
Abstract Clock-based Approaches in
the Programming, Design and
Analysis of Embedded Systems

Abdoulaye GAMATIÉ
LIRMM/CNRS, Montpellier
abdoulaye.gamatie@lirmm.fr

Embedded applications

I smart & data-intensive: high #functions, data amounts

I real-time: time-bounded reactivity w.r.t. environment

Multi-Processor System-on-Chip (MPSoC)

I Parallel and distributed implementations of applications

I Execution correctness, performance an energy-e�ciency

Rational for high-level design approach

Fast, easy, costless and relevant design for multi-clock and
data-intensive applications with high-level concepts

Outline

Polychrony and Signal programming

Clock Constraint Specification Language (CCSL)

Abstract clock-based design analysis for MPSoCs

Outline

Polychrony and Signal programming

Clock Constraint Specification Language (CCSL)

Abstract clock-based design analysis for MPSoCs

Multi-clocked systems

Globally Asynchronous Locally Synchronous

node 3

node 2

node 1

3210 4

0 2 51 6 73 4

0 1 2 3

Polychronous design

Non monolithic vision of system design

I No need to design a priori a global common clock:
di↵erent activation clocks

I Partially ordered events

I Component-oriented (incremental) design

I Non determinism: beyond the system, its environment

Polychronous formalisms

Signal (around 1981)

I IRISA/Inria Rennes (France)

I Polychrony
(http://www.irisa.fr/espresso/Polychrony)

Clock Constraint Specification Language – CCSL
(around 2006)

I I3S/Inria Sophia-Antipolis (France)

I TimeSquare (http://timesquare.inria.fr)

Multi-Rate Instantaneous Channel connected Data
Flow – MRICDF (around 2008)

I Virginia Tech (Blacksburg, USA)

I EmCodeSyn (http://www.fermat.ece.vt.edu)

Polychronous formalisms

Signal (around 1981)

I IRISA/Inria Rennes (France)

I Polychrony
(http://www.irisa.fr/espresso/Polychrony)

Clock Constraint Specification Language – CCSL
(around 2006)

I I3S/Inria Sophia-Antipolis (France)

I TimeSquare (http://timesquare.inria.fr)

Multi-Rate Instantaneous Channel connected Data
Flow – MRICDF (around 2008)

I Virginia Tech (Blacksburg, USA)

I EmCodeSyn (http://www.fermat.ece.vt.edu)

Polychronous formalisms

Signal (around 1981)

I IRISA/Inria Rennes (France)

I Polychrony
(http://www.irisa.fr/espresso/Polychrony)

Clock Constraint Specification Language – CCSL
(around 2006)

I I3S/Inria Sophia-Antipolis (France)

I TimeSquare (http://timesquare.inria.fr)

Multi-Rate Instantaneous Channel connected Data
Flow – MRICDF (around 2008)

I Virginia Tech (Blacksburg, USA)

I EmCodeSyn (http://www.fermat.ece.vt.edu)

Programming concepts of Signal

Polychrony at a glance

I A formal design model for multi-clocked systems such as
GALS [Le Guernic et al.’03]: polychronous1 model

I Logical time, as in other synchronous languages

I Signal language

I
Polychrony (academic) environment
(http://www.irisa.fr/espresso/Polychrony)

I GUI for modeling/specifying/programming in Signal
I Compiler
I Connection to the Sigali tool
I ...

I
RT-Builder (commercial) environment of the Geensoft
spin-o↵ of Dassault Syst. (http://www.geensoft.com)

1From the Greek “poly chronos”, meaning multiple clocks.

The Signal language

Basic notions
I signal x: infinite series of typed values (x

t

)
t2N

t0 t1 t2 t3 t4 t5 . . .
x : 1 5 ? 6 ? 0 . . .

I absence of events: ?
I constant signals: series of identical values
I usual data types: boolean, integer, real,

complex, char, string, etc.
I pure events: event (sub-type of boolean)

The Signal language (cont’d)

Basic notions
I signal x: infinite series of typed values (x

t

)
t2N

t0 t1 t2 t3 t4 t5 . . .
x : 1 5 ? 6 ? 0 . . .

