background
in the state-of-the-art of techniques for proving termination of rewrite systems and of programs. He has
also worked on static program analysis of worst-case computational complexity [BEF+16]. Carsten’s re-
search is motivated by the potential application of the program analyses he develops, he always focuses
on techniques that can be incorporated into push-button tools to increase the productivity of software
developers. Carsten’s own research projects thus have many similarities with CODAS.
It is worth noting that although Carsten Fuhs has a position in the UK, there is no real impact of the
Brexit on our proposal. This JCJC proposal implies that all the funding will be hosted at ENS de Lyon.

• Lionel Morel http://lionel.morel.ouvaton.org. Lionel received his PhD degree in Computer Sci-
ence from the Grenoble Institute of Technology in 2005. His PhD was related to the extension of the Lus-
tre dataflow language with array iterators, permitting to use regular programming structures together.
He proposed compilation and formal verification techniques taking advantage of these language con-
structs. After his PhD, he worked for two years on designing models of computations for heterogeneous
embedded systems, first at Åbo Akademi, in Turku, Finland, then at Inria. Since 2007, he is an Assistant
Professor at INSA Lyon. His current research interests include runtimes and performance evaluation
techniques for dynamic dataflow languages, as well as design of video decoders and radio protocols
with these languages. The collaboration with Lionel will bring us expertise on optimization techniques
for dataflow programs as well as his experience with language design and signal processing applications.

• Fabrice Rastello. http://perso.ens-lyon.fr/fabrice.rastello/. Fabrice received his PhD de-
gree in Computer Science from ENS Lyon in 2000. He then worked as an engineer for STMicroelectron-
ics for two years before becoming a full researcher at Inria. He is a specialist on dynamic profiling to
infer hot-points in code under optimization. He is the head of the Inria CORSE joint team, leading the
research in hybrid analyses (both static and dynamic), and hybrid compilation (see Section 1.5). The col-
laboration with Fabrice Rastello will help us get an expertise in profiling applications to extract intensive
computations to optimize.

• Tomofumi Yuki. http://perso.ens-lyon.fr/tomofumi.yuki/. Tomofumi received his PhD in Com-
puter Science from Colorado State University in 2013. He has been a member of the CAIRN team at Irisa
Rennes as a post-doctorant until 2014. He is now an Inria researcher (CR2) at Inria Rennes. His past
research includes static analysis of parallel programs, polyhedral analyses and transformations, and ap-
plication of polyhedral techniques to High-Level Synthesis. The collaboration with Tomofumi Yuki will
bring us expertise in the polyhedral model, and especially the design of polyhedral-based compilers.
His current research project includes the use of static analysis techniques, traditionally used for auto-
matic parallelization, to help parallel programming. Modern parallel programming languages involve
objects and complex data structures, which are not well treated by traditional techniques. Extending the
application of static analysis to such data structures is tightly linked to his objective to provide helpful
feedback to parallel programmers.

The other participants of the project have complementary skills and expertise in different scientific do-
mains. Moreover, their own research projects have strong relationships with the CoDaS project. All the
necessary expertise will thus be available for this project, and also for a future long-term collaboration.
Moreover, this topic is novel in the lab (LIP/ENS Lyon), despite its long expertise in the area of parallelism
and scheduling. The participants may also benefit from the expertise in topics such as semantics and
logics of the Plume team (LIP lab).

18http://aprove.informatik.rwth-aachen.de/
19http://termination-portal.org/wiki/Termination_Competition
20http://www.win.tue.nl/~hzantema/isr.html
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Figure 7 and Table 1 (page 2) summarize the involvement of the different researchers participating in the
project. As this is a junior proposal, partners from outside ENS Lyon/LIP are external collaborators, with their
own fundings. The person months are computed with respect to the total duration of the project (42 months).

P

Input program
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data structures
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Rewriting Abstract Interpretation
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L. Morel
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L. Gonnord, C. Alias,
F. Rastello, T. Yuki

C. Fuhs, L.Gonnord, C. Alias

C. Alias, T. Yuki, F. Rastello

Figure 7: Contributions of the involved persons in the topics of the project

2.4 Scientific justification of requested resources

Financial support is required for the completion of the CODAS project. Support is divided into manpower,
travel, and some small equipment.

