Embedded applications

Abstract Clock-based Approaches in
the Programming, Design and
Analysis of Embedded Systems

Abdoulaye GAMATIE
LIRMM/CNRS, Montpellier
abdoulaye.gamatie@lirmm.fr

Laporatoire » smart & data-intensive: high #functions, data amounts
Informatique

Robotique » real-time: time-bounded reactivity w.r.t. environment
Microélectronique
Montpellier

Rational for high-level design approach

Fast, easy, costless and relevant design for multi-clock and
data-intensive applications with high-level concepts

Polychronous ';:fs::::ee
B L = e G Modeling

o 1 [
Processor 3 Y W
- ayste ]\ N
\,

» Parallel and distributed implementations of applications

» Execution correctness, performance an energy-efficiency



Polychrony and Signal programming Polychrony and Signal programming
Clock Constraint Specification Language (CCSL)

Abstract clock-based design analysis for MPSoCs

Multi-clocked systems

Polychronous design

Globally Asynchronous Locally Synchronous Non monolithic vision of system design

» No need to design a priori a global common clock:
different activation clocks

» Partially ordered events

» Component-oriented (incremental) design

» Non determinism: beyond the system, its environment




Polychronous formalisms Polychronous formalisms

Signal (around 1981) Signal (around 1981)
» IRISA/Inria Rennes (France) » IRISA/Inria Rennes (France)
» Polychrony » Polychrony
(http://www.irisa.fr/espresso/Polychrony) (http://www.irisa.fr/espresso/Polychrony)

Clock Constraint Specification Language — CCSL
(around 2006)

» 13S/Inria Sophia-Antipolis (France)
» TimeSquare (http://timesquare.inria.fr)

Polychronous formalisms

Signal (around 1981)
» IRISA/Inria Rennes (France)
» Polychrony

(http://www.irisa.fr/espresso/Polychrony) PROGRAMMING CONCEPTS OF SIGNAL

Clock Constraint Specification Language — CCSL
(around 2006)

» 13S/Inria Sophia-Antipolis (France)
» TimeSquare (http://timesquare.inria.fr)

Multi-Rate Instantaneous Channel connected Data
Flow — MRICDF (around 2008)

» Virginia Tech (Blacksburg, USA)
» EmCodeSyn (http://www.fermat.ece.vt.edu)



Polychrony at a glance The SIGNAL language

» A formal design model for multi-clocked systems such as Basic notions
GALS [Le Guernic et al.’03]: polychronous' model » signal x: infinite series of typed values (x;):en

v

Logical time, as in other synchronous languages

v

SIGNAL language

v

Polychrony (academic) environment

(http://www.irisa.fr/espresso/Polychrony ) 5 c .
> absence of events:

» constant signals: series of identical values

» usual data types: boolean, integer, real,
complex, char, string, etc.

» pure events: event (sub-type of boolean)

» GUI for modeling/specifying/programming in SIGNAL
» Compiler
» Connection to the Sigali tool

> ..

v

RT-Builder (commercial) environment of the Geensoft
spin-off of Dassault Syst. (http://www.geensoft.com )

1From the Greek “poly chronos”, meaning multiple clocks.

The SiGNAL language (cont’d) The SiGNAL language (cont’d)

Basic notions Basic notions
» signal x: infinite series of typed values (x:)sen » signal x: infinite series of typed values (x:)sen
to 5} tr t3 ty ts to 5} tr t3 ty ts
x: 1 5 1L 6 1 0 x: 1 5 1L 6 1L 0

» Abstract clock of a signal: “x (instants of presence)



The SIGNAL language (cont’d) The SIGNAL language (cont’d)

Basic notions
» signal x: infinite series of typed values (x;)sen

Basic notions
» signal x: infinite series of typed values (x;):en

» Abstract clock of a signal: ~x (instants of presence) » Abstract clock of a signal: ~x (instants of presence)

» Synchronous signals: x ~= y (same clock) » Synchronous signals: x ~=y (same clock)

» Process: system of equations expressing functional and
temporal relations between signals.

