
Chapter 2: Automatic distribution of Lustre and Esterel
synchronous programs

Alain Girault
(Joint work with Paul Caspi)

(and with Clément Ménier for circuits)

January 2014 – ENS Lyon

Alain Girault Chapter 2: Automatic distribution

Outline

1 Context and overview

2 The di↵erent distribution approaches

3 OC code distribution

4 SC code distribution

5 CP code distribution

Alain Girault Chapter 2: Automatic distribution

Outline

1 Context and overview

2 The di↵erent distribution approaches

3 OC code distribution

4 SC code distribution

5 CP code distribution

Alain Girault Chapter 2: Automatic distribution

Context

Emebdded and reactive systems are distributed :

physical location of sensors and actuators

fault-tolerance

performance improvement

In general, distribution is driven by the user

Synchronous programming languages are concurrent

But :

expression parallelism 6= execution parallelism

Alain Girault Chapter 2: Automatic distribution

Context

Emebdded and reactive systems are distributed :

physical location of sensors and actuators

fault-tolerance

performance improvement

In general, distribution is driven by the user

Synchronous programming languages are concurrent

But :

expression parallelism 6= execution parallelism

Alain Girault Chapter 2: Automatic distribution

Separate programming of each computing location

Advantages

e�ciency of the code

divide and conquer approach

Inconvenients

no global view of the system

no semantics of communication

debugging a distributed program is di�cult

Alain Girault Chapter 2: Automatic distribution

Asynchronous parallel programming languages

E.g. : Ada, Occam, multi-threaded Java, ...

Advantages

global view

debugging on the source code

Inconvenients

the interleaving semantics is non-deterministic

debugging must be performed on non-deterministic sequential object
code

[E.A. Lee, The problem with threads]

Alain Girault Chapter 2: Automatic distribution

Synchronous parallel programming languages

E.g. : Esterel, Lustre, Signal/Polychrony, Heptagon, Prelude, ...

Advantages

global view

debugging on the source code

debugging on deterministic sequential object code

Inconvenients

how to generate distributed code ?

Alain Girault Chapter 2: Automatic distribution

Automatic distribution

To benefit from the advantages of synchronous programming, one must
generate automatically the corresponding distributed code.

specifications

Distributed program

Source program

Automatic distributor
Distribution

Distribution specifications : N computing locations =) particion of the
set of inputs / outputs into N subsets.

Í Driven by the physical location of the sensors and actuators
(We do not seek the best performances nor the maximal parallelism)

Alain Girault Chapter 2: Automatic distribution

Outline

1 Context and overview

2 The di↵erent distribution approaches

3 OC code distribution

4 SC code distribution

5 CP code distribution

Alain Girault Chapter 2: Automatic distribution

Direct source code distribution (1)

Algorithm

Cut the source program into N fragments

Compile separately each fragment

Make the N fragments communicate harmoniously

This is the ideal solution

But in general it does not work

Alain Girault Chapter 2: Automatic distribution

Direct source code distribution (1)

Algorithm

Cut the source program into N fragments

Compile separately each fragment

Make the N fragments communicate harmoniously

This is the ideal solution

But in general it does not work

Alain Girault Chapter 2: Automatic distribution

Direct source code distribution (1)

Algorithm

Cut the source program into N fragments

Compile separately each fragment

Make the N fragments communicate harmoniously

This is the ideal solution

But in general it does not work

Alain Girault Chapter 2: Automatic distribution

A counter-example (1)

O2

O1

I2

I1

node MAIN (I1:int) returns (O2:int);

var O1,I2:int;

let

O1 = I1;

O2 = I2;

I2 = O1;

tel;

I2 = O1; O1 = I1;

O2 = I2;

Alain Girault Chapter 2: Automatic distribution

A counter-example (2)

Compiling a concurrent program (e.g., Lustre) into sequential code means
sequentializing it !

The red fragment can be sequentialized in two ways :

main program blue fragment red fragment

O2:=I1;

O1:=rcv(R);

O1:=I1;

I2:=O1;

snd(B,O1);

snd(R,I2); I2:=rcv(B);

O2:=I2;

O2:=I1;

O1:=rcv(R); I2:=rcv(B);

I2:=O1; O2:=I2;

snd(R,I2);

O1:=I1;

snd(B,O1);

Alain Girault Chapter 2: Automatic distribution

A counter-example (2)

Compiling a concurrent program (e.g., Lustre) into sequential code means
sequentializing it !

The red fragment can be sequentialized in two ways :

main program blue fragment red fragment

O2:=I1; O1:=rcv(R); O1:=I1;

I2:=O1; snd(B,O1);

snd(R,I2); I2:=rcv(B);

O2:=I2;

O2:=I1;

O1:=rcv(R); I2:=rcv(B);

I2:=O1; O2:=I2;

snd(R,I2);

O1:=I1;

snd(B,O1);

Alain Girault Chapter 2: Automatic distribution

A counter-example (2)

Compiling a concurrent program (e.g., Lustre) into sequential code means
sequentializing it !

The red fragment can be sequentialized in two ways :

main program blue fragment red fragment

O2:=I1; O1:=rcv(R); O1:=I1;

I2:=O1; snd(B,O1);

snd(R,I2); I2:=rcv(B);

O2:=I2;

O2:=I1;

O1:=rcv(R); I2:=rcv(B);

I2:=O1; O2:=I2;

snd(R,I2);

O1:=I1;

snd(B,O1);

Alain Girault Chapter 2: Automatic distribution

A counter-example (2)

Compiling a concurrent program (e.g., Lustre) into sequential code means
sequentializing it !

The red fragment can be sequentialized in two ways :

main program blue fragment red fragment

O2:=I1; O1:=rcv(R); O1:=I1;

I2:=O1; snd(B,O1);

snd(R,I2); I2:=rcv(B);

O2:=I2;

O2:=I1; O1:=rcv(R); I2:=rcv(B);

I2:=O1; O2:=I2;

snd(R,I2); O1:=I1;

snd(B,O1);

Alain Girault Chapter 2: Automatic distribution

Direct source code distribution (2)

Algorithm

Cut the source program into N fragments

For each fragment 1 to N :

compile fragment i , taking into account the scheduling constraints C1

to Ci�1

synthesize the scheduling constraints Ci for the next fragments

Solution adopted in Signal

The code distribution algorithm must perform the causality analysis at the
same time as the distribution

Problem : in which orderr must the fragments be compiled ?

Alain Girault Chapter 2: Automatic distribution

Direct source code distribution (2)

Algorithm

Cut the source program into N fragments

For each fragment 1 to N :

compile fragment i , taking into account the scheduling constraints C1

to Ci�1

synthesize the scheduling constraints Ci for the next fragments

Solution adopted in Signal

The code distribution algorithm must perform the causality analysis at the
same time as the distribution

Problem : in which orderr must the fragments be compiled ?