Staff
• One Master student (supervised by Lionel Morel and Laure Gonnord in Lyon, in collaboration with To-

mofumi Yuki in Rennes). The Master student will work 6 months on both Task 1 and Task 2. Budget:
6×600 = 3600e. This budget is included in “other external expenses”.

• One PhD student (supervised by Laure Gonnord (HDR in 2017) and Lionel Morel). The thesis work will
start at M6 of the first year of the project. The PhD student will start by reading the state of the art, and
based on the preliminary results of Tasks 1 and 2, will mostly focus on Tasks 3 and 4. The cost of the PhD
student is roughly 100000e for three years.

Mission/Travel Frequent meetings (one by trimester) will be organized to evaluate the overall progress of the
project: are objectives and milestones far from completion? Are there some unexpected deadlocks? For that
purpose, some travel expenses from London (for the work in collaboration with Carsten Fuhs), Grenoble (for
the work in collaboration with Fabrice Rastello), Rennes (Tomofumi Yuki) to Lyon are planned.

Participation at conferences in all domains related to the project will be planned to disseminate the ob-
tained results. Three participations per year are considered. As an example of budget, a typical mission to
North America for a conference like PLDI is 2000e.

This budget also contains the cost of missions for the project’s principal investigator: kick-off seminar,
project review, ANR’s colloquiums.

The budget for this item is 25000e.

Other expenses The budget also includes some small equipment, mainly devoted to the students: one desk-
top for the intern and one laptop for the PhD student, and some minor accessories (batteries), in total 3400e.

Laure Gonnord also applies for teaching compensation for 96 hours per year during the last three years
of the project (from M6 to M42). This compensation is also included in the budget (“external facturation”,
10000e per year, total 30000e). The university (University Lyon 1/UCB) will charge ENSL for this budget line,
after acceptance by the board of directors. We plan to ask for their official authorization as soon as the CODAS
project is accepted. For 2017–18, Laure Gonnord also requested a “demi-delegation” at Inria and CNRS.

The total cost is thus 162000e. The ENS Lyon’s charges are 4% of the total amount, and 4% will be devoted
to the ROMA team/LIP Lab and thus an additional cost of 6480e×2.

The main expenses of the project will be the salary of the PhD student and some additional budget de-
voted to missions and conferences. The total budget is 174960e (including charges).
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3 Valorization, Impact of the proposal

3.1 Dissemination

The results of the CODAS project will be disseminated through publications in scientific conferences or jour-
nal papers. The work covered by the proposal is under the scope of many A or A+-ranked conferences or
journals, such as ACM Transactions of Programming Languages, ACM Transactions on Architecture and Code
Optimization, Science of Computer Programming, or for conferences Principles of Programming Languages,
Programming Language Design and Implementation, Static Analysis Symposium, Compiler Construction, and
also back to our source of inspiration: Formal Structures in Computation and Deduction as well as the Confer-
ence on Automated Deduction. The publications will also be disseminated though open-access devices such
as HAL and arXiv.

The software we develop will mainly be prototypes (most probably inside compiler infrastructures such
as LLVM or GCC), however, the source code will be publicly available. The participating scientists express a
strong preference for licenses such as GNU GPL, or licenses that restrict commercial uses but allow uses for
educational and research purposes. If the research is mature enough, we will propose an implementation in
the SigmaC compiler within the context of our collaboration with Kalray 21.

A dedicated website will be created at the beginning of the project, and will trace the status and results of
the project.

Four participants to the project, namely Christophe Alias, Laure Gonnord, Lionel Morel and Tomofumi
Yuki, are involved in Master courses whose topics intersect with the scope of the project (Compilation, Static
Analysis, Code Optimization). We plan to integrate some of the results of the project onto our future courses.

3.2 Networking

The results of the project (work in progress, tool demos, research issues) will be communicated to the commu-
nity (as we are used to doing), in France and abroad, for instance in the French community of compilation22,
and the German and South England programming languages communities23.

Most participants of the project also belong to the Hipeac European Network on High Performance and
Embedded Architecture and Compilation and will use this network to disseminate more mature work in Hipeac
events such as the plenary conference, satellite workshops, or tool demos.

