
Proposal for a joint “équipe projet” between Inria and UCBL, integrated to UMR LIP

Analyses, Hardware/Software Compilation, Code Optimization
for Complex Dataflow HPC Applications

Short temporary name: CASH (Compilation and Analyses for Software and Hardware)

Inria research field/theme: Algorithmics, Programming, Software and Architecture /
Architecture, Languages and Compilