

7/78

I-time Multi-rate system design Synchronous real-time PRELUDE Conclusion	Real-time Multi-rate system design Synchronous real-time PRELUDE Conclusion
Execution times	Real-time multi-tasking
 Evaluating the execution time of some process is HARD 	Some classic problems:
 Depends on the content of the memory; Depends on the content of the pipeline; Depends on the values processed; 	 Scheduling policy: define an algorithm that finds an execution order (a schedule), that respects all deadlines; Schedulability analysis: onsure before execution that
Other processes may interfere;OS may interfere	 Schedulability analysis: ensure before execution that deadlines can and will be met (for a given policy);
 Validating temporal behaviour with variable execution times is complex; 	 Data-dependencies ⇒ scheduling policy for dependent tasks + synchronization primitives (e.g. semaphores, buffers,);
⇒ Execution times are (largely) over-evaluated by a Worst-Case Execution Time (WCET).	 Shared resources ⇒ problems similar to communication synchronizations.
Intime Multi-rate system design Synchronous real-time PRELUDE Conclusion Scheduling: multi-processor example	Real-time Multi-rate system design Synchronous real-time PRELUDE Conclus Scheduling: mono-processor example
	$ au_B(T_B = 9, C_B = 5)$ and $ au_A(T_A = 3, C_A = 1)$:
$\tau_B(T_B = 9, C_B = 5)$ and $\tau_A(T_A = 3, C_A = 1)$:	Without preemption: Deadline miss
$ \begin{array}{c c} B_{+} & & \\ 0 & 3 & 6 & 9 \\ \hline A & A & A \\ \end{array} $	$\begin{array}{c c} A \\ \hline A \\ \hline B \\ \hline B \\ \hline A \\$
0 3 6 9	 With preemption:

(Real-time) Multi-rate system design

Synchronous real-time Pr

Conclusion

(Real-time) Multi-rate system design

vstem design Synchronous real-time

PRELUDE Co

Rate-Monotonic analysis

• Fixed-task priorities: a fixed priority is assigned to each task;

Scheduling policy example: Rate-Monotonic

- Task with smaller relative deadline (=period) gets a higher priority;
- Works only when $D_i = T_i$;
- This policy is optimal among the fixed-task priority policies.
 ⇒ What does optimal mean ?

Sufficient schedulability test:

 $\sum_{i=0}^m \frac{C_i}{T_i} \le m(2^{1/m}-1)$

 \simeq 0.8 for m = 2 and tends towards 0.7 for big m. \Rightarrow What does **sufficient** mean ?

NB: More general cases ($D_i \leq T_i$, multi-core, ...) are in many cases NP.

	Logical time and real-tin	ne in the Synchronou	s approach 13 / 78		•	Logical time and real-tim	ne in the Synchronous	s approach
time) Multi-rate system design	Synchronous real-time	Prelude	Conclusion	Real-time	Multi-rate system design	Synchronous real-time	Prelude	Con
	Okay			Yet	, knowing real	-time constrai	nts is us	eful
					d on real-time const Schedule better:	raints we can:		
But, we were told to ignore real-time !					frequently than requ	utilization (do not execu uired); rrection by assigning prio		on
(cf)				eal-time behaviour: ch em will not become ov		ə;		
				• <i>F</i>	As a side effect, this al	so enables a better di	mensionina a	of tho

Integration testing

Unit testing

Formal verification

and

ent lev

code generation

Partial manual

Coding

Real-time	Multi-rate system design	Synchronous real-time	PRELUDE	Conclusion	Real-time	Multi-rate system design	Synchronous real-time	PRELUDE	Conclusion
	A quest	ion of semanti	cs			Multi-rate	in Lustre/Sc	ADE	
• Ze	ero-time ?				Exam	nple			
	everything happensWhen implemented,	e execution of one instan simultaneously; , the execution of one ins vriting a synchronous pro	tant does tak	e time;		8ms >	riod = 10ms F S period = 30m	S	
• Sy	ynchronous <mark>hypothes</mark>	is validation:			Prog	ram (base period=1	l0ms)		
	a block (LUSTRE pro instant;At the end of the implication	gn (and in many other cas ogram) sets the bound for plementation process, the validated, i.e. "do we hav	r the duration e synchronou	of an s	var v let (o, cloc	multi_rate(i: int) re f: int; clock3: bool; vf)=F(i, current(0 f ck3=everyN(3); S(vf when clock3);	; vs: int when clock3	;	
		Logical time and real-time	e in the Synchronous	approach			Logical time and real-tim	e in the Synchronous	approach
Real-time	Multi-rate system design	Synchronous real-time	PRELUDE	Conclusion	Real-time	Multi-rate system design	Synchronous real-time	PRELUDE	Conclusion
	Multi-rate	e in Lustre/Sc	ADE			Wha	t's missing ?		