Alain Girault Chapter 2: Automatic distribution

Object code distribution

Source program

Sequential object code

Compiler

Distributed program

Automatic distributor
Distribution
specifications

Í The source program is debugged first
Í The causality analysis is performed by the compiler
Í The method can be common to several synchronous languages

Alain Girault Chapter 2: Automatic distribution

OC automaton

Common format to the Lustre and Esterel compilers

Finite state automaton with a DAG of actions in each state

One reaction of the program = one transition of the automaton

Purely sequential control flow

Explicit and static control structure

Alain Girault Chapter 2: Automatic distribution

SC circuit

Output format of the Esterel compiler

Sequential circuit with a finite memory to drive a table of actions on
data types

One reaction of the program = one clock cycle of the circuit

Parallel control flow

Implicit and dynamic control structure

Opens up possibilities to do hardware/software codesign

Alain Girault Chapter 2: Automatic distribution

Outline

1 Context and overview

2 The di↵erent distribution approaches

3 OC code distribution

4 SC code distribution

5 CP code distribution

Alain Girault Chapter 2: Automatic distribution

Structure of the OC code

An OC program handles signals and variables :

signal = input/output of the source program

variable = associated to valued signals and local variables

The nodes of the DAG can be :

Root : Implicit read of the input signals

Unary node :

Variable assignment : x:=exp
Output signal emission : output y

External procedure call : call p

Binary node : binary test : if, present

Leaf : change state : goto s

Alain Girault Chapter 2: Automatic distribution

A running example in OC

input ck,x:integer;

output y,z:integer;

State 0

go(ck,x);

if (ck) then

y:=calcul(x);

output(y);

else

z:=x;

output(z);

endif

goto 0;

Alain Girault Chapter 2: Automatic distribution

Distribution directives

The user wants N computing sites

Í Partition of the set of inputs/outputs of the program into N subsets
Vi (i = 1..N)

Running example :

Site 0 : V0 = {ck , x , z}

Site 1 : V1 = {y}

Alain Girault Chapter 2: Automatic distribution

OC distribution algorithm

1 Duplicate the sequential code on each computing location

2 Assign a location to each variable and action

3 On each computing location, do :
1 Prune useless actions

2 Insert communications

3 Insert synchronizations

Classical notations :

use(A) = {variables used by node A}
def(A) = {variables modified by node A}

Alain Girault Chapter 2: Automatic distribution

The OC running example

State 0

– Site 0

go(ck,x);

if (ck) then

y:=calcul(x);

output(y);

else

z:=x;

output(z);

endif

goto 0;

State 0 – Site 1

go(ck,x);

if (ck) then

y:=calcul(x);

output(y);

else

z:=x;

output(z);

endif

goto 0;

Inter-cite data dependencies !
Í Need to insert communications.

Alain Girault Chapter 2: Automatic distribution

The OC running example

State 0 – Site 0

go(ck,x);

if (ck) then

y:=calcul(x);

output(y);

else

z:=x;

output(z);

endif

goto 0;

State 0 – Site 1

go(ck,x);

if (ck) then

y:=calcul(x);

output(y);

else

z:=x;

output(z);

endif

goto 0;

Inter-cite data dependencies !
Í Need to insert communications.

Alain Girault Chapter 2: Automatic distribution

The OC running example

State 0 – Site 0

go(ck,x);

if (ck) then

y:=calcul(x);

output(y);

else

z:=x;

output(z);

endif

goto 0;

State 0 – Site 1

go(ck,x);

if (ck) then

y:=calcul(x);

output(y);

else

z:=x;

output(z);

endif

goto 0;

Inter-cite data dependencies !
Í Need to insert communications.

Alain Girault Chapter 2: Automatic distribution

The OC running example

State 0 – Site 0

go(ck,x);

if (ck) then

else

z:=x;

output(z);

endif

goto 0;

State 0 – Site 1

if (ck) then

y:=calcul(x);

output(y);

else

endif

goto 0;

Inter-cite data dependencies !
Í Need to insert communications.

Alain Girault Chapter 2: Automatic distribution

The OC running example

State 0 – Site 0

go(ck,x);

if (ck) then

else

z:=x;

output(z);

endif

goto 0;

State 0 – Site 1

if (ck) then

y:=calcul(x);

output(y);

else

endif

goto 0;

Inter-cite data dependencies !
Í Need to insert communications.

Alain Girault Chapter 2: Automatic distribution

Choice of the communication primitives

Rendezvous (Ada, OCCAM)

asynchronous but synchronizing

incur unnecessary delays

FIFOs

truly asynchronous

send and receive delayed

send and receives must be performed in the same order

Alain Girault Chapter 2: Automatic distribution

Communication primitives

Send

snd(j,x) insert value x in the FIFO connected to site j

non-blocking

(could be blocking when FIFO is full for synchronization)

Receive

y:=rcv(i) extracts the head value from the FIFO connected to site
i and assigns it to variable y

blocking when the FIFO is empty

Alain Girault Chapter 2: Automatic distribution

Communication insertion algorithm

Sends

Compute at each node of the DAG the sets E s
need of variables needed by s :

1 Traverse the DAG backward starting from the leaves

2 For each x2 use(A), if x 62 Vs then E s
need:=E

s
need [{x}

3 For each y2 def(A), if y2 E s
need then insert a snd(s,x) in the DAG

of site t

Receives

Compute at each node of the DAG the ordered sets Q
(s,t)
fifo of variables sent

by s to t :

1 Traverse the DAG forward starting from the root

2 For each snd(t,x) insert x in Q
(s,t)
fifo

3 For each x2 use(A), if x 62 Vs then insert a x:=rcv(s) in the DAG
of site t

Alain Girault Chapter 2: Automatic distribution

The OC running example

State 0 – Site 0

go(ck,x);

snd(1,ck);

if (ck) then

snd(1,x);

else

z:=x;

output(z);

endif

goto 0;

State 0 – Site 1

ck:=rcv(0);

if (ck) then

x:=rcv(0);

y:=calcul(x);

output(y);

else

endif

goto 0;

Alain Girault Chapter 2: Automatic distribution

The OC running example

State 0 – Site 0

go(ck,x);

snd(1,ck);

if (ck) then

snd(1,x);

else

z:=x;

output(z);

endif

goto 0;

State 0 – Site 1

ck:=rcv(0);

if (ck) then

x:=rcv(0);

y:=calcul(x);

output(y);

else

endif

goto 0;

Alain Girault Chapter 2: Automatic distribution

The OC running example

State 0 – Site 0

go(ck,x);

snd(1,ck);

if (ck) then

snd(1,x);

else

z:=x;

output(z);

endif

goto 0;

State 0 – Site 1

ck:=rcv(0);

if (ck) then

x:=rcv(0);

y:=calcul(x);

output(y);

else

endif

goto 0;

Alain Girault Chapter 2: Automatic distribution

Resynchronization

One computing location could be purely a producer of values for another
location (e.g., site 0)

Í Can lead to unbounded FIFOs

The initial centralized program follows a notion of cycle / reaction
(= one transition of the OC automaton)

Í What is the meaning in the distributed case ?

Resynchronization methods :

Strong resynchronization

Weak resynchronization

Alain Girault Chapter 2: Automatic distribution

Resynchronization

One computing location could be purely a producer of values for another
location (e.g., site 0)

Í Can lead to unbounded FIFOs

The initial centralized program follows a notion of cycle / reaction
(= one transition of the OC automaton)

Í What is the meaning in the distributed case ?