I Abstract clock of a signal: bx (instants of presence)

I Synchronous signals: x b= y (same clock)

I Process: system of equations expressing functional and
temporal relations between signals.

The Signal language (cont’d)

Basic notions
I signal x: infinite series of typed values (x

t

)
t2N

t0 t1 t2 t3 t4 t5 . . .
x : 1 5 ? 6 ? 0 . . .

I Abstract clock of a signal: bx (instants of presence)

I Synchronous signals: x b= y (same clock)

I Process: system of equations expressing functional and
temporal relations between signals.

The Signal language (cont’d)

Basic notions
I signal x: infinite series of typed values (x

t

)
t2N

t0 t1 t2 t3 t4 t5 . . .
x : 1 5 ? 6 ? 0 . . .

I Abstract clock of a signal: bx (instants of presence)

I Synchronous signals: x b= y (same clock)

I Process: system of equations expressing functional and
temporal relations between signals.

The Signal language (cont’d)

Basic notions
I signal x: infinite series of typed values (x

t

)
t2N

t0 t1 t2 t3 t4 t5 . . .
x : 1 5 ? 6 ? 0 . . .

I Abstract clock of a signal: bx (instants of presence)

I Synchronous signals: x b= y (same clock)

I Process: system of equations expressing functional and
temporal relations between signals.

Exercise...

Which scenarios denote synchronous signals?

x : ? 5 ? ? 4 2 0 ? ...
y : ? ? 5 ? ? 4 2 0 ...

x : ? 5 ? ? 4 2 0 ? ...
y : ? 5 ? ? 4 2 0 ? ...

x : ? 5 ? ? 4 2 0 ? ...
y : ? 3 ? ? 1 9 8 ? ...

x : ? 5 �7 ? 4 2 0 ? ...
y : ? 3 ? ? 1 9 8 ? ...

Basic operators on signals

I Instantaneous functions/relations: z := x+ y

(8t 2 N) z
t

=

⇢
? if x

t

= y

t

=?
x

t

+ y

t

else

x : ? 5 ? ? 4 2 0 ? ...
y : ? 3 ? ? 1 9 8 ? ...
z : ? 8 ? ? 5 11 8 ? ...

I Delay: y := x $ 1 init 3.14

� (8t 2 N) x

t

=? , y

t

=?
� (9t

i

2 N) x

t

i

6=?) y

t0 = 3.14, (8t
i

> 0) y
t

i+1 = x

t

i

x : 1.7 ? 2.5 ? ? 6.5 2.4 ...
y : 3.14 ? 1.7 ? ? 2.5 6.5 ...

Basic operators on signals

I Instantaneous functions/relations: z := x+ y

(8t 2 N) z
t

=

⇢
? if x

t

= y

t

=?
x

t

+ y

t

else

x : ? 5 ? ? 4 2 0 ? ...
y : ? 3 ? ? 1 9 8 ? ...
z : ? 8 ? ? 5 11 8 ? ...

I Delay: y := x $ 1 init 3.14

� (8t 2 N) x

t

=? , y

t

=?
� (9t

i

2 N) x

t

i

6=?) y

t0 = 3.14, (8t
i

> 0) y
t

i+1 = x

t

i

x : 1.7 ? 2.5 ? ? 6.5 2.4 ...
y : 3.14 ? 1.7 ? ? 2.5 6.5 ...

Basic operators on signals

I Undersampling: y := x when b

� Extracts elements from (x
t

)
t2N, at instants where b is true

� by = bx \ [b]

x : 5 ? 4 8 7 3 ? ...
b : tt ↵ ? ↵ tt ? tt ...
y : 5 ? ? ? 7 ? ? ...

I Merging: y := u default v

� Deterministic functional merging of series (u
t

)
t2N and (v

t

)
t2N

� by = bu [bv

u : 5 ? 4 8 ? ? 3 ...
v : 1 7 ? 2 ? 0 1 ...
y : 5 7 4 8 ? 0 3 ...