$\frac{\text{Behaviour:}}{\text{vf}}$

Vt ₀	vt ₁	vt ₂	vt ₃	vt ₄	V15	vt ₆	• • •
vf ₀			vf ₃			vf ₆	
VS0			vs ₁			vs ₂	
0			vs ₀			vs ₁	
0	0	0	vs ₀	vs ₀	vs ₀	vs ₁	
	vf ₀	vf ₀	vf ₀	$\begin{array}{c c} \hline vf_0 & vf_3 \\ \hline vs_0 & vs_1 \\ \hline 0 & vs_0 \\ \hline \end{array}$	$\begin{array}{c c} vf_0 & vf_3 \\ \hline vs_0 & vs_1 \\ 0 & vs_0 \\ \end{array}$	$\begin{array}{c cccc} vf_0 & vf_3 \\ \hline vs_0 & vs_1 \\ 0 & vs_0 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Program (base period=10ms)

```
node multi_rate(i: int) returns (o: int)
var vf: int; clock3: bool; vs: int when clock3;
let
  (o, vf)=F(i, current(0 fby vs));
  clock3=everyN(3);
  vs=S(vf when clock3);
tel
```

• For the programmer: not immediate to see that vf when clock3 is 3 times slower than vf;

- For the static analyses: clocks = Boolean expressions ⇒ compiler does not see that "some clock is 3 times slower than another";
- For the code generation: computations must all complete during one base period (10ms).

35 / 78

node resync $x = o$ where c $x1 = x$ when (10) d $x2 = x$ when (01) d $o = (buffer x1) + x2$ let node resync $x = o$ where rec $x1 = x$ when (10) and $x2 = x$ when (01) and $o = (buffer x1) + x2$	e Multi-rate system design (Synchronous real-time)	PRELUDE Conc	nclusion	Real-time	Multi-rate system design	Synchron	ous real-time	PRELUDE
node resync x = o where c x1 = x when (10) d x2 = x when (01) d o = (buffer x1) + x2 erators x when (01): drop value, keep value, drop value, keep value, x when (01): drop value, keep value, drop value, keep value, (01): dr	N-Synchronous (2)				N-Sy	/nchror	nous (2)	
$\frac{c \times 1 = x \text{ when } (10)}{d \times 2 = x \text{ when } (01)}$ $\frac{d \times 2 = x \text{ when } (01)}{d \circ = (buffer \times 1) + x2}$ $\frac{flow}{x \text{ when } (01): drop \text{ value, keep value, drop value, keep value, }}{\frac{x \times 5 \times 7 \times 3 \times 6 \times 2 \times 8 \times \ldots \times (1)}{x \times 1 \times 5 \times 3 \times 2 \times \ldots \times (10)}}$	xample			Exampl	e			
x when (01): drop value, keep value, drop value, keep value, x 5 7 3 6 2 8 (1) x when (01): drop value, keep value, drop value, keep value, x1 5 3 2 (10)	et node resync $x = o$ where rec $x1 = x$ when (10) and $x2 = x$ when (01) and $o = (buffer x1) + x2$			rec x1 and x2	= x when (10) = x when (01)			
x when (01): drop value, keep value, drop value, keep value, x1 5 3 2 (10)	perators			flow				

	Logical time and real-time in the Synchronous approach			
				40 / 78 _
			_	
leal-time	Multi-rate system design	Synchronous real-time	PRELUDE	Conclusion
	NIO	(0)		
	N-Syr	nchronous (3)		

- Rate relations are more explicit;
- Better static analyses;
- More general (too general ?) than purely multi-periodic systems (e.g. clock (10110));
- Semantics still requires computations to fit within an instant.

(Presented previously by AG).

• Very expressive: periodic, sampled, alternation, etc;

- Targeted mainly for simulation/verification;
- Too general for efficient compilation (?)

Real-time Multi-rate system design

Synchronous real-time

Automated code distribution into threads

(Presented previously by AG-not the same).

Approach 1: Automatically split the code into several threads:

- In Signal: split code based on clocks;
- In Lustre: split code based on inputs/outputs;
- Add buffers to communicate between threads.

Automated code distribution into threads (2)

Synchronous real-time

More general than periodic systems, thus:

- Buffer dimensioning is harder;
- Temporal analyses is harder;

Multi-rate system design

Real-time

• The user must specify the distribution criteria.

Logical time and real-time in the Synchronous approach	Logical time and real-time in the Synchronous approach
4///0	
-time Multi-rate system design (Synchronous real-time) PRELUDE Conclusion	Real-time Multi-rate system design Synchronous real-time PRELUDE Conclusion
Lustre with Futures	Lustre with Futures
Approach 2: Explicit thread encapsulation.	Approach 2: Explicit thread encapsulation.
Example	Example
<pre>node slow_fast() = (y:float) var big :bool; yf, v : float; ys :future float; let big = everyN(3); ys = (async 0.0) fby (async slow(y when big)); yf = fast (v whenot big); y = merge big (!ys) (yf); v = 0.0 fby y; tel</pre>	<pre>node slow_fast() = (y:float) var big :bool; yf, v : float; ys :future float; let big = everyN(3); ys = (async 0.0) fby (async slow(y when big)); yf = fast (v whenot big); y = merge big (!ys) (yf); v = 0.0 fby y; tel</pre>
 async encapsulates a node inside a thread; The value of an asynchronous flow is fetched using operator !. 	big true false false true false !ys 0.0 3.14 yf 1.0 2.0 4.14 y 0.0 1.0 2.0 3.14 y 0.0 1.0 2.0 3.14
NB The values and clocks of $!x$ and x are exactly the same.	v 0.0 0.0 1.0 2.0 3.14