3.3 Expected Impact

The long-term expected impact of these work is significantly widened applicability of various tools/compilers
related to parallelization. Analysis and representation of schedules are fundamental parts of compiler analysis,
especially important when highly parallel architectures are targeted. The extension of static analysis capabili-
ties to complex data structures allows programmers to benefit from sophisticated tools when writing programs
dealing with such data structures. The current uses of polyhedral techniques are not limited to automatic par-
allelization, but are also used for detection of parallel bugs, proving program termination, detecting transient
errors, and so on. The proposed work is expected to constitute a major milestone in the area of parallel com-
puting, and especially automatic scheduling, from the theoretical foundations to practical issues.

From a research standpoint, we expect to find a new unified framework to reason about program control
and data structures at the same time. We will demonstrate that ideas coming from the two communities of
rewriting and compilation are complementary and can be combined for purposes of efficiency and applica-
bility. We expect a mutual enrichment of the foundations of both areas of research.

From a technological standpoint, the results of the CODAS project will demonstrate that code on complex
data structures can also be mechanically optimized. This will send a strong message to both HPC and general-
purpose software developers: yes, the technology of automatic parallelization/scheduling is mature enough
and practicable.

21http://www.kalrayinc.com/
22http://compilfr.ens-lyon.fr
23http://www-ps.informatik.uni-kiel.de/fg214/ and http://dominic-mulligan.co.uk/?page_id=148
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LIP � UMR CNRS / ENS Lyon / UCB Lyon 1 / INRIA � 69007 Lyon
Contact E-mail: Laure.Gonnord@ens-lyon.fr

ANR proposal CoDaS : Complex Data-structure Scheduling - Appendix
Coordinator: Laure Gonnord

Appel à projet générique 2017, instrument “jeune chercheur”, défi 7.

Curriculum vitae

CV Laure Gonnord

Postal address: Université Lyon 1 Claude Bernard
Laboratoire d’Informatique du Parallélisme
UMR CNRS - ENS Lyon - UCB Lyon 1 - INRIA 5668 Tel.: 04 72 72 85 69 (LIP)
46 allée d’Italie E-mail:laure.gonnord@ens-lyon.fr
69364 Lyon Cedex 07, France Web: http://laure.gonnord.org/pro/

Tenured Assistant Professor (Maître de Conférences)
Topics: Software Verification, Embedded Systems, High Performance Computing,

Static Analysis, Compilation.

Current and former positions

since Sept 2013 Assistant Professor University Lyon 1. Science Faculty, Computer Science Department. Lab:
LIP, Compsys then ROMA team.

2009 – 2013 Assistant Professor University Lille 1. Polytech Engineer School. Computer Science and
Embedded System Departments

2008 – 2009 Teaching and research assistant University Lyon 1 and LIP.
2007 – 2008 Postdoctoral position, INSA Lyon, Lab CITI, ANR Project REVE.
2003 – 2007 PhD in Computer Science Grenoble University, Synchronous Team, Verimag Lab advisor

N. Halbwachs and teaching position, Grenoble University. PhD: “Abstract acceleration to
improve precision of Linear Relation Analysis”, defended on October 27th, 2007.

Software

• Vaphor: A prototype of a static analysis tool that abstract programs with arrays into array-free Horn
clauses (2k OCaml LoCs) (Participation 40%, collaboration with D. Monniaux). The tool has been sub-
stantially re-engineered by Julien Braine since June 2016. http://laure.gonnord.org/pro/demopage/
vaphor/

• Termite (10% participation): termination proof tool, in collaboration with G. Radanne, main developer,
and D. Monniaux. https://termite-analyser.github.io/.

• Aspic: A static analysis tool that implements accelerated Linear relation Analysis, (20 000 OCaml LoCs)
http://laure.gonnord.org/pro/aspic/aspic.html·

• ReveViewer: A prototype “proof of concept” for the REVE ANR Project, a remote image viewer and the
software architecture around it to deal with resource constraints (5000 C++ LoCs).