Basic operators on signals

I Undersampling: y := x when b

� Extracts elements from (x
t

)
t2N, at instants where b is true

� by = bx \ [b]

x : 5 ? 4 8 7 3 ? ...
b : tt ↵ ? ↵ tt ? tt ...
y : 5 ? ? ? 7 ? ? ...

I Merging: y := u default v

� Deterministic functional merging of series (u
t

)
t2N and (v

t

)
t2N

� by = bu [bv

u : 5 ? 4 8 ? ? 3 ...
v : 1 7 ? 2 ? 0 1 ...
y : 5 7 4 8 ? 0 3 ...

Exercises...

Discuss the correctness of the following statements:

1. A signal is necessarily present whenever it holds a value di↵erent
from ?.

2. A constant signal is always present.

3. When a signal becomes absent, it implicitly keeps its previously
carried value.

4. A signal of event type and a signal of boolean type are exactly
the same.

5. The abstract clock of a signal defines the set of instants at which
the signal occurs.

6. Signal assumes a reference clock that enables to always decide
the presence/absence of any defined signal.

Exercises...

1. In the expression s
n

:= R(s1,...,sn�1) where R is an
instantaneous relation, if the signal s1 is absent while all other
arguments of R are present, s

n

is calculated by considering some
default value depending on the type of s1.

2. In the expression s2 := s1 $ 1 init c, the signal s2 may occur
with the latest value of s1 while s1 is absent.

3. In the expression s3 := s1 default s2, the signals s1 and s2
must have exclusive clocks.

4. In the expression s3 := s1 or s2,

I s3 is true when s1 is true and s2 is absent;
I s3 is true when s1 is true and s2 is false;
I s3 is false when s1 is absent and s2 is false;
I s3 is false when s1 is absent and s2 is absent.
I s3 is absent when s1 is absent and s2 is absent.

Basic operators on processes

I Composition: u := x + y | z := u when b

� Union of systems of equations (static single assignment)
� P and Q communicate via their common signals

x : ? 5 ? ? 4 2 0 ? ...
y : ? 3 ? ? 1 9 9 ? ...
u : ? 8 ? ? 5 11 9 ? ...
b : tt ↵ ? ↵ tt ? tt ? ...
z : ? ? ? ? 5 ? 9 ? ...

I Hiding (local declaration): P where u

� Restricts the visibility scope of signal u to P

x : ? 5 ? ? 4 2 0 ? ...
y : ? 3 ? ? 1 9 9 ? ...
b : tt ↵ ? ↵ tt ? tt ? ...
z : ? ? ? ? 5 ? 9 ? ...

Basic operators on processes

I Composition: u := x + y | z := u when b

� Union of systems of equations (static single assignment)
� P and Q communicate via their common signals

x : ? 5 ? ? 4 2 0 ? ...
y : ? 3 ? ? 1 9 9 ? ...
u : ? 8 ? ? 5 11 9 ? ...
b : tt ↵ ? ↵ tt ? tt ? ...
z : ? ? ? ? 5 ? 9 ? ...

I Hiding (local declaration): P where u

� Restricts the visibility scope of signal u to P

x : ? 5 ? ? 4 2 0 ? ...
y : ? 3 ? ? 1 9 9 ? ...
b : tt ↵ ? ↵ tt ? tt ? ...
z : ? ? ? ? 5 ? 9 ? ...

Syntactic elements: program/process

process <IDENTIFIER> =

%<SOME_COMMENTS>%

{<STATIC_PARAMETERS>;}

(? <INPUT_PARAMETERS>;

! <OUTPUT_PARAMETERS>;)

(| <EQUATION_1>

| ...

| <EQUATION_K>

| (| <EQUATION_K1>

| ...

| <EQUATION_Kp>

|)

| <EQUATION_N>

| ...

|)

where

<LOCAL_DECLARATIONS>;

end;

Example: a counter modulo N

process COUNTER_N =

{integer N;}

(? event tick;

! integer cnt;)

(| cnt ^= tick

| cnt := (0 when reset) default cnt_pre + 1

| cnt_pre := cnt $ 1 init 0

| reset := true when (cnt_pre = N-1)

|)

where

integer cnt_pre; event reset;

end;%COUNTER_N%

tick : tt tt tt ? tt tt ? tt tt ...
cnt : 1 2 0 ? 1 2 ? 0 1 ...
cnt pre : 0 1 2 ? 0 1 ? 2 0 ...

