
Lab Work – Playing with Dot1

Name: ID:

1. This question refers to the program below2:

#include <stdio.h>

int main(int argc, char** argv) {

char* s = "My string";

if (argc % 2) {

s[0] = ’m’;

}

printf("[%s]\n", s);

}

Assuming the program is stored in a file file1.c, you can compile it with the following command:

$> clang file1.c -o file1

(a) What happens if you run the program in these different ways below?

i. $> ./file1; echo $?

ii. $> ./file1 a; echo $?

(b) Why one of the executions terminates with an error? What is wrong with the program above?
Perhaps you would like to generate its assembly version, e.g., clang -S file.c -o file.s. Try
to imagine how the string pointed by a is stored in memory.

(c) Experiment compiling the program with the following command line:

$> clang -fwritable-strings file1.c -o file1

i. Do you obtain the same error as before?

ii. What can you guess about the flag fwritable-strings?

1The material necessary for this assignment is available at http://homepages.dcc.ufmg.br/~fernando/classes/dcc888/

lab/exercises/PlayingDot.tgz
2If you do not want to type the program, the examples are usually available in the course’s web page.
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2. Dot is a format to describe graphs, which is used by many tools. Nowadays, several compilers use dot
as a standard output format, which helps in program debugging and understanding. LLVM uses dot in
a number of situations. In this exercise, we will take a look into the Control Flow Graph of a program,
which LLVM outputs as a dot graph. Consider, as an example, the program below:

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#define BUF_SIZE 80

int main(int argc, char** argv) {

int i;

int index = 0;

char *buf = (char*)malloc(BUF_SIZE);

for (i = 0; i < argc; i++) {

int j;

int lim = strlen(argv[i]);

for (j = 0; j < lim; j++) {

if (index < BUF_SIZE - 1) {

buf[index] = argv[i][j];

index++;

} else {

break;

}

}

}

buf[index] = ’\0’;

printf("%s\n", buf);

}

(a) In what follows, lets us assume that the source code of the program above is stored in a file
file2.c. Execute the following commands3:

$> clang -c -emit-llvm file2.c -o file2.bc

$> opt -view-cfg file2.bc

(b) A control flow graph is made of basic blocks. Which criterion determines the beginning and the
end of a basic block?

(c) Our example program has several basic blocks with only one instruction, e.g., br label %XX.
Such basic blocks contain only a jump, but no payload, i.e., instructions that perform actual
computation. Why does LLVM creates this “empty” basic blocks?

3If you can open displays in your environment, view-cfg should give you a window produced via dotty or graphviz.
Otherwise, it will produce a dot file in a temporary folder. You can copy that file, and open it locally, using, for instance, dot
-Tpdf file.dot -o file.pdf; evince file.pdf
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(d) Try preprocessing the file, with the following commands:

$> opt -instnamer file2.bc -o file2.new.bc

$> opt -view-cfg file2.new.bc

What is the difference between the CFGs of file2.bc and file2.new.bc? What does the flag
instnamer do?

(e) Now, try preprocessing file2.new.bc with the following command:

$> opt -mem2reg file2.new.bc -o file2.reg.bc

$> opt -view-cfg file2.reg.bc

What is the difference between file2.new.bc and file2.reg.bc? What does the mem2reg flag
do?

(f) Below we see a graph pattern called The Butterfly. Usually the CFG of structured programs do
not have this pattern. Could you code a simple C program that contains it? Feel free to use any
command available in the syntax of C.

3. Control flow graphs that we built out of C programs usually have the Single-Entry, Single-Exit (SESE)
property. SESE regions are usually called hammock graphs.

definition 0.1 (Hammock Graph - Ferrante’87) If G is a CFG, then a hammock H is an induced
subgraph of G, so that H contains a node V called the entry, and G−H contains a node W , with the
following properties:

• all edges from G−H to H go to V .

• all edges from H to G−H go to W .
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We can use LLVM to visualize the SESE regions in the CFG of a program. To this end, lets consider
the program below:

#include <stdio.h>

int main(int argc, char** argv) {

int i = 0;

do {

char* p;

for (p = argv[i]; *p != ’\0’; p++) {

if (*p != ’\n’) {

printf("%c", *p);

}

}

printf("\n");

i++;

} while (i < argc);

return 0;

}

(a) Use opt to visualize the hammock regions in this program. Assuming your code is in file3.c,
you can perform this visualization with the following commands:

$> clang -c -emit-llvm file3.c -o file3.bc

$> opt -view-regions file3.bc

(b) Lets assume that every branch in the CFG is the starting point V of a hammock region. In this
case, what do you think is the algorithm used to find these regions? You may try to visualize
regions for different programs, in order to determine a more precise algorithm. If you feel like
using the right names, search for the notion of post-dominance.

(c) It is possible to create programs containing branches which are not the starting point of hammock
regions. The butterfly of the previous question is an example. Another example is given below:

BB1

BB2

BB3

BB4

BB5

4



In this case, the block BB2 starts a region which is not hammock. In this exercise, you must
create a program that gives origin to a non-hammock region. You cannot use the command
goto.

4. Now, let’s raise the level of our toils a little bit. Instead of playing with bytecodes, let’s take a look
into the source code of a program. To this end, use the command below to see the AST of our first
example:

$> clang34 -cc1 -ast-view file1.c

If all works well, you probably are seeing something similar to the graph in Figure 1.

(a) When is it better to perform analyses and optimizations in the high-level representation of the
program, i.e., on its AST?
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Figure 1: Abstract Syntax Tree.
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