Resynchronization methods :

Strong resynchronization

Weak resynchronization

Alain Girault Chapter 2: Automatic distribution

Strong synchronization

No delay at all between any two computing location :

Í All computing location must execute synchronously the same
automaton reaction

Í A synchronization must occur at the end of each reation

A token circulating twice between all N nodes : 2 ⇥ N

synchronization messages

A rendezvous between all N nodes : N ⇥ (N-1) synchronization
messages

Alain Girault Chapter 2: Automatic distribution

Weak synchronization

At most one time lag between any pair of computing locations

Weak “total” sychronization :

At least one message exchange between any two locations at each
reaction

Built upon the existing sends and receives

Weak “if needed” synchronization

Alain Girault Chapter 2: Automatic distribution

Weak synchronization

At most one time lag between any pair of computing locations

Weak “total” sychronization :

At least one message exchange between any two locations at each
reaction

Built upon the existing sends and receives

Weak “if needed” synchronization

Only between locations that already communicate with each other

Only during the reactions where they do communicate

Alain Girault Chapter 2: Automatic distribution

Weak synchronization

At most one time lag between any pair of computing locations

Weak “total” sychronization :

At least one message exchange between any two locations at each
reaction

Built upon the existing sends and receives

Weak “if needed” synchronization

Blocking snd to implement bounded capacity FIFOs

Relaxed form of resynchronization where there can be N time lags

Alain Girault Chapter 2: Automatic distribution

The OC running example

State 0 – Site 0

go(ck,x);

snd(1,ck);

if (ck) then

snd(1,x);

else

z:=x;

output(z);

endif

rcv_void(1);

goto 0;

State 0 – Site 1

snd_void(0);

ck:=rcv(0);

if (ck) then

x:=rcv(0);

y:=calcul(x);

output(y);

else

endif

goto 0;

Alain Girault Chapter 2: Automatic distribution

The OC running example

State 0 – Site 0

go(ck,x);

snd(1,ck);

if (ck) then

snd(1,x);

else

z:=x;

output(z);

endif

rcv_void(1);

goto 0;

State 0 – Site 1

snd_void(0);

ck:=rcv(0);

if (ck) then

x:=rcv(0);

y:=calcul(x);

output(y);

else

endif

goto 0;

Alain Girault Chapter 2: Automatic distribution

The OC running example

State 0 – Site 0

go(ck,x);

snd(1,ck);

if (ck) then

snd(1,x);

else

z:=x;

output(z);

endif

rcv_void(1);

goto 0;

State 0 – Site 1

snd_void(0);

ck:=rcv(0);

if (ck) then

x:=rcv(0);

y:=calcul(x);

output(y);

else

endif

goto 0;

Alain Girault Chapter 2: Automatic distribution

Discussion

Benefits :

It works

There is a formal correctness proof [Caillaud, Caspi, et al, 1994],
based on semi-commutations and transition systems labelled with
partial orders

Drawbacks :

The OC automaton must be generated first, which su↵ers from the
well known state space explosion

The distribution is strict : all the computing locations must have the
same rate

The communications must be lossless

Alain Girault Chapter 2: Automatic distribution

Discussion

Benefits :

It works

There is a formal correctness proof [Caillaud, Caspi, et al, 1994],
based on semi-commutations and transition systems labelled with
partial orders

Drawbacks :

The OC automaton must be generated first, which su↵ers from the
well known state space explosion

The distribution is strict : all the computing locations must have the
same rate

The communications must be lossless

Alain Girault Chapter 2: Automatic distribution

Outline

1 Context and overview

2 The di↵erent distribution approaches

3 OC code distribution

4 SC code distribution

5 CP code distribution

Alain Girault Chapter 2: Automatic distribution

1

Automatic Production of

Globally Asynchronous

Locally Synchronous Systems

Alain GIRAULT INRIA Rhône-Alpes

and

Clément MÉNIER ENS Lyon

Outline 2

1. GALS Systems

2. Related Work

3. Program model

4. Our method in details

5. Perspectives

GALS Systems 3

Acronym for “Globally Asynchronous Locally Synchronous”

In software : paradigm for composing blocks and making them

communicate asynchronously

➪ Used in embedded systems

In hardware : circuits designed as sets of synchronous blocks

communicating asynchronously

➪ No need to distribute the clock =⇒ saves power

Our goal : automatically obtain GALS systems from a centralised

program

Automatically Distributed Programs 4

Why distribute ?

➪ physical constraints, fault-tolerance, performance...

Advantages of automatic distribution :

◆ less error-prone than by hand

◆ possibility to debug & validate before distribution

◆ ...

Related Work 5

The closest is Berry & Sentovich’2000 :

“Implementation of constructive synchronous circuits as a network of

CFSMs in POLIS”

Main differences with our work :

1. Partitioning of the circuit into N clusters is by hand

Our partitioning is automatic

2. They partition the circuit, that is the control part

We partition the data part and replicate the control part

Program Model : Synchronous Circuits (1) 6

Program = synchronous sequential circuit driving a table of actions

A control part and a data part :

◆ Control part = synchronous sequential boolean circuit

◆ Data part = table of external actions

➪ manipulate inputs, outputs, and typed variables (integers,

reals...)

A program has a set of input and output signals

Signals can be pure or valued

Valued signals are associated to a local typed variable

It can be obtained from Esterel =⇒ so called SC internal format

VHDL code can be generated from it

Program Model : Synchronous Circuits (2) 7

The basic elements of SC circuits :

◆ standard : computes a Boolean expression (regular gates of the

circuit)

◆ action : triggers an action from the table (the control is passed)

◆ ift : triggers a test from the table and assigns to the wire the

result of the test

◆ input : takes the value of the presence Boolean of the signal and

updates the value of the associated variable (if the input is

valued)

◆ output : triggers an output action from the table

◆ register : a latch with an initial value

The circuit registers 8

The encode the internal state of the circuit :

◆ One boot register

◆ One loop register

◆ Several regular registers

A valuation of the register vector corresponds to one state of the

OC automaton

A reaction of the program is one clock cycle

There are several contorl paths

Program Model : Properties 9

The control structure is :

◆ Parallel : there are several control paths

◆ Implicit : the state is coded in the registers

◆ Dynamic : the control depends on the data

Important property : any given variable can only be modified in one

parallel branch (same as in Esterel)

Control structures 10

else branch

then branch

ift exp

Exactly like a binary branching (so dealt with as before)

branch 3

branch 1

branch 2

It is not possible to tell in which order the actions are performed

Impossible to simulate at compile-time the state of the FIFO queues

to insert the receive operations

One FIFO per variable

An Example : FOO 11

1

0

N1:=0
0

N1:=N1+1

emit O1(N1)

N2:=N2*N1

N2:=0

emit O2(N2)

1

1
input I2; ift PI2

N2:=N2+1

input I1; ift PI1

input I1; ift PI1 N2 := N2 + 1 N2 := 0

input I2; ift PI2 N2 := N2 * N1 emit O2(N2)

N1 := 0 emit O1(N1) N1 := N1 + 1

Distribution Method 12

1. Design a centralised system

2. Compile it into a single synchronous circuit

3. Distribute it into N communicating synchronous circuits

We focus here on the point 3 : the automatic distribution

Distribution Specifications 13

Must be provided by the user :

◆ The desired number of computing locations

◆ The localisation of each input and output

➪ derived from the physical localisation of the sensors and

actuators

Distribution Specifications of FOO 14

1

0

N1:=0
0

N1:=N1+1

emit O1(N1)

N2:=N2*N1

N2:=0

N2:=N2+1
emit O2(N2)

