Lab Work — Playing with Dot

Name: ID:

1. This question refers to the program belowﬂ

#include <stdio.h>
int main(int argc, char*x* argv) {

char*x s = "My string";
if (arge % 2) {

s[0] = 'm’;
X

printf (" [%s]\n", s);
}

Assuming the program is stored in a file filel.c, you can compile it with the following command:

$> clang filel.c -o filel

(a) What happens if you run the program in these different ways below?
i. $./filel; echo $7

ii. $> ./filel a; echo $7

(b) Why one of the executions terminates with an error? What is wrong with the program above?
Perhaps you would like to generate its assembly version, e.g., clang -S file.c -o file.s. Try
to imagine how the string pointed by a is stored in memory.

(¢) Experiment compiling the program with the following command line:

$> clang -fwritable-strings filel.c -o filel

i. Do you obtain the same error as before?

ii. What can you guess about the flag fwritable-strings?

IThe material necessary for this assignment is available at http://homepages.dcc.ufmg.br/~fernando/classes/dcc888/
lab/exercises/PlayingDot.tgz
“If you do not want to type the program, the examples are usually available in the course’s web page.

http://homepages.dcc.ufmg.br/~fernando/classes/dcc888/lab/exercises/PlayingDot.tgz
http://homepages.dcc.ufmg.br/~fernando/classes/dcc888/lab/exercises/PlayingDot.tgz

2. Dot is a format to describe graphs, which is used by many tools. Nowadays, several compilers use dot
as a standard output format, which helps in program debugging and understanding. LLVM uses dot in
a number of situations. In this exercise, we will take a look into the Control Flow Graph of a program,
which LLVM outputs as a dot graph. Consider, as an example, the program below:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define BUF_SIZE 80

int main(int argc, char** argv) {
int i;
int index 0;
char *buf (char*)malloc (BUF_SIZE) ;
for (i = 0; i < arge; i++) {
int j;
int 1lim = strlen(argv([il);
for (j = 0; j < lim; j++) {
if (index < BUF_SIZE - 1) {
buf [index] = argv[i][j];
index++;
} else {
break;

}
}
}
buf [index] = ’\0’;
printf ("%s\n", buf);
}

(a) In what follows, lets us assume that the source code of the program above is stored in a file
file2.c. Execute the following commandﬂ

$> clang -c -emit-1llvm file2.c -o file2.bc
$> opt -view-cfg file2.bc

(b) A control flow graph is made of basic blocks. Which criterion determines the beginning and the
end of a basic block?

(¢) Our example program has several basic blocks with only one instruction, e.g., br label %XX.
Such basic blocks contain only a jump, but no payload, i.e., instructions that perform actual
computation. Why does LLVM creates this “empty” basic blocks?

3If you can open displays in your environment, view-cfg should give you a window produced via dotty or graphviz.
Otherwise, it will produce a dot file in a temporary folder. You can copy that file, and open it locally, using, for instance, dot
-Tpdf file.dot -o file.pdf; evince file.pdf

(d) Try preprocessing the file, with the following commands:

$> opt -instnamer file2.bc -o file2.new.bc
$> opt -view-cfg file2.new.bc

What is the difference between the CFGs of file2.bc and file2.new.bc? What does the flag
instnamer do?

(e) Now, try preprocessing file2.new.bc with the following command:

$> opt -mem2reg file2.new.bc -o file2.reg.bc
$> opt -view-cfg file2.reg.bc

What is the difference between file2.new.bc and file2.reg.bc? What does the mem2reg flag
do?

(f) Below we see a graph pattern called The Butterfly. Usually the CFG of structured programs do
not have this pattern. Could you code a simple C program that contains it? Feel free to use any
command available in the syntax of C.

/N

N/

3. Countrol flow graphs that we built out of C programs usually have the Single-Entry, Single-Exit (SESE)
property. SESE regions are usually called hammock graphs.

definition 0.1 (Hammock Graph - Ferrante’87) If G is a CFG, then a hammock H is an induced
subgraph of G, so that H contains a node V' called the entry, and G — H contains a node W, with the
following properties:

e all edges from G — H to H go to V.

e all edges from H to G — H go to W.

We can use LLVM to visualize the SESE regions in the CFG of a program. To this end, lets consider
the program below:

#include <stdio.h>

int main(int argc, char**x argv) {
int i = 0;
do {
char* p;
for (p = argvlil; *p != ’\0’; p++) {
if (xp != ’\n’) {
printf ("%c", *p);

}
}
printf("\n");
i++;
} while (i < argc);
return O;

}

(a) Use opt to visualize the hammock regions in this program. Assuming your code is in file3.c,
you can perform this visualization with the following commands:

$> clang -c -emit-1lvm file3.c -o file3.bc
$> opt -view-regions file3.bc

(b) Lets assume that every branch in the CFG is the starting point V' of a hammock region. In this
case, what do you think is the algorithm used to find these regions? You may try to visualize
regions for different programs, in order to determine a more precise algorithm. If you feel like
using the right names, search for the notion of post-dominance.

(¢) Tt is possible to create programs containing branches which are not the starting point of hammock
regions. The butterfly of the previous question is an example. Another example is given below:

1
i
1
1
1
1
1
1
i
i
| BB3
'
i
1
1
1
1
1
1
1
1

In this case, the block BB2 starts a region which is not hammock. In this exercise, you must
create a program that gives origin to a non-hammock region. You cannot use the command
goto.

4. Now, let’s raise the level of our toils a little bit. Instead of playing with bytecodes, let’s take a look
into the source code of a program. To this end, use the command below to see the AST of our first
example:

$> clang34 -ccl -ast-view filel.c

If all works well, you probably are seeing something similar to the graph in Figure

(a) When is it better to perform analyses and optimizations in the high-level representation of the
program, i.e., on its AST?

UnaryOperator IntegerLiteral BinaryOperator

MemberExpr BinaryOperator | | BinaryOperator BinaryOperator ‘Imp\icilCalexpr ‘ImphcilCalexpv ‘ImphcitCalexpr
‘ImphcilCalexpr ‘ImphciiCalexpr ‘ImphcitCastExpr ‘ImpllchastExpr ‘Characler_ileral‘ ‘UnaryOperalor‘ ‘ImplimlCalexpr ‘Dec\RelExpr ‘Dec\RelExpr ‘Dec\RelExpr

DeclRefExpr

‘ ‘ UnaryOperator | | ImplicitCastExpr

MemberExpr DeclRefExpr

ImplicitCastExpr

‘ ‘c tyleCastExpr
‘ ImplicitCastExpr ‘ ImplicitCastExpr ‘ ImplicitCastExpr

l } }

o]] e

DeclRefExpr

THIHIH

Figure 1: Abstract Syntax Tree.