Exercise... Basic operators on signals

Which scenarios denote synchronous signals? > Instantaneous functions/relations: z := x+ y
x: L 5 L 1L 4 2 0 L L ifxp =y =1L
y: L 1 5 1 1L 4 2 0 (VteN)zf_{xtert else
n 5 N N 2 ) o N x: 1 5 1 1 4 2 0 1
X
y: L 5 n n 4 5 0 n y: L 3 1 1 1 9 8 1
z: L 8 1 1 11 8 1




Basic operators on signals

Basic operators on signals

» Undersampling: y

Extracts elements from (X¢)ien,at instants where b is true

» Instantaneous functions/relations: z := x+ y
_ 1 if Xt = Yt =1
(\V/t S N) Zy = { X; + Ve else
x: L1 5 1 4 4 2 0 4
y: L 3 L 1L 1 9 8 L
z: 1 8 L 4 11 8 L

» Delay: y := x $ 1 init 3.14

- (FeN) x, #L =y, =314, (Yt >0) yy,, = X

i

6.5 2.4

X

1.7

L

2.5 L 1

X when b

— ¥ =7<%n [b]
x: b 1 4 8 7 3 1
b: tt fF 1 ff tt 1 tt
y: 5 L 1 1 7 1 1

y: 3.14 L 1.7 L 1 2.5 6.5

Exercises...

Discuss the correctness of the following statements:

Basic operators on signals

» Undersampling: y := x when b

1. A signal is necessarily present whenever it holds a value different

— Extracts elements from (xt)teN,at instants where b is true ¢ N
rom L.

- ¥ =% n [b]
2. A constant signal is always present.

X 5 L 4 8 7 3 L 3. When a signal becomes absent, it implicitly keeps its previously
b: tt ff 1 ff tt 1 tt carried value.
y: b 1 1 1 7 1 1

4. A signal of event type and a signal of boolean type are exactly

. h .
» Merging: y := u default v the same
5. The abstract clock of a signal defines the set of instants at which
— Deterministic functional merging of series (u;)ieny and (vi)ren the signal occurs.
- ¥y =1U%¥ _
6. SIGNAL assumes a reference clock that enables to always decide
the presence/absence of any defined signal.

u: b5 1 4 8 1 1 3
v: 1 7 1 2 1 0 1
y: b 7 4 8 1 0 3




Exercises... Basic operators on processes

1. In the expression s, := R(si,...,s,_1) where R is an » Composition: u := x +y | z := u when b
instantaneous relation, if the signal s; is absent while all other ) ) o )
arguments of R are present, s, is calculated by considering some — Union of systems. of equ'atloné (static 5mg{e assignment)
default value depending on the type of ;. — P and Q communicate via their common signals

2. In the expression s, := s; $ 1 init c, the signal sy may occur x: L 5 T 1 a4 2 0 1
with the latest value of s; while s; is absent. y: L 3 i € 1 9 9 i

. . u 1 8 1 1 5 11 9 1

3. In the expression s3 := s; default sy, the signals s; and s, b: tt ff L ot L tt L

must have exclusive clocks. z: L L L L 5 1 9 1

4. In the expression s3 := s; or sy,

> s3 is true when sp is true and s, is absent;
s3 is true when sy is true and s, is false;

s3 is false when s; is absent and s; is false;
s3 is false when s; is absent and s is absent.

Yy vV VvV VY

s3 is absent when s; is absent and s» is absent.

Basic operators on processes

» Composition: u := x +y | z := u when b

Syntactic elements: program/process

process <IDENTIFIER> =
%<SOME_COMMENTS>?,
{<STATIC_PARAMETERS>;}
(7 <INPUT_PARAMETERS>;

— Union of systems of equations (static single assignment)
— P and Q communicate via their common signals

E— T . 5 n ! <OUTPUT_PARAMETERS>; )
y: L 3 1 i 1 9 9 1 (| <EQUATION_1>
u: L 8 1 1 5 11 9 1 | ...
b tt ff 1 ff tt 1 tt 1 | <EQUATION_K>
zz L L L L 5 L 9 1 | (| <EQUATION_K1>
...
» Hiding (local declaration): P where u | <EQUATION_Kp>