1

1
input I2; ift PI2

input I1; ift PI1

location L location M

I1,O2 I2,O1

Where are we Heading ? 15

0

0

0

1

1

PI1:=receive(L,PI1) ift PI1

N1:=0

input I2; ift PI2

send(L,PI2)

N1:=N1+1

emit O1(N1)

send(L,N1)

send(M,PI1)

input I1; ift PI1

PI2:=receive(M,PI2) ift PI2

N2:=0

N2:=N2+1
N1:=receive(M,N1) N2:=N2*N1 emit O2(N2)

1

0

1

location M

location L

Distribution Algorithm : Principle 16

Based on past work : Caspi, Girault, & Pilaud’1999

➪ Replicate the control part and partition the data part

1. Localise each action to get N virtual circuits

2. Solve the distant variables problem for each virtual circuit

3. Project each virtual circuit to get one actual circuit

4. Solve the distant inputs problem

We obtain N circuits communicating harmoniously

➪ without inter-blocking and with the same functional behaviour

Communication Primitives 17

Asynchronous communications

➪ Two FIFO queues associated with each pair of locations and each

variable

➪ Each queue is identified by a triplet 〈src, var, dst〉

Two communication primitives :

◆ On location src : send(dst,var) non blocking

◆ On location dst : var:=receive(src,var) blocking when empty

Localisation of the Actions 18

Only the data part is partitioned : the control part is replicated

loc. action loc. action loc. action

L input I1; ift PI1 L N2 := N2 + 1 L N2 := 0

M input I2; ift PI2 L N2 := N2 * N1 L emit O2(N2)

M N1 := 0 M emit O1(N1) M N1 := N1 + 1

1

0

0

1

1
input I2; ift PI2

N1:=0

N1:=N1+1

emit O1(N1)
input I1; ift PI1

N2:=0

N2:=N2+1
N2:=N2*N1 emit O2(N2)

Two Problems to Solve 19

1. Distant variables problem :

➪ Not computed locally

➪ We add send and receive actions

2. Distant inputs problem :

➪ Not received locally

But : input signals convey two informations : value and presence

And : an ift net is required to modify the control flow

according to the input’s presence

➪ We add input simulation blocks

Solving the Distant Variables Problem 20

We apply a simple algorithm to solve the data dependencies to each

buffered path (sequential path) :

1. Isolate a buffered path and mark its root and tail

2. Insert the send actions in the buffered path

➪ Traverse the path backward to insert the send actions asap

3. Insert the receive actions in the buffered path

➪ Traverse the path forward to insert the receive actions alap

4. Proceed to the unmarked successor nets of the tail

Partial Result for FOO 21

1

0

0

1

1

emit O2(N2)

N2:=N2+1

N2:=N2*N1 N1:=receive(L,N1)

input I1; ift PI1

N2:=0N1:=0

input I2; ift PI2

N1:=N1+1

emit O1(N1)

send(L,N1)

This is still one circuit representing two virtual circuits

The next step is to project onto two actual circuits

Projection for FOO 22

0

10

1

emit O2(N2)

N2:=N2+1

N2:=N2*N1 N1:=receive(L,N1)

input I1; ift PI1

N2:=0N1:=0

input I2; ift PI2

N1:=N1+1

emit O1(N1)

send(L,N1)

1

0

1

0

1

1

emit O2(N2)

N2:=N2+1

N2:=N2*N1 N1:=receive(L,N1)

input I1; ift PI1

N2:=0N1:=0

input I2; ift PI2

N1:=N1+1

emit O1(N1)

send(L,N1)

Projection for FOO 23

0

1

1

emit O2(N2)

N2:=N2+1

N2:=N2*N1N1:=receive(L,N1)

input I1; ift PI1

N2:=0N1:=0

input I2; ift PI2

N1:=N1+1

emit O1(N1)

send(L,N1)

1

0

0

1

1

emit O2(N2)

N2:=N2+1

N2:=N2*N1N1:=receive(L,N1)

input I1; ift PI1

N2:=0N1:=0

input I2; ift PI2

N1:=N1+1

emit O1(N1)

send(L,N1)

1

0

location M

location L

Projection for FOO 24

1

0

0

1

1

emit O1(N1)

N1:=N1+1

N1:=0

input I2; ift PI2 send(L,N1)

0

1

1

input I1; ift PI1

N2:=0

N2:=N2+1

emit O2(N2) N2:=N2*N1N1:=receive(L,N1)

1

0

location M

location L

Solving the Distant Inputs Problem 25

Reminder : input signals convey two informations : the value and the

presence

And : an ift net is required to modify the control flow according to

the input’s presence

Our goal is to send the presence information only to those

computing locations that need them :

1. Detect the impure input-dependent nets and their needed

inputs

➪ Circuit traversal to compute for each net the set

SInput = {needed inputs}

2. Create the simulation blocks for the input nets

3. Connect the nets detected at step 1 to the required

simulation blocks

Creation of the Input Simulation Blocks 26

2

1

On all M such that I /∈ M

input I ; ift PI

input I ; ift PI

send(PI,M)

On the L such that I ∈ L

PI :=receive(L,PI) ift PI

Connection of the Input Simulation Blocks 27

1

2
ift PBPB:=receive(L,PB)

send(PA,M)

simulation bloc for A

simulation bloc for B

SInput = {A, B}

Visited ∨ SInput 6= ∅ {
Visited ∧ SInput = ∅ {

Connection of the Input Simulation Blocks 28

send(PA,M)

PB:=receive(L,PB) ift PB
2

1

simulation bloc for A

simulation bloc for B

SInput = {A, B}

Visited ∧ SInput = ∅ {
Visited ∨ SInput 6= ∅ {

Connection of the Input Simulation Blocks 29

send(PA,M)

ift PBPB:=receive(L,PB)

simulation bloc for B

simulation bloc for A

1

2

Visited ∨ SInput 6= ∅ {

SInput = {A, B}

Visited ∧ SInput = ∅ {

Connection of the Input Simulation Blocks 30

send(PA,M)

ift PBPB:=receive(L,PB)

simulation bloc for B

simulation bloc for A

1

2

Visited ∨ SInput 6= ∅ {

SInput = {A, B}

Visited ∧ SInput = ∅ {

Connection of an OR gate is similar

Final Result for FOO 31

0

0

0

1

1

PI1:=receive(L,PI1) ift PI1

N1:=0

input I2; ift PI2

send(L,PI2)

N1:=N1+1

emit O1(N1)

send(L,N1)

send(M,PI1)

input I1; ift PI1

PI2:=receive(M,PI2) ift PI2

N2:=0

N2:=N2+1
N1:=receive(M,N1) N2:=N2*N1 emit O2(N2)

1

0

1

location M

location L

Conclusion 32

This methods is interesting only if the data part is big (because the

control part is replicated)

Open directions : hardware/software codesign, post-distribution

optimisations, ...