Exercises...

1. Define a process Sum in which on each occurrence of its
unique input i of real type, the sum of occurred values
of i until now is computed in the output signal s.

2. Define a process Average in which on each occurrence of
its unique input i of real type, the average of occurred
values of i until now is computed in the output signal
avg.

Exercises... (cont’d)

1. Given a constant parameter N of integer type, define a
process AverageN in which on each occurrence of its
unique input i of real type, the average of the N
previous values2 of i from now is computed in the output
signal avg.

2. Let i be a positive integer signal. Define a signal max
in a process Maximum, which takes at the current logical
instant the most recent maximum value held by i.

2Note: i$N may be initialized to 0.0 by using the following
expression: init[to N:0.0].

Clock-oriented specifications

Extended constructs for clock manipulation

I Set operations on clocks
I Empty/null clock: ^0
I Union (upper bound): x1 ^+ x2
I Intersection (lower bound): x1 ^* x2
I Relative complement (di↵erence): x1 ^- x2

I Clock comparison
I Inferiority: x1 ^< x2
I Superiority: x1 ^> x2
I Exclusion: x1 ^# x2
I Equality: x1 ^= x2

I Set of instants at which a condition holds: when c

Clock-oriented specifications

Extended constructs for clock manipulation

I Set operations on clocks
I Empty/null clock: ^0
I Union (upper bound): x1 ^+ x2
I Intersection (lower bound): x1 ^* x2
I Relative complement (di↵erence): x1 ^- x2

I Clock comparison
I Inferiority: x1 ^< x2
I Superiority: x1 ^> x2
I Exclusion: x1 ^# x2
I Equality: x1 ^= x2

I Set of instants at which a condition holds: when c

Exercise...

I Let s1 and s2 be two signals of any type and
independent from each other. Define a signal present of
event type that occurs whenever s1 and s2 are present
at the same time.

I What about the following expression as a solution:

bs1 and bs2?

Static analysis and compilation in

Polychrony

Program analysis with a compiler

Usual compilation functionality: syntax, type, etc.

Clock calculus based on a Boolean abstraction

I clock exclusion: mutual exclusion

I empty clock: absence of reaction, or undesired events

I clock hierarchy (inclusion): structuring of statements

I synthesis of a master clock from a program: determinism

(Clocked-) Data-dependency analysis

I absence of dependency cycles (deadlocked behavior)

Clock analysis

What happens with the following program?

process P1 =

(? integer s1;

! integer s2, s3, s4;)

(| s2 := s1 when (s1 > 0)

| s3 := s1 when not (s1 > 0)

| s4 := s2 + s3

|);

Clock analysis

What happens with the following program3?

process P2 =

(? dreal s2, s4;

! dreal s1, s3;)

(| s3 := sin(s1) + s2

| s1 := s4 default s3

|);

3dreal type denotes real double precision

Automatic code generation

Clock inclusion hierarchy for e�cient control-flow (beyond
data-dependency analysis)

Endochronous versus exochronous programs

Automatic code generation

Clock inclusion hierarchy for e�cient control-flow (beyond
data-dependency analysis)

Endochronous versus exochronous programs

Automatic code generation

Clock inclusion hierarchy for e�cient control-flow (beyond
data-dependency analysis)

Automatic code generation

Clock inclusion hierarchy for e�cient control-flow (beyond
data-dependency analysis)

Data dependency analysis

What happens with the following program?

process P3 =

(? dreal s2, s4;

! dreal s1, s3;)

(| s3 := sin(s1) + cos(s2)

| tmp := s3 / 3.14

| s1 := tmp * tmp

|)

where

dreal tmp;

end;

A demo on C code generation?