D)
| <EQUATION_N>
[ ...
D

— Restricts the visibility scope of signal u to P

x: L 5 1 1 4 2 0 1
y: L 3 € € 1 9 9 1 where
b: tt ff 1 ff tt 1 tt 1
< > .
z: 1 1 1 1 5 L 9 N o LOCAL_DECLARATIONS>;



Example: a counter modulo N Exercises...

process COUNTER_N = 1. Define a process Sum in which on each occurrence of its
{integer N;} unique input i of real type, the sum of occurred values
(? event tick; of i until now is computed in the output signal s.
! integer cnt; ) . . .
(I cnt "= tick 2. Define a process Average in which on each occurrence of
| cnt := (0 when reset) default cnt_pre + 1 its unique input i of real type, the average of occurred
| cnt_pre := cnt $ 1 init O values of i until now is computed in the output signal
| reset := true when (cnt_pre = N-1) avg.
D)
where

integer cnt_pre; event reset;
end; %COUNTER_NY

tick : tt tt tt 1 tt tt 1 tt tt
cnt : 1 2 0 €1 1 2 1 0 1
cnt_pre: O 1 2 1 0 1 1 2 0

Exercises... (cont’d) Clock-oriented specifications

1. Given a constant parameter N of integer type, define a Extended constructs for clock manipulation
process AverageN in which on each occurrence of its
unique input i of real type, the average of the N > Set operations on clocks
previous values? of i from now is computed in the output > Empty/null clock: ~0
signal avg. » Union (upper bound): x1 ~+ x2

> Intersection (lower bound): x1 ~* x2

2. Let i be a positive integer signal. Define a signal max + Relative complement (difference): x1 - x2

in a process Maximum, which takes at the current logical
instant the most recent maximum value held by i.

2Note: i$N may be initialized to 0.0 by using the following
expression: init[to N:0.0].



Clock-oriented specifications

Extended constructs for clock manipulation

» Set operations on clocks
» Empty/null clock: ~0
» Union (upper bound): x1 ~+ x2
» Intersection (lower bound): x1 ~* x2
» Relative complement (difference): x1 ~- x2

» Clock comparison
Inferiority: x1 ~< x2
Superiority: x1 ~> x2
Exclusion: x1 ~# x2
Equality: x1 "= x2

vy vV VvV vV

» Set of instants at which a condition holds: when c

STATIC ANALYSIS AND COMPILATION IN
POLYCHRONY

Exercise...

» Let s1 and s2 be two signals of any type and
independent from each other. Define a signal present of
event type that occurs whenever s1 and s2 are present
at the same time.

» What about the following expression as a solution:

“s1 and "s27?

Program analysis with a compiler

Usual compilation functionality: syntax, type, etc.

Clock calculus based on a Boolean abstraction
» clock exclusion: mutual exclusion
» empty clock: absence of reaction, or undesired events
» clock hierarchy (inclusion): structuring of statements

» synthesis of a master clock from a program: determinism

(Clocked-) Data-dependency analysis
» absence of dependency cycles (deadlocked behavior)



Clock analysis Clock analysis

What happens with the following program? What happens with the following program3?

process P1 = process P2 =

( 7 integer si; ( ? dreal s2, s4;
! integer s2, s3, s4; ) ! dreal s1, s3; )
(| 82 := s1 when (s1 > 0) (] 83 := sin(sl) + s2
| 83 := s1 when not (s1 > 0) | s1 := s4 default s3
| s4 := s2 + s3 1);

1)

3dreal type denotes real double precision

Automatic code generation Automatic code generation

Clock inclusion hierarchy for efficient control-flow (beyond Clock inclusion hierarchy for efficient control-flow (beyond
data-dependency analysis) data-dependency analysis)
clk_i if (elk_i) clk_i if (clk_i)
... ...
if (clk_bl) if (clk_bl)
—_ . —_ .
Ik_bl Lo b Ik_bl Lo
R0 clk b2 if (clk_b2) R clk b2 if (clk_b2)
/\/\ { ... }; /\/\ { ... };
} }