The most interesting perspective is to mix this approach with

Berry & Sentovich’2000 :

◆ Accepting as inputs cyclic constructive circuits

◆ Automatic partitioning of the circuit into N clusters

◆ Partitioning both the data part and the control part

Outline

1 Context and overview

2 The di↵erent distribution approaches

3 OC code distribution

4 SC code distribution

5 CP code distribution

Alain Girault Chapter 2: Automatic distribution

Modern compiling methods for Esterel

[Weil, Bertin, Closse, Poize, Venier & Pulou, CASES’00]

[Edwards, CODES’99]

[Potop, PhD’02] and [Potop, Edwards & Berry, 2007]

Common principle

Linked list of control points

Each control point is attached to a block of sequential code

At each reaction, the list is traversed to execute only the active
control points

A sequential block can activate another block, but only further in the
list or for the next reaction

Alain Girault Chapter 2: Automatic distribution

CPREP within SAXO-RT for ESTEREL

exep

exei

exe2

exe1 tâche 1

tâche 2

tâche i

tâche p pausep

pausei

pause2

pause1

Each tâche i
is a DAG of ac-
tions

– p.16/60

Distribution algorithm of CPREP

1. Replicate the control structure (exe and pause vectors) onto
each computing location

– p.17/60

Distribution algorithm of CPREP

1. Replicate the control structure (exe and pause vectors) onto
each computing location

2. Apply the OCREP algorithm to the DAG of each tâche i

– p.17/60

Distribution algorithm of CPREP

1. Replicate the control structure (exe and pause vectors) onto
each computing location

2. Apply the OCREP algorithm to the DAG of each tâche i

Works within the SAXO-RT compiler (FTR&D), after the control
points have been computed

The communication mechanism is the same as with OCREP: FIFO
queues

Technology transfer contract with FTR&D

–p.17/60

End of Chapter 2

Alain Girault Chapter 2: Automatic distribution

Chapter 3

Automatic rate desynchronisation of
reactive embedded systems

Alain GIRAULT

(Joint work with Paul CASPI, Xavier NICOLLIN,

Daniel PILAUD, and Marc POUZET)

INRIA Grenoble Rhône-Alpes

– p. 1/39

Introduction

Embedded reactive programs

embedded so they have limited resources

reactive so they react continuously with their environment

– p.2/35

Introduction

Embedded reactive programs

embedded so they have limited resources

reactive so they react continuously with their environment

We consider programs whose control structure is a finite state
automaton

Put inside a periodic execution loop:

loop each tick
read inputs
compute next state
write outputs

end loop
– p.2/35

Automatic rate desynchronisation

Desynchronisation: to transform one centralised synchronous
program into a GALS program

➪ Each local program is embedded inside its own periodic
execution loop

Automatic: the user only provides distribution specifications

Rate desynchronisation:

the periods of the execution loops will not be the same and

not necessarily identical to the period of the initial centralised
program

– p.3/35

Motivation: long duration tasks

Characteristics:

Their execution time is long
Their execution time is known and bounded
Their maximal execution rate is known and bounded

Examples:

The CO3N4 nuclear plant control system of Schneider Electric
The Mars rover pathfinder

– p.4/35

A small example

Consider a system with three independant tasks:

Task A performs slow computations:
➪ duration = 8, period = deadline = 32

Task B performs medium and not urgent computations:
➪ duration = 6, period = deadline = 24

Task C performs fast and urgent computations:
➪ duration = 4, period = deadline = 8

How to implement this system?

– p.5/35

Manual task slicing

Tasks A and B are sliced into small chunks, which are interleaved
with task C

 C A1 B1 C A2 B2 C A3 B3 C A4 B1 C

A B C

420 1086 161412 222018 282624 343230
time

36

duration / period / deadline 4 / 8 / 86 / 24 / 248 / 32 / 32
task

– p.6/35

Manual task slicing

Tasks A and B are sliced into small chunks, which are interleaved
with task C

 C A1 B1 C A2 B2 C A3 B3 C A4 B1 C

A B C

420 1086 161412 222018 282624 343230
time

36

duration / period / deadline 4 / 8 / 86 / 24 / 248 / 32 / 32
task

Very hard and error prone because:

The slicing is complex
The implementation must be correct and deadlock-free

– p.6/35

Manually programming 3 async. tasks

Tasks A, B, and C are performed by one process each

The task slicing is done by the scheduler of the underlying RTOS

But the manual programming is difficult

Example: the Mars Rover Pathfinder had priority inversion!

– p.7/35

Automatic distribution

The user programs a centralised system

The centralised program is compiled, debugged, and validated

It is then automatically distributed into three processes

The correctness ensures that the obtained distributed system
is functionnally equivalent to the centralised one

– p.8/35

Example: the FILTER program
state 0:

go(CK,IN)
if (CK) then

RES:=0
write(RES)
V:=0
OUT:=SLOW(IN)
write(OUT)
goto 1

else
RES:=V
write(RES)
goto 0

endif

– p.9/35

Example: the FILTER program
state 0:

go(CK,IN)
if (CK) then

RES:=0
write(RES)
V:=0
OUT:=SLOW(IN)
write(OUT)
goto 1

else
RES:=V
write(RES)
goto 0

endif

state 1:

go(CK,IN)
if (CK) then

RES:=OUT
V:=OUT
OUT:=SLOW(IN)
write(OUT)

else
RES:=V

endif
write(RES)
goto 1

– p.9/35

Example: the FILTER program
state 0:

go(CK,IN)
if (CK) then

RES:=0
write(RES)
V:=0
OUT:=SLOW(IN)
write(OUT)
goto 1

else
RES:=V
write(RES)
goto 0

endif

state 1:

go(CK,IN)
if (CK) then

RES:=OUT
V:=OUT
OUT:=SLOW(IN)
write(OUT)

else
RES:=V

endif
write(RES)
goto 1

go(CK,IN)

if (CK)

RES:=OUT

V:=OUT

OUT:=SLOW(IN)

write(OUT)

write(RES)

RES:=V

goto 1

state 1:

– p.9/35

Example: the FILTER program
state 0:

go(CK,IN)
if (CK) then

RES:=0
write(RES)
V:=0
OUT:=SLOW(IN)
write(OUT)
goto 1

else
RES:=V
write(RES)
goto 0

endif

state 1:

go(CK,IN)
if (CK) then

RES:=OUT
V:=OUT
OUT:=SLOW(IN)
write(OUT)

else
RES:=V

endif
write(RES)
goto 1

go(CK,IN)

if (CK)

RES:=OUT

V:=OUT

OUT:=SLOW(IN)

write(OUT)

write(RES)

RES:=V

goto 1

state 1:

It has two inputs (the Boolean CK and the integer IN)
and two outputs (the integers RES and OUT)

– p.9/35

Example: the FILTER program
state 0:

go(CK,IN)
if (CK) then

RES:=0
write(RES)
V:=0
OUT:=SLOW(IN)
write(OUT)
goto 1

else
RES:=V
write(RES)
goto 0

endif

state 1:

go(CK,IN)
if (CK) then

RES:=OUT
V:=OUT
OUT:=SLOW(IN)
write(OUT)

else
RES:=V

endif
write(RES)
goto 1

go(CK,IN)

if (CK)

RES:=OUT

V:=OUT

OUT:=SLOW(IN)

write(OUT)

write(RES)

RES:=V

goto 1

state 1:

It has two inputs (the Boolean CK and the integer IN)
and two outputs (the integers RES and OUT)

The go(CK,IN) action materialises the read input phase
– p.9/35

Rates

The FILTER program has two inputs (the Boolean CK and the
integer IN) and two outputs (the integers RES and SLOW)

Each input and output has a rate, which is the sequence of logical
instants where it exists