Other facilities of Polychrony

Design libraries and model-checking

Sigali tool: verification (model-checking) of reactive systems
and discrete controller synthesis (http:
//www.irisa.fr/vertecs/Softwares/sigali.html)

APEX-ARINC 653 library: for integrated modular avionics

Avionic application design, real-time java code re-engineering

Environment front-end Bibliographic notes

I Paul Le Guernic, Jean-Pierre Talpin, and Jean-Christophe
Le Lann. Polychrony for system design. Journal for
Circuits, Systems and Computers, Special Issue on
Application Specific Hardware Design, World Scientific,
April 2003

I A Gamatié “Designing Embedded Systems with the
SIGNAL Programming Language”, (260 pages). Springer
NY editor, 2010.

I Paul Le Guernic and Thierry Gautier. Data-Flow to von
Neumann: the Signal approach. In Advanced Topics in
Data-Flow Computing, J.-L. Gaudiot and L. Bic, Eds,
Prentice-Hall, 1991, 413-438

Outline

Polychrony and Signal programming

Clock Constraint Specification Language (CCSL)

Abstract clock-based design analysis for MPSoCs

Clock Constraint Specification Language

UML/Marte standard modeling profile: Modeling and
Analysis of Real-Time and Embedded systems

Semantic issues related to time: CCSL brings a formal
foundation, with suitable expressivity

Temporal behavior modeling and reasoning

I causal relations between events

I polychronous

I partially ordered events

Clock Constraint Specification

Language: basic notions

CCSL

Basic notons: logical clocks and instant relations

CCSL: clock relations

Coincidence relation: c1 equals to c2

CCSL: clock relations

Clock containment: c2 is a sub-clock of c1

CCSL: clock relations

Infinitely many precedence relations: c2 precedes c1

CCSL: clock relations

Instant alternation

CCSL: clock relations

Periodicity: c2 is periodic on c1

Example of specification

Downscaling transformation

Intuitive description

A downscaling application model

Functional specification

Mapped downscaling application

Allocation specification on a platform

CMOS

sensor

<<HwSensor>> <<HwProcessor>> <<HwActuator>>

Downscaler

Image

Display

TFT

ConsumerProducer

Image

Processor

<<allocate>> <<allocate>> <<allocate>>

Mapped downscaling application

Frequency and rate constraint specification

CMOS

sensor

<<HwSensor>> <<HwProcessor>> <<HwActuator>>

Downscaler

Image

Display

TFT

ConsumerProducer

Image

Processor

<<allocate>> <<allocate>> <<allocate>>

frequency, ... frequency, ...frequency, ...

production rate, ... activation rate, ... consumption rate, ...

Mapped downscaling application

Capture by abstract clock relations

CMOS

sensor

<<HwSensor>> <<HwProcessor>> <<HwActuator>>

Downscaler

Image

Display

TFT

ConsumerProducer

Image

Processor

<<allocate>> <<allocate>> <<allocate>>

frequency, ... frequency, ...frequency, ...

production rate, ... activation rate, ... consumption rate, ...

Basic clock specification

Definition of a clock type, named “ActivationClock”

Clock constraints for downscaling

Design analysis with TimeSquare

Bibliographic notes

I Charles André. Syntax and Semantics of the Clock Constraint
Specification Language (CCSL). Rapport de recherche INRIA,
No 6925, 2009.

I Charles André, Frédéric Mallet, Robert de Simone. Modeling
Time(s). In 10th Int. Conf on Model Driven Engineering
Languages and Systems (MODELS ’07), LNCS, Pages
559-573, Nashville, TN, USA, Septembre 2007.

I Calin Glitia, Julien Deantoni, Frédéric Mallet, Jean-Vivien
Millo, Pierre Boulet, Abdoulaye Gamatié. Progressive and
explicit refinement of scheduling for multidimensional
data-flow applications using uml marte. Design Automation
for Embedded Systems, Springer, 2012, 16 (2), pp. 137-169.

Outline

Polychrony and Signal programming

Clock Constraint Specification Language (CCSL)

Abstract clock-based design analysis for MPSoCs

MPSoC design challenges

Cost-e↵ective and safe design for adaptive MPSoCs

Design Issue for adaptive MPSoCs

Identifying e�cient application-architecture mappings,
w.r.t. adaptive behaviors: frequencies, task migration...