Endochronous versus exochronous programs



Automatic code generation Automatic code generation

Clock inclusion hierarchy for efficient control-flow (beyond Clock inclusion hierarchy for efficient control-flow (beyond
data-dependency analysis) data-dependency analysis)
clk_i if (eclk_i) if {(clk_.l)
{ ... clk_1 if (clk_2)
if (clk_bl) { ...}
if (clk _b2) BT L
if (clk_2 && clk_3)
clk_b2 ... 1 { if (clk_i)
} { ... b
} e
R

Data dependency analysis

What happens with the following program?

process P3 =
( ? dreal s2, s4;
! dreal s1, s3; )
(1 s3 := sin(s1) + cos(s2) A DEMO ON C CODE GENERATION?
| tmp := s3 / 3.14
| s1 := tmp * tmp
B
where
dreal tmp;
end;



Design libraries and model-checking

Sigali tool: verification (model-checking) of reactive systems
and discrete controller synthesis (http:
//www.irisa.fr/vertecs/Softwares/sigali.html)

OTHER FACILITIES OF POLYCHRONY APEX-ARINC 653 library: for integrated modular avionics

‘ Application Software Layer

e i 2

( ¥ L]
Core Software
Layer
System Specific
Funclions

APEX Interface
Avionic application design, real-time java code re-engineering

Bibliographic notes

» Paul Le Guernic, Jean-Pierre Talpin, and Jean-Christophe
Le Lann. Polychrony for system design. Journal for
Circuits, Systems and Computers, Special Issue on
Application Specific Hardware Design, World Scientific,
April 2003

» A Gamatié “Designing Embedded Systems with the
SIGNAL Programming Language”, (260 pages). Springer
NY editor, 2010.

» Paul Le Guernic and Thierry Gautier. Data-Flow to von
Neumann: the Signal approach. In Advanced Topics in
Data-Flow Computing, J.-L. Gaudiot and L. Bic, Eds,
Prentice-Hall, 1991, 413-438

[

Environment front-end

5
=5
M P Furctionabties Generatars ‘Sewnario: oS
. { iy ) S =
- P iamensiob = - R 3
+ [Reset ]

Cacus
= Signl Textusl (5]

i |
o] [RpS——




Clock Constraint Specification Language

UML/Marte standard modeling profile: Modeling and
Analysis of Real-Time and Embedded systems

Semantic issues related to time: CCSL brings a formal
foundation, with suitable expressivity

Clock Constraint Specification Language (CCSL)
Temporal behavior modeling and reasoning
» causal relations between events
» polychronous

» partially ordered events

CCSL

Basic notons: logical clocks and instant relations

Clock 1 2 jnstant .
OC|
CrLocK CONSTRAINT SPECIFICATION Z
!
LANGUAGE: BASIC NOTIONS p"*‘:e"“’“‘:‘l
C

coincidence

1 2 3

@ @ c2




CCSL: clock relations CCSL: clock relations

Coincidence relation: cl equals to c2 Clock containment: c2 is a sub-clock of cl

1 2 3 4 5 6

1

2 3 4 5 6
cl
c2

CCSL: clock relations

Infinitely many precedence relations: c2 precedes cl Instant alternation
1 2 3 4 5 6 1 2 3 4 5 6
%61 C1
N N N NN N N\ \ \ \ N
AN N AN NN AN N \ N

CCSL: clock relations




CCSL: clock relations

Periodicity: c2 is periodic on cl
1 2 3 4 5 6 -

-—o—0o0—0-o—0o—-

EXAMPLE OF SPECIFICATION

-
N

Downscaling transformation A downscaling application model

Intuitive description Functional specification
Application
_____ > . D: Downscaler :
P: FrameProducer C: FrameConsumer
<<shaped>> inFramesD <<shaped>>
i z . ,:_ ; outFramesP outFramesD inFramesC
Original image After horizontal S S

Downscaling

Final image
filtering



Mapped downscaling application

Mapped downscaling application

Allocation specification on a platform

Image Image
Producer Downscaler Consumer

Frequency and rate constraint specification

Image Image
Producer Downscaler Consumer

production rate, ... activation rate, ... consumption rate, /..