IN is used only when CK is true, so its rate is CK

CK is used at each cycle, so its rate is the base rate

OUT is computed each time CK is true, so its rate is CK

RES is computed at each cycle, so its rate is the base rate

– p.10/35

A run of the centralised FILTER

FILTER

RES1=0

1/0 logical time/state

IN1=13

CK1=T

OUT1=42

– p.11/35

A run of the centralised FILTER

FILTER F

CK1=T
RES2=0

2/1

OUT1=42

RES1=0

1/0 logical time/state

IN1=13

CK2=F

– p.11/35

A run of the centralised FILTER

FFILTER F

CK1=T
3/1

CK2=F
RES2=0

2/1

OUT1=42

RES1=0

1/0 logical time/state

IN1=13

CK3=F
RES3=0

– p.11/35

A run of the centralised FILTER

FILTER F FILTERF

CK3=F
RES3=0

3/1
CK2=F

RES2=0

2/1

OUT1=42

RES1=0

1/0 logical time/state

IN1=13

CK1=T
RES4=42

OUT2=27

4/1
CK4=T

IN2=9

– p.11/35

A run of the centralised FILTER

F FILTERFFILTER

CK1=T CK4=T

IN2=9

CK3=F
RES3=0

3/1
CK2=F

RES2=0

2/1

OUT1=42

RES1=0

1/0 logical time/state

IN1=13

RES4=42

OUT2=27

4/1

– p.11/35

A run of the centralised FILTER

F FILTERFFILTER

CK1=T CK4=T

IN2=9

CK3=F
RES3=0

3/1
CK2=F

RES2=0

2/1

OUT1=42

RES1=0

1/0 logical time/state

IN1=13

RES4=42

OUT2=27

4/1

WCET(SLOW) = 7

WCET(other computations) = 1

}

=⇒WCET(FILTER) = 8

Thus the period of the execution loop (base rate)
must be greater than 8

– p.11/35

Where are we going?

F FILTERFFILTER

CK1=T CK4=T

IN2=9

CK3=F
RES3=0

3/1
CK2=F

RES2=0

2/1

OUT1=42

RES1=0

1/0 logical time/state

IN1=13

RES4=42

OUT2=27

4/1

– p.12/35

Where are we going?

F FILTERFFILTER

CK1=T CK4=T

IN2=9

CK3=F
RES3=0

3/1
CK2=F

RES2=0

2/1

OUT1=42

RES1=0

1/0 logical time/state

IN1=13

RES4=42

OUT2=27

4/1

Two tasks running on a single processor:

L M1 L M2 L M3L M1 L M2 L M3 L

OUT1=42 OUT2=27

0
F F

0
T
42

F
42

F
42

T

IN2=9

logical time/state for L

logical time/state for M

4/1 5/1 6/1

2/1

1/0 2/1 3/1

1/0
IN1=13

RES=0
CK=T

Task L performs the fast computations
Task M performs the slow computations, sliced into 3 chunks

– p.12/35

Where are we going?

F FILTERFFILTER

CK1=T CK4=T

IN2=9

CK3=F
RES3=0

3/1
CK2=F

RES2=0

2/1

OUT1=42

RES1=0

1/0 logical time/state

IN1=13

RES4=42

OUT2=27

4/1

Two tasks running on two processors:

L L LLLLLLLL

MM M M

OUT2=27OUT1=42 OUT3=69

1/0 2/1 3/1 5/1 6/1 8/1 9/1 logical time/state for L4/1 7/1

T FFFFTFF
27 272742424200

logical time/state for M1/0 2/1 3/1
OUT2OUT1

IN2=9 IN3=40IN1=13

CK=T
RES=0

– p.12/35

Our automatic distribution algorithm

One centralized automaton

Automatic distributor

Lustre program

Lustre compiler

[Caspi, Girault & Pilaud 1999] specifications
Distribution

N communicating automata
(one automaton for each computing location)

– p.13/35

Communication primitives

Two FIFO channels for each pair of locations, one in each direction:

send(dst,var) inserts the value of variable var into the
queue directed towards location dst

Non blocking

var:=receive(src) extracts the head value from the queue
starting at location src and assigns it to variable var

Blocking when the queue is empty

– p.14/35

Distribution specifications

location name assigned rates

L base
M CK

This part is given by the user

– p.15/35

Distribution specifications

location name assigned rates infered inputs & outputs

L base CK, RES
M CK IN, OUT

The infered inputs and outputs
are those whose rate matches
the assigned rate

base {RES, CK}
↓

CK {IN, OUT}

– p.16/35

Distribution specifications

location name assigned rates infered inputs & outputs infered location rate

L base CK, RES base
M CK IN, OUT CK

The infered rate is the root of the smallest subtree
containing all the rates assigned by the user

– p.17/35

First attempt of distribution
state 0
go(CK,IN)

if (CK) then

RES:=OUT
V:=OUT
OUT:=SLOW(IN)
write(OUT)

else
RES:=V

endif
write(RES)
goto 1

– p.18/35

First attempt of distribution
state 0 -- location L
go(CK,IN)

if (CK) then

RES:=OUT
V:=OUT
OUT:=SLOW(IN)
write(OUT)

else
RES:=V

endif
write(RES)
goto 1

state 0 -- location M
go(CK,IN)

if (CK) then

RES:=OUT
V:=OUT
OUT:=SLOW(IN)
write(OUT)

else
RES:=V

endif
write(RES)
goto 1

– p.18/35

First attempt of distribution
state 0 -- location L
go(CK)

if (CK) then

RES:=OUT
V:=OUT

else
RES:=V

endif
write(RES)
goto 1

state 0 -- location M
go(IN)

if (CK) then

OUT:=SLOW(IN)
write(OUT)

else

endif

goto 1

– p.18/35

First attempt of distribution
state 0 -- location L
go(CK)
send(M,CK)
if (CK) then

OUT:=receive(M)
RES:=OUT
V:=OUT

else
RES:=V

endif
write(RES)
goto 1

state 0 -- location M
go(IN)
CK:=receive(L)
if (CK) then

send(L,OUT)

OUT:=SLOW(IN)
write(OUT)

else

endif

goto 1

– p.18/35

First attempt of distribution
location L (rate base) location M (rate CK)

state 0:
go(CK)
send(M,CK)
if (CK) then {
RES:=0
write(RES)
V:=0
goto 1

} else {
RES:=V
write(RES)
goto 0

} endif

state 1:
go(CK)
send(M,CK)
if (CK) then {
OUT:=receive(M)
RES:=OUT
V:=OUT

} else {
RES:=V

} endif
write(RES)
goto 1

state 0:
go(IN)
CK:=receive(L)
if (CK) then {
OUT:=SLOW(IN)
write(OUT)
goto 1

} else {
goto 0

} endif

state 1:
go(IN)
CK:=receive(L)
if (CK) then {
send(L,OUT)
OUT:=SLOW(IN)
write(OUT)

} else {
} endif
goto 1

The go(CK,IN) has been split into
{

go(CK) on location L
go(IN) on location M

– p.19/35

A run of the distributed FILTER

L L L L L

M MM M M

CK1=T CK2=F CK3=F CK4=T
RES1=0 RES2=0 RES3=0 RES4=42

CK2 CK3 CK4CK1

1/0 2/1 3/1 4/1 logical time/state for L

4/1 logical time/state for M2/1 3/11/0

OUT1=42 OUT2=27
IN1=13 IN2=9

OUT1

The value of CK is sent by L to M at each cycle of the base rate
➪ location M runs at the speed of the base rate instead of CK

If the communications take 1, then the global WCET is still 8

– p.20/35

How to improve this?