Service

Teaching/Supervising
• from 2002, I taught for a total 1600 hours from undergraduate to graduate students, from basic program-

ing courses to advanced courses like Program Analysis and Compilation.
• from 2009, I advised 5 undergraduate internships and 2 Master students.
• from 2012, I was in the PhD Jury of 3 theses, including one where I was one of the two referees.
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• from Sept 2014, I have been co-advising (with F. Vivien) the PhD of Maroua Maalej, on designing low cost
static analyses.

Conferences
• PC member of VMCAI ’17, WST ’14, TAPAS ’12.
• PC Jury of the Student Competition at CGO ’16.
• Reviewer of the conferences CAV, VMCAI, STACS, LCTES. . .
• Invited seminars: Google and SRI (June 2015), student seminar at ENSL (2014), . . . (http://laure.
gonnord.org/pro/research/seminars.html).

Projects
• Participation in the projects System@tic “APRON” and ANR “REVE”.
• Coordination of the Lille university BQR Project “ALIL” (languages and analysis for software engineering)

in 2011/2012.
• Coordination of the CNRS INS2I Project “HLS-RT” for 2012 and 2013. (16ke for 2 years) High level syn-

thesis under real-time constraints.
• Partner of the “PROSPIEL” Inria associate team (Brasil-France) since 2015 (20ke per year, 2 years).
• Principal investigator of the BQR ENS de Lyon Project “SODAS”, October 2015 (12ke for 2 years) High

performance programming of complex data structures.

Other
• Co-coordinator of the French Compilation group http://compilfr.ens-lyon.fr/ since 2010.
• Member of the following work-groups: GDR GPL Board, Labex MILYON teaching commission, finance

committee of the Science Faculty, finance committee of the LIP.
• Elected member of the LIP Lab council.
• Since 2013, I participated in 3 associate professor and one junior researcher (CR) selection committees.

I also belong to the Grenoble-Alpes’ Inria doctorate studies committee since 2014.

Publications

The full list of my publications (4 journal papers, 12 international conferences and 6 international workshops
at the date of March 1st, 2017) can be found on HAL or on the webpage http://laure.gonnord.org/pro/

papers.html

Among these publications, the publications that are the most relevant to the CODAS project are the following:
the first three being directly linked to scheduling (termination), and the fourth a sequence of static analyses
that might be useful to analyze our programs (slicing, memory analyses, . . . )

• Our preliminary informal paper [AFG16] presented at the Workshop on Termination in 2016: Three of
the investigators involved in CODAS (Alias, Fuhs, Gonnord) propose the use of (a generalization of)
polynomial interpretations to estimate the worst-case runtime of arbitrary parallelizations of a given
sequential program on complex data structures. This paper opens up new perspectives that we wish to
explore in the CODAS project.

• Rank [ADFG10] (107 citations according to Google Scholar): This paper is the first combination of tech-
niques coming from the polyhedral model community and static analysis community. Combining the
information gathered by abstract interpretation on a program with the scheduling techniques that were
formally applied on static nests of for loops has permitted to design a new algorithm to compute affine
schedules (and thus ranking functions) for arbitrary flowcharts programs. This paper had a quite strong
impact on the termination community.

• Termite [GMR15]: This paper is an enhancement and extension of the algorithm of [ADFG10] and other
similar algorithms in the sequential termination community. The contribution of this paper is a more
general method synthesizing lexicographic linear ranking functions (and thus proving termination),
supported by inductive invariants, in the case where the transition relation of the program includes dis-
junctions and existentials (large block encoding of control flow). Our algorithm incrementally refines
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a global linear constraint system according to extremal counterexamples: only constraints that exclude
spurious solutions are included.

• Greenarrays [NMS+14]: In this paper we use static analysis to prevent out-of-bounds memory accesses
in C programs. There exist several techniques to secure C programs; however, these methods tend to
slow down these programs substantially, because they populate the binary code with runtime checks.
To deal with this problem, we have designed and tested two static analyses – symbolic region and range
analysis – which we combine to remove the majority of these guards.

These three last papers have also contributions in terms of software, namely the WTC tool-suite 24, the
Termite tool 25 and the Greenarray framework 26. All the algorithms are tested on large benchmarks and are
available for testing for the community.
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