<<allocate>> <<allocate>> <<allocate>>

<_____
<_____

<<HwSensor>> <<HwProcessor>>

CMOs Processor _TFT
sensor Display

Mapped downscaling application

Capture by abstract clock relations

Image Image

Producer . Downscaler Consumer
1
production rate, ... activation rate, ... consumption rate,
1
1
1
1
<<allocate>>

<<HwSensor>> <<HwProcessor>>

frequency, ...

[frequency, ...

[frequency, ...

TFT
Display

CMOS
sensor

Processor

1
1
1
1
Y
1
1
1
1
1
1
1
<<allocate>> !
1
1
1
1
1
1
1
1
1
1
1
1
1
1

R

<<allocate>> <<allocate>> <<allocate>>

<_____

<<HwSensor>> <<HwProcessor>> <<HwActuator>>|

[frequency, ... frequency, ... frequency, ...

CMOS Processor _TFT
sensor Display

Basic clock specification

Definition of a clock type, named “ActivationClock”

<<clockType>>

{nature = discrete,
unitType = activationTick
isLogical = true}

ActivationClock

currentTime():Real




Clock constraints for downscaling

Application

P: FrameProducer D: MainDownscaler C: FrameConsumer

{on = c_p} {on = c_d} {on = c_c}
<<shaped>> inFramesD <<shaped>>
outFramesP outFramesD inFramesC

shape = (1920.1030.“ﬂ | shape = (720‘480.‘)‘1

<<clock>>
{unit = activationTick}
c_c: ActivationClock

<<clock>>
{unit = activationTick}
c_p: ActivationClock

. ~
. ~
. ~
S

<<clockConstraint>> <<clockConstraint>>
c_d isPeriodicOn c_p period p1l offset d1 c_c isPeriodicOn c_d period p2 offset d2
~ -

~ -
~ -

<<clock>>
{unit = activationTick}
c_d: ActivationClock

Bibliographic notes

» Charles André. Syntax and Semantics of the Clock Constraint
Specification Language (CCSL). Rapport de recherche INRIA,
No 6925, 2009.

» Charles André, Frédéric Mallet, Robert de Simone. Modeling
Time(s). In 10th Int. Conf on Model Driven Engineering
Languages and Systems (MODELS '07), LNCS, Pages
559-573, Nashville, TN, USA, Septembre 2007.

» Calin Glitia, Julien Deantoni, Frédéric Mallet, Jean-Vivien
Millo, Pierre Boulet, Abdoulaye Gamatié. Progressive and
explicit refinement of scheduling for multidimensional
data-flow applications using uml marte. Design Automation
for Embedded Systems, Springer, 2012, 16 (2), pp. 137-169.

Design analysis with TimeSquare

y N N y 7
. . Ml i o i, e
i ion_i1_finish *‘*Aﬁ_ ﬁ \“‘nﬁ \ﬂ \‘ﬂ
coret % {adive ) {active) {adive} {adive ) {active) { acve )
12 ot . . Il | fl
Puacamprossion 1. i ] f il ] ]|
core2 (rcte) {acive) {active) {ctve) { e } (eewe)
o ], fl 1. il | — _
S ~ T R n
cored (active) {active} {active)- {actve} Active J—{ace}
. fl. i, fl.
0 0 ;
G ﬂ_\ - \_
5
ﬂ\ ﬂ\ n.“ ~~~~~
0 w T ‘%

PulseCompression_finish

Abstract clock-based design analysis for MPSoCs



MPSoC design challenges MPSoC design challenges

Cost-effective and safe design for adaptive MPSoCs Cost-effective and safe design for adaptive MPSoCs

Application Software Hardware Platform

SR

MPSoC design challenges MPSoC design challenges

Cost-effective and safe design for adaptive MPSoCs Cost-effective and safe design for adaptive MPSoCs

Hardware Platform Hardware Platform

Application Software Application Software

Interconnect Interconnect
n o o
1

@ ® g
“ SR ﬂ SRS

Design Issue for adaptive MPSoCs

Identifying efficient application-architecture mappings,
w.r.t. adaptive behaviors: frequencies, task migration...