MPSoC design challenges

Cost-e↵ective and safe design for adaptive MPSoCs

Design Issue for adaptive MPSoCs

Identifying e�cient application-architecture mappings,
w.r.t. adaptive behaviors: frequencies, task migration...

MPSoC design challenges

Cost-e↵ective and safe design for adaptive MPSoCs

Design Issue for adaptive MPSoCs

Identifying e�cient application-architecture mappings,
w.r.t. adaptive behaviors: frequencies, task migration...

MPSoC design challenges

Cost-e↵ective and safe design for adaptive MPSoCs

Design Issue for adaptive MPSoCs

Identifying e�cient application-architecture mappings,
w.r.t. adaptive behaviors: frequencies, task migration...

MPSoC design challenges

Cost-e↵ective and safe design for adaptive MPSoCs

Design Issue for adaptive MPSoCs

Identifying e�cient application-architecture mappings,
w.r.t. adaptive behaviors: frequencies, task migration...

MPSoC design challenges

Cost-e↵ective and safe design for adaptive MPSoCs

Design Issue for adaptive MPSoCs

Identifying e�cient application-architecture mappings,
w.r.t. adaptive behaviors: frequencies, task migration...

Starting point: Y-chart

Starting point: Y-chart (focus)

Starting point: Y-chart (focus)

Classy design analysis framework

Application behavior

Application specification

Clock modeling: events: e0, e1, e2

Architecture behavior

Architecture specification

I
f0 = 300, f1 = 200, f2 = 150;

I frequency of reference clock K: LCM(f0, f1, f2) = 600.

Clock modeling

0 1 2 3 4 5 6 7 8 ...
K • • • • • • • • • ...
p0

p1

p2

Architecture behavior

Architecture specification

I
f0 = 300, f1 = 200, f2 = 150;

I frequency of reference clock K: LCM(f0, f1, f2) = 600.

Clock modeling

0 1 2 3 4 5 6 7 8 ...
K • • • • • • • • • ...
p0 • • • • • ...
p1

p2

Architecture behavior

Architecture specification

I
f0 = 300, f1 = 200, f2 = 150;

I frequency of reference clock K: LCM(f0, f1, f2) = 600.

Clock modeling

0 1 2 3 4 5 6 7 8 ...
K • • • • • • • • • ...
p0 • • • • • ...
p1 • • • ...
p2

Architecture behavior

Architecture specification

I
f0 = 300, f1 = 200, f2 = 150;

I frequency of reference clock K: LCM(f0, f1, f2) = 600.

Clock modeling

0 1 2 3 4 5 6 7 8 ...
K • • • • • • • • • ...
p0 • • • • • ...
p1 • • • ...
p2 • • • ...

Adaptive architecture behavior

Architecture specification

I instant 4: p0 : f0 ! 2f0, adaptation penalty: one cycle.

Clock modeling

0 1 2 3 4 5 6 7 8 9 10 11 12 ...
K • • • • • • • • • • • • • ...
p0

p1

Adaptive architecture behavior

Architecture specification

I instant 4: p0 : f0 ! 2f0, adaptation penalty: one cycle.

Clock modeling

0 1 2 3 4 5 6 7 8 9 10 11 12 ...
K • • • • • • • • • • • • • ...
p0 • • •
p1 • •

Adaptive architecture behavior

Architecture specification

I instant 4: p0 : f0 ! 2f0, adaptation penalty: one cycle.

Clock modeling

0 1 2 3 4 5 6 7 8 9 10 11 12 ...
K • • • • • • • • • • • • • ...
p0 • • • •
p1 • • •

Adaptive architecture behavior

Architecture specification

I instant 4: p0 : f0 ! 2f0, adaptation penalty: one cycle.

Clock modeling

0 1 2 3 4 5 6 7 8 9 10 11 12 ...
K • • • • • • • • • • • • • ...
p0 • • • • • • • • • • ...
p1 • • • • • ...

Mapping of application on platform

A

B

C

p0

p1

p2

[↵?,↵>]

I Function T ! P ;

I Elementary costs ↵, i.e., time and energy costs;

I Best and Worst Case costs [↵?,↵>].