49 / 78

gical time and real-time in the Syn	hchronous approach
-------------------------------------	--------------------

Real-time

Synchronous real-time

(PRELUDE) Concl

Formal semantics: Strictly Periodic Clocks

- Flow values are tagged by a date: $f = (v_i, t_i)_{i \in \mathbb{N}}$;
- Clock = sequence of tags of the flow;
- Value *v_i* must be produced during time interval [*t_i*, *t_{i+1}*[;
- A clock is strictly periodic iff:

Multi-rate system design

 $\exists n \in \mathbb{N}^*, \ \forall i \in \mathbb{N}, \ t_{i+1} - t_i = n$

- *n* is the period of *h*, t_0 is the phase of *h*.
- Eg: (120, 1/2) is the clock of period 120 and phase 60.

Real-time Multi-rate system design

Synchronous real-time

Conclusio

Formal semantics: operators

Example

 $+^{\#}((v, t).s, (v', t).s') = (v + v', t).+^{\#}(s, s')$

- (v, t).s: denotes value v produced at time t and followed by sequence s;
- $op^{\#}(f, f') = (v_1, t_1).(v_2, t_2)...$ denotes the flow produced when applying *op* to flows *f* and *f'*.

Warning:

- The semantics is ill-defined for asynchronous flows;
- $\Rightarrow\,$ Static analyses required to check that program semantics is well-defined before further compilation.

Logical time and real-time in the Synchronous approach Logical time and real-time in the Synchronous approach 61 / 78 62 / 78 **Real-time** Multi-rate system design Synchronous real-time (PRELUDE) **Real-time** Multi-rate system design Synchronous real-time PRELUDE Formal semantics: classic operators Formal semantics: rate transitions $\hat{*}^{\#}((v, t).s, k) = \prod_{i=0}^{k-1} (v, t'_i).\hat{*}^{\#}(s, k)$ (with $t'_0 = t$ and $t'_{i+1} - t'_i = \pi(s)/k$) fby $^{\#}(v, (v', t), s) = (v, t)$. fby $^{\#}(v', s)$ when #((v, t), s, (true, t), cs) = (v, t), when #(s, cs) $/^{\#}((v,t).s,k) = \begin{cases} (v,t)./^{\#}(s,k) & \text{if } k * \pi(s)|t \\ /^{\#}(s,k) & \text{otherwise} \end{cases}$ when #((v, t).s, (false, t).cs) = when #(s, cs)

64 / 78

Real-time Multi-rate system design Synchronous real-time PRELUDE **Real-time** Multi-rate system design Synchronous real-time PRELUDE **Real-time characteristics Multi-rate data-dependencies** For each task dependency: 0 Di Di **①** Data can only be consumed after being produced \Rightarrow 0 C_i precedence constraints for the scheduler; C_i 2 Data must not be overwritten before being consumed \Rightarrow T_i T_i communication protocol. For each task: **Example** • Repetition period: $T_i = \pi(ck_i)$; $A \xrightarrow{/2} B$: • Relative deadline: $D_i = T_i$ by default or explicit constraint (eq o: due 8); • Worst case execution time: C_i , declared for each imported node; (1): B₀ after A₀ (2) keep A₀ available • Initial release date: $O_i = \varphi(ck_i)$. Logical time and real-time in the Synchronous approach Logical time and real-time in the Synchronous approach 69 / 78 70 / 78 **Real-time** Multi-rate system design Synchronous real-time (PRELUDE) **Real-time** Multi-rate system design Synchronous real-time (PRELUDE) **Communication protocol Communication protocol** Ex: B(A(x) $\star^{3/2}$), ie $A \stackrel{*3./2}{\to} B$:

Semantics

10 20

 a_0

 a_0

 $sp_{AB}(1)$

 a_0

30

 a_1

 a_1

40

 a_1

 a_1

0

 a_0

 a_0

 a_0

 $sp_{A,B}(0)$

date

A(x)

A(x) * ^ 3

Lifespans

A(x) * ^ 3/ ^ 2

- Tailor-made buffering mechanism;
- For each dependency, computes:
 - Size of the buffer;
 - Where each job writes/reads;
- Independent of the scheduling policy;
- Requires a single central memory.

 $sp_{AB}(3)$

70

 a_2

80 ...

*a*₃ ...

*a*₃ ...

...

72 / 78

50

 a_1

 $sp_{A,B}(2)$

60

 a_2

 a_2

 a_2

71 / 78

- 77 / 78

Logical time and real-time in the Synchronous approach