We want location M to run at the speed of CK

➪ This would give enough time for the computation of SLOW

➪ For this, location L must not send CK to location M

We can use an existing bisimulation for detecting and
suppressing branchings like if(CK) on location M

For this bisimulation to work, the go(IN) action must be moved
inside the then branch on location M

Makes sense because IN is expected only when CK is true

➪ The two programs will be logically desynchronized
– p.21/35

Moving the go downward

Only the locations whose rate is not the base rate

A simple forward traversal of the program:

– p.22/35

Moving the go downward

Only the locations whose rate is not the base rate

A simple forward traversal of the program:

loc. M (rate CK) - state 0
go(IN)
if (CK) then

OUT:=SLOW(IN)
write(OUT)
goto 1

else
goto 0

endif

– p.22/35

Moving the go downward

Only the locations whose rate is not the base rate

A simple forward traversal of the program:

loc. M (rate CK) - state 0
go(IN)
if (CK) then

OUT:=SLOW(IN)
write(OUT)
goto 1

else
goto 0

endif

! loc. M (rate CK) - state 0
if (CK) then

go(IN)
OUT:=SLOW(IN)
write(OUT)
goto 1

else
goto 0

endif

– p.22/35

Suppressing useless branchings

Bisimulation fully presented in [Caspi, Fernandez & Girault 1995]

if (CK)

OUT:=SLOW(IN)

write(OUT)

send(L,OUT)

go(IN)

goto 1

goto 0

if (CK)

go(IN)

write(OUT)

OUT:=SLOW(IN)

goto 1

state 1state 0

– p.23/35

Suppressing useless branchings

Bisimulation fully presented in [Caspi, Fernandez & Girault 1995]

if (CK)

go(IN)

write(OUT)

OUT:=SLOW(IN)

goto 1

goto 0

if (CK)

OUT:=SLOW(IN)

write(OUT)

send(L,OUT)

go(IN)

goto 1

state 1state 0

– p.23/35

Suppressing useless branchings

Bisimulation fully presented in [Caspi, Fernandez & Girault 1995]

OUT:=SLOW(IN)

write(OUT)

send(L,OUT)

go(IN)

goto 1

go(IN)

write(OUT)

OUT:=SLOW(IN)

goto 1

state 1state 0

– p.23/35

Suppressing useless branchings

Bisimulation fully presented in [Caspi, Fernandez & Girault 1995]

go(IN)

write(OUT)

OUT:=SLOW(IN)

goto 1

OUT:=SLOW(IN)

write(OUT)

send(L,OUT)

go(IN)

goto 1

state 1state 0

– p.23/35

Final result
location L (rate base) location M (rate CK)

state 0:
go(CK)
if (CK) then {
RES:=0
write(RES)
V:=0
goto 1

} else {
RES:=V
write(RES)
goto 0

} endif

state 1:
go(CK)
if (CK) then {
OUT:=receive(M)
RES:=OUT
V:=OUT

} else {
RES:=V

} endif
write(RES)
goto 1

state 0:
go(IN)
OUT:=SLOW(IN)
write(OUT)
goto 1

state 1:
go(IN)
send(L,OUT)
OUT:=SLOW(IN)
write(OUT)
goto 1

– p.24/35

A run of the newly distributed FILTER

L L L

M

LLLLLLL

M M M

T T FFFFTFFCK=
0 27 272742424200RES=

IN1=13 IN2=9 IN3=40
OUT2=27OUT1=42 OUT3=69

1/0 2/1 3/1 5/1 6/1 8/1 9/1

logical time/state for M

logical time/state for L4/1 7/1

1/0 2/1 3/1
OUT2OUT1

The period of L is one third of the period of M

– p.25/35

A run of the newly distributed FILTER

L L L

M

LLLLLLL

M M M

T T FFFFTFFCK=
0 27 272742424200RES=

IN1=13 IN2=9 IN3=40
OUT2=27OUT1=42 OUT3=69

1/0 2/1 3/1 5/1 6/1 8/1 9/1

logical time/state for M

logical time/state for L4/1 7/1

1/0 2/1 3/1
OUT2OUT1

Dummy communications can finally be added to guarantee
bounded FIFO queues

– p.25/35

Validating the synchronous abstraction

We have to compare the WCET with the execution loop period

But our program is distributed into n tasks. So:

➪We compute the n WCET

➪We compute the total utilisation factor

➪We check the Liu & Layland conditions (mono-processor case)

– p.26/35

Validating the synchronous abstraction

We have to compare the WCET with the execution loop period

But our program is distributed into n tasks. So:

➪We compute the n WCET

➪We compute the total utilisation factor

➪We check the Liu & Layland conditions (mono-processor case)

location L M
WCET 2 8
rate 5 15

– p.26/35

Validating the synchronous abstraction

We have to compare the WCET with the execution loop period

But our program is distributed into n tasks. So:

➪We compute the n WCET

➪We compute the total utilisation factor

➪We check the Liu & Layland conditions (mono-processor case)

location L M
WCET 2 8
rate 5 15

2

5
+

8

15
=

14

15
≤ 1

– p.26/35

RTOS implementation

L LL M1 L L M1 L M2 L M3M2 M3
4/1 5/1 6/1

2/1

1/0 2/1 3/1

1/0

logical time/state for L

logical time/state for M

26 343230
time

361412 222018 2824420 1086 16

– p.27/35

RTOS implementation

L M3

LML M1

L M1 L M2 L M3 LL M1 L M2
2/1

4/1 5/1 6/11/0 2/1 3/1

1/0

OUT1

logical time/state for L

logical time/state for M

420 1086 161412 222018 282624 3432
time

3630

– p.27/35

RTOS implementation

L M3

LML M1

L M1 L M2 L M3 LL M1 L M2
2/1

4/1 5/1 6/11/0 2/1 3/1

1/0

OUT1

logical time/state for L

logical time/state for M

420 1086 161412 222018 282624 3432
time

3630

This mechanism relies on the preemption mechanism of the RTOS!

– p.27/35

RTOS implementation

L M3

LML M1

L M1 L M2 L M3 LL M1 L M2
2/1

4/1 5/1 6/11/0 2/1 3/1

1/0

OUT1

logical time/state for L

logical time/state for M

420 1086 161412 222018 282624 3432
time

3630

L M1 L M2 L M3L M1 L M2 L M3 L
4/1 5/1 6/1

2/1

1/0 2/1 3/1

1/0 logical time/state for M

logical time/state for L
OUT1 OUT2

420 1086 161412 222018 282624 343230
time

36

– p.27/35

Data-flow analysis

Program of location M

state 1:go(IN)

OUT:=SLOW(IN)

write(OUT)

goto 1

go(IN)

OUT:=SLOW(IN)

write(OUT)

goto 1

send(L,OUT)

state 0:

– p.28/35

Data-flow analysis

Program of location M

state 1:go(IN)

OUT:=SLOW(IN)

write(OUT)

goto 1

send(L,OUT)

go(IN)

OUT:=SLOW(IN)

write(OUT)

goto 1

send(L,OUT)

send(L,OUT)

state 0:

– p.28/35

Data-flow analysis

Program of location M

state 1:go(IN)

OUT:=SLOW(IN)

write(OUT)

goto 1

send(L,OUT)

go(IN)

OUT:=SLOW(IN)

write(OUT)

goto 1

send(L,OUT)

state 0:

– p.28/35

Two applications

1. Clock driven automatic distribution of Lustre programs

2. Automatic rate desynchronisation of Esterel programs

Lustre is synchronous, declarative, data-flow

All objects are flows: infinite sequences of typed data

– p.29/35

Clocks

Each flow has a clock (= first class abstract type)

➪ The sequence of instants where the flow bears a value

Any Boolean flow defines a new clock: the sequence of instants
where it bears the value true

Flows can then be upsampled (current)
and downsampled (when)

A program must be correctly clocked

One clock is called the base clock of the program:
➪ the sequence of its activation instants (the Esterel tick)

The set of clocks is a tree whose root is the base clock
– p.30/35

Syntax

node FILTER (CK : bool; (IN : int) when CK)
returns (RES : int; (OUT : int) when CK);

let
RES = current ((0 when CK) -> pre OUT);
OUT = SLOW (IN);

tel.
function SLOW (A : int) returns (B : int);

– p.31/35

Syntax

node FILTER (CK : bool; (IN : int) when CK)
returns (RES : int; (OUT : int) when CK);

let
RES = current ((0 when CK) -> pre OUT);
OUT = SLOW (IN);

tel.
function SLOW (A : int) returns (B : int);

The SLOW function is long duration task

– p.31/35

Syntax

node FILTER (CK : bool; (IN : int) when CK)
returns (RES : int; (OUT : int) when CK);

let
RES = current ((0 when CK) -> pre OUT);
OUT = SLOW (IN);

tel.
function SLOW (A : int) returns (B : int);

The clock tree is:
base {RES, CK}
↓

CK {IN, OUT}

– p.31/35

An example of a run of FILTER

base clock cycle number 1 2 3 4 5 6 7 8 9 ...

CK T F F T F F T F F ...
IN 14 9 23 ...

– p.32/35

An example of a run of FILTER

base clock cycle number 1 2 3 4 5 6 7 8 9 ...

CK T F F T F F T F F ...
IN 14 9 23 ...

OUT = SLOW(IN) 42 27 69 ...

– p.32/35

An example of a run of FILTER

base clock cycle number 1 2 3 4 5 6 7 8 9 ...

CK T F F T F F T F F ...
IN 14 9 23 ...

OUT = SLOW(IN) 42 27 69 ...
pre OUT nil 42 27 ...

– p.32/35

An example of a run of FILTER

base clock cycle number 1 2 3 4 5 6 7 8 9 ...

CK T F F T F F T F F ...
IN 14 9 23 ...

OUT = SLOW(IN) 42 27 69 ...
pre OUT nil 42 27 ...

0 when CK 0 0 0 ...

– p.32/35

An example of a run of FILTER

base clock cycle number 1 2 3 4 5 6 7 8 9 ...

CK T F F T F F T F F ...
IN 14 9 23 ...

OUT = SLOW(IN) 42 27 69 ...
pre OUT nil 42 27 ...

0 when CK 0 0 0 ...
(0 when CK) -> pre OUT 0 42 27 ...

– p.32/35

An example of a run of FILTER

base clock cycle number 1 2 3 4 5 6 7 8 9 ...

CK T F F T F F T F F ...
IN 14 9 23 ...

OUT = SLOW(IN) 42 27 69 ...
pre OUT nil 42 27 ...

0 when CK 0 0 0 ...
(0 when CK) -> pre OUT 0 42 27 ...

RES = current (...) 0 0 0 42 42 42 27 27 27 ...

– p.32/35

An example of a run of FILTER

base clock cycle number 1 2 3 4 5 6 7 8 9 ...

CK T F F T F F T F F ...
IN 14 9 23 ...

OUT = SLOW(IN) 42 27 69 ...
pre OUT nil 42 27 ...

0 when CK 0 0 0 ...
(0 when CK) -> pre OUT 0 42 27 ...

RES = current (...) 0 0 0 42 42 42 27 27 27 ...

These are logical instants

– p.32/35

An example of a run of FILTER

base clock cycle number 1 2 3 4 5 6 7 8 9 ...

CK T F F T F F T F F ...
IN 14 9 23 ...

OUT = SLOW(IN) 42 27 69 ...
pre OUT nil 42 27 ...

0 when CK 0 0 0 ...
(0 when CK) -> pre OUT 0 42 27 ...

RES = current (...) 0 0 0 42 42 42 27 27 27 ...

These are logical instants
OUT must be available at the same clock cycle of CK as IN

– p.32/35

An example of a run of FILTER

base clock cycle number 1 2 3 4 5 6 7 8 9 ...

CK T F F T F F T F F ...
IN 14 9 23 ...

OUT = SLOW(IN) 42 27 69 ...
pre OUT nil 42 27 ...

0 when CK 0 0 0 ...
(0 when CK) -> pre OUT 0 42 27 ...

RES = current (...) 0 0 0 42 42 42 27 27 27 ...

These are logical instants
OUT must be available at the same clock cycle of CK as IN
RES must be available at the next clock cycle of CK

– p.32/35

Clock-driven automatic distribution

Automatic distribution:
From a centralised source program and some distribution
specifications, we build automatically as many programs
as required by the user

Their combined behaviour will be functionnaly equivalent
to the behaviour of the initial centralised program

– p.33/35

Clock-driven automatic distribution

Automatic distribution:
From a centralised source program and some distribution
specifications, we build automatically as many programs
as required by the user

Their combined behaviour will be functionnaly equivalent
to the behaviour of the initial centralised program

Clock-driven:
The user specifies which clock goes to which computing location

➪ Partition of the set of clocks of the centralised source program

One subset for each desired computing location
– p.33/35

Related work
Giotto compiler: [Henzinger, Horowitz & Kirsch 2001]

Asynchronous tasks in Esterel: [Paris 1992]

Automatic distribution in Signal: [Maffeis 1993],

[Aubry, Le Guernic, Machard 1996],

[Benveniste, Caillaud & Le Guernic 2000]

Distributed implementation of Lustre over TTA:

[Caspi, Curic, Maignan, Sofronis, Tripakis & Niebert 2003]

Futures in Heptagon: [Gérard 2013]

– p. 36/39

Asynchronous tasks in Esterel
Tasks are
external
computation
entities
syntactically
similar
to procedures,
but the execution
of which is
assumed to be
non-instantaneous.

module FILTER:

input CK;

input IN : integer;

output RES, OUT : integer;

task SLOW(integer)(integer);

return R;

loop

present CK then

exec SLOW(OUT)(IN) return R;

else

emit RES (pre(?RES))

end present

||

present R then

RES = ?OUT;

end present

each tick

end module

– p. 37/39

Futures in Heptagon
A future is a computation the evaluation of which is launched
concurrently, and the result of which is expected later.

node SLOW (A:int) returns (B:int)
let
do some computations();

tel

node FILTER (CK:bool, IN:int) returns (RES:int)
var OUT : future int;
let
OUT = async SLOW (IN);
RES = merge CK (!((async 0) fby OUT))

(0 fby (RES whenot CK));
tel

– p. 38/39

End of chapter 3

– p. 39/39