MPSoC design challenges MPSoC design challenges

Cost-effective and safe design for adaptive MPSoCs Cost-effective and safe design for adaptive MPSoCs

Hardware Platform P Hardware Platform
Application Software

| PE1
Interconnect
n

Application Software

ed
Design Issue for adaptive MPSoCs Design Issue for adaptive MPSoCs

Identifying efficient application-architecture mappings, Identifying efficient application-architecture mappings,
w.r.t. adaptive behaviors: frequencies, task migration... w.r.t. adaptive behaviors: frequencies, task migration...

Starting point: Y-chart Starting point: Y-chart (focus)
’ System Specification ‘ System Specification ‘
.......... * l l 4
Application ‘ Architecture
Model Model

\ Mapping /
Scheduling &
Performance N )

Analysis ->modeling and scheduling

by Abstract Clocks

", ‘|Performance Results| - Design Flow ~.. :|Performance Results| .-~
& e & )
Design Decisions FeedbacI Design Decisions




Starting point: Y-chart (focus)

System Specification

CLASSY DESIGN ANALYSIS FRAMEWORK

—>m0de|ingl_a‘r'1d scheduling
by Abstract Clocks

| >result:
a number of solutions

Application behavior Architecture behavior

Application specification Architecture specification

Interconnect A
T

Clock modeling: events: e, €1, & > f, = 300, f; = 200, f, = 150;

A . » frequency of reference clock /C: LCM(fy, f1, f,) = 600.
N ‘ Clock modeling
01 23 456 78
c: ' JCle © @ @ © o o o o
fo fl fz time Po
P1

P2



Architecture behavior

Architecture specification

Interconnect
LT LT

» fo = 300, f = 200, f, = 150;
» frequency of reference clock /C: LCM(fy, f1, f) = 600.

Clock modeling

01 2 3 45 6 7 8
e © o © © o o o o
Po | @ ° ° ° °
P1
p2

Architecture behavior

Architecture behavior

Architecture specification

Interconnect
T LT

» fo =300, 7 = 200, f, = 150;
» frequency of reference clock /C: LCM(fy, f1, f) = 600.

Clock modeling

01 2 3 45 6 7 8
JCle @ @ @ © o o o o
Po | ® ° ° ° °
pL|e ° °
P2

Architecture specification

Interconnect
L;

> £ =300, f = 200, f, — 150;
» frequency of reference clock /C: LCM(fy, fi, f,) = 600.

Clock modeling

01 2 3 45 6 7 8
C|le o © o o o o o o
Po| e ° ° °
pL|e . °
Do | e ° °

Adaptive architecture behavior

Architecture specification

Interconnect
T

L

» instant 4. pg : fy — 2fy, adaptation penalty: one cycle.

Clock modeling
01 23 45 6 7 8 9 10 11 12

IC [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ [ ] [ [ ] [ ] [ ]
Po
P1



Adaptive architecture behavior Adaptive architecture behavior

Architecture specification Architecture specification
Interconnect Interconnect

» instant 4. po : fy — 2fy, adaptation penalty: one cycle. » instant 4. po : fy — 2fy, adaptation penalty: one cycle.

Clock modeling Clock modeling
01 23 45 6 7 8 9 10 11 12 01 23 45 6 7 8 9 10 11 12

’C [ ) [ J [ ) [ ] [ ) [ [} [ ] [} [ ] [ ) [ ) [} ’C [ ] [} [ [ J [ ) [ J [ ) [ [ ) [ ] [ ) [ ) [ )

po [ ) [ ) [} po [ ] [ ] [ ) [}

pL|e® ° pL|e® ° .

Mapping of application on platform

Adaptive architecture behavior

Architecture specification

[aLv aT]

Interconnect & B ? P
C P2

» Function T — P;

» instant 4. pg : fy — 2fy, adaptation penalty: one cycle.