Abstract clock modeling of scheduling

I
A = {e0, e1} with costs [2, 2] and [1, 1] cycles;

0 1 2 3 4 5 6 7 8 9
K • • • • • • • • • •
p0 • • • • •

clk(A/p0)

I event executions: 1 followed by �1;

I non-execution: 0 followed by �1.

I As Soon As Possible scheduling preserving precedence

relations.

Abstract clock modeling of scheduling

I
A = {e0, e1} with costs [2, 2] and [1, 1] cycles;

0 1 2 3 4 5 6 7 8 9
K • • • • • • • • • •
p0 • • • • •

clk(A/p0) 1 -1 -1 -1

I event executions: 1 followed by �1;

I non-execution: 0 followed by �1.

I As Soon As Possible scheduling preserving precedence

relations.

Abstract clock modeling of scheduling

I
A = {e0, e1} with costs [2, 2] and [1, 1] cycles;

0 1 2 3 4 5 6 7 8 9
K • • • • • • • • • •
p0 • • • • •

clk(A/p0) 1 -1 -1 -1 1 -1

I event executions: 1 followed by �1;

I non-execution: 0 followed by �1.

I As Soon As Possible scheduling preserving precedence

relations.

Abstract clock modeling of scheduling

I
A = {e0, e1} with costs [2, 2] and [1, 1] cycles;

0 1 2 3 4 5 6 7 8 9
K • • • • • • • • • •
p0 • • • • •

clk(A/p0) 1 -1 -1 -1 0 -1 1 -1

I event executions: 1 followed by �1;

I non-execution: 0 followed by �1.

I As Soon As Possible scheduling preserving precedence

relations.

Abstract clock modeling of scheduling

I
A = {e0, e1} with costs [2, 2] and [1, 1] cycles;

0 1 2 3 4 5 6 7 8 9
K • • • • • • • • • •
p0 • • • • •

clk(A/p0) 1 -1 -1 -1 0 -1 1 -1

I event executions: 1 followed by �1;

I non-execution: 0 followed by �1.

I As Soon As Possible scheduling preserving precedence

relations.

Performance analysis

0 1 2 3 4 5 6 7 8 9 10 11 12
K • • • • • • • • • • • • •
p0 • • • • • • •

clk(A/p0) 1 -1 0 -1 1 -1
p1 • • • • •

clk(B/p1) 0 -1 -1 1 -1 -1 1 -1 -1

I execution time: the longest clock, e.g., 9/fK;

I usage ratio of PEs: busy cycles/overall cycles, e.g.,
p0 : 2/3;

I energy consumption of PEs: energy costs for (running
tasks + being idle)

Design space exploration: CLASSY Tool

http://www.lirmm.fr/~gamatie/pages/Tool/Classy.html

I Exhaustive and heuristic-based exploration methods

I Pareto-optimal mapping and platform config. solutions
w.r.t. time and energy

Experimental results: CLASSY vs SoCLib

Performance analysis4 on JPEG encoder

I less precise but similar observation tendency.

4Assuming deadlock-free communications.

Experimental results: CLASSY vs SoCLib

Energy consumption analysis5 on JPEG encoder

5Assuming deadlock-free communications.

Bibliographic notes

I Xin An, Sarra Boumedien, Abdoulaye Gamatie and Eric
Rutten ”CLASSY: a Clock Analysis System for Rapid
Prototyping of Embedded Applications on MPSoCs”, 15th
International Workshop on Software and Compilers for
Embedded Systems, - SCOPES’2012, Schloss Rheinfels, St.
Goar, Germany, May 15-16, 2012. ACM Press.

I Abdoulaye Gamatie ”Design of Streaming Applications on
MPSoCs using Abstract Clocks”, Design, Automation and
Test in Europe - DATE’2012, Dresden, Germany, March 2012.

I Adolf Abdallah, Abdoulaye Gamatié, Rabie Ben Atitallah and
Jean-Luc Dekeyser. ’Abstract Clock-based Design of a JPEG
Encoder’, IEEE Embedded System Letters, vol 4, n. 2, June
2012.

Summary

Abstract clock-based approaches for
I programming with Signal
I reasoning about temporal properties
I design space exploration for MPSoCs

The end...

