
Lab Work – Dominance1

Name: ID:

One of the key properties of the Static Single Representation is stated below:

The definition point of a variable v dominates every use of v in the control flow graph of a
program.

We say that node n in a directed graph with root s dominates another node m,n 6= m, if every path
from s to m must go through n.

1. Implement a pass that verifies if an instruction i, that defines a variable v dominates every instruction
that uses v. Your pass must return true to every program that is produced by clang followed by opt

-mem2reg. As an example, consider the output of your pass for the program below:

#include <stdio.h>

int main(int argc, char** argv) {

int j = argc - 1;

if (argc == 2) {

j++;

}

return j;

}

The CFG of the above program is given on the left, below. Your pass must produce the output on the
right:

entry:
 %sub = sub nsw i32 %argc, 1
 %cmp = icmp eq i32 %argc, 2
 br i1 %cmp, label %if.then, label %if.end

T F

if.then:
 %inc = add nsw i32 %sub, 1
 br label %if.end

if.end:
 %j.0 = phi i32 [%inc, %if.then], [%sub, %entry]
 ret i32 %j.0

Expected output for the example:

Function main

* Analyzing %sub = sub nsw i32 %argc, 1
 - use: %j.0 = phi i32 [%inc, %if.then], [%sub, %entry] [OK]
 - use: %inc = add nsw i32 %sub, 1 [OK]

* Analyzing %cmp = icmp eq i32 %argc, 2
 - use: br i1 %cmp, label %if.then, label %if.end [OK]

* Analyzing br i1 %cmp, label %if.then, label %if.end

* Analyzing %inc = add nsw i32 %sub, 1
 - use: %j.0 = phi i32 [%inc, %if.then], [%sub, %entry] [OK]

* Analyzing br label %if.end

* Analyzing %j.0 = phi i32 [%inc, %if.then], [%sub, %entry]
 - use: ret i32 %j.0 [OK]

* Analyzing ret i32 %j.0

1The material necessary for this assignment is available at http://homepages.dcc.ufmg.br/~fernando/classes/dcc888/

lab/exercises/Dominance.tgz

1

http://homepages.dcc.ufmg.br/~fernando/classes/dcc888/lab/exercises/Dominance.tgz
http://homepages.dcc.ufmg.br/~fernando/classes/dcc888/lab/exercises/Dominance.tgz

You will have to use another LLVM pass – DominatorTree – to solve this question. This pass is already
part of the LLVM distribution, and you should use it2. A few bits of C syntax are given below, to help
you in this task:

#include "llvm/Analysis/Dominators.h"

void getAnalysisUsage(AnalysisUsage &AU) const {

AU.addRequired<DominatorTree>();

AU.setPreservesAll();

}

DominatorTree &DT = getAnalysis<DominatorTree>();

DT.dominates ((const Instruction *)Def, (const Instruction *)User);

DT.dominates ((const Instruction *)Def, (const BasicBlock *)BB);

2. The notion of dominance for the uses of phi-functions is a bit more elaborate than for the other
instructions. If v = φ(. . . , v1 : b1, . . .), such that v1 is alive in the edge that reaches the instruction
through basic block b1, then we say that the definition of v1 must either dominate b1, or be the same
block as b1. If this observation is not followed, then, in our initial example, we would have that
the instruction %inc = add nsw i32 %sub, 1 would not dominate the instruction %j.0 = phi i32

[%inc, %if.then], [%sub, %entry]. Explain the tests that you have used to ensure that your
pass deals with this definition of dominance.

3. As we have mentioned before, every program that you produce with clang will have the dominance
property. Implement a program – in bytecode ASCII – that does not have it. Ensure that your pass
deliver the correct output to this program.

2The class DominatorTree is available in IR/Dominators.cpp, and you can learn much about LLVM’s data-structures by
reading that code

2