Clock modelin . .
g » Elementary costs o, i.e., time and energy costs;

0123 456 7 8 9 10 11 12 .. » Best and Worst Case costs [0 . o]
IC [ ] [ ] [ ] [ [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
po [ ] [ ] [ ] [ ] [ [ ] [ ] [ ] [ ] [ ]
p1| e ° ° ) °



Abstract clock modeling of scheduling

» A= {ey, e} with costs [2, 2] and [1,1] cycles;

Po
clk(A/po)

» event executions: 1 followed by —1;

Abstract clock modeling of scheduling

» A= {ey, e} with costs [2. 2] and [1,1] cycles;

0 1 2 3 45
K e o o o o o
Po ° ° °
ck(A/pg) |1 -1 -1 -1

» event executions: 1 followed by —1;

— & & O

7
[ ]

® O OO

e O

Abstract clock modeling of scheduling

» A={ey, e} with costs [2, 2] and [1,1] cycles;

0 1 2 3 45
K e o o o o o
Po o o
ck(A/pg) |1 -1 -1 -1

» event executions: 1 followed by —1;

e o6 O

7
°

® & OO0

e O

Abstract clock modeling of scheduling

» A= {ep, e} with costs [2.2] and [1, 1] cycles;

0 1 2 3 4 5
K e o o o o o

Po L4 o
ck(A/pg) |1 -1 -1 -1 0 -1

» event executions: 1 followed by —1;
» non-execution: 0 followed by —1.

7
°



Abstract clock modeling of scheduling Performance analysis

» A= {ey, e} with costs [2.2] and [1, 1] cycles; 0 1 2 4 5 6 7 8 9 10 11 12
K L[] [ ] L[] [ [ ] [ ] [ [ ] [ ] o [ ] L[] L]
0 2 3 4 5 6 8 9 Po . . . .
K e o o o o o o o ° ck(A/p) |1 -1 0 -1 1 -1
Po ° ° ° B 0 11 1114 1 )
k(B 0o -1 -1 - - - -
dk(A/po) |1 1 -1 1 0 -1 1 -1 ck(B/p)
» execution time: the longest clock, e.g., 9/fx;
> event executions: 1 followed by —1; » usage ratio of PEs: busy cycles/overall cycles, e.g.,
» non-execution: 0 followed by —1. po:2/3;
» As Soon As Possible scheduling preserving precedence » energy consumption of PEs: energy costs for (running
relations. tasks + being idle)

Design space exploration: CLASSY Tool Experimental results: CLASSY vs SoCLib

http://www.lirmm.fr/~gamatie/pages/Tool/Classy.html Performance analysis* on JPEG encoder
CLASSY 140 B SystemC simulation

B Abstract clock analysis

Non-adaptive

System Specification Scheduler Synthesis

- application
- architecture
- mapping

Execution time (ms)
(=2}
o

Adaptive
Scheduler Synthesis

Configurations

» Exhaustive and heuristic-based exploration methods > less precise but similar observation tendency.

» Pareto-optimal mapping and platform config. solutions
w.r.t. time and energy

4Assuming deadlock-free communications.



Experimental results: CLASSY vs SoCLib Bibliographic notes

Energy consumption analysis® on JPEG encoder » Xin An, Sarra Boumedien, Abdoulaye Gamatie and Eric
Rutten " CLASSY: a Clock Analysis System for Rapid
ST Prototyping of Embedded Applications on MPSoCs”, 15th
B Abstract clock analysis International Workshop on Software and Compilers for
Embedded Systems, - SCOPES'2012, Schloss Rheinfels, St.
Goar, Germany, May 15-16, 2012. ACM Press.

» Abdoulaye Gamatie "Design of Streaming Applications on
MPSoCs using Abstract Clocks”, Design, Automation and
Test in Europe - DATE'2012, Dresden, Germany, March 2012.

Energy (uJ)

Configurations » Adolf Abdallah, Abdoulaye Gamatié, Rabie Ben Atitallah and
Jean-Luc Dekeyser. 'Abstract Clock-based Design of a JPEG
Encoder’, IEEE Embedded System Letters, vol 4, n. 2, June
2012.

ssuming deadlock-free communications.
5A deadlock-f t

Abstract clock-based approaches for
» programming with Signal
» reasoning about temporal properties
» design space exploration for MPSoCs

THE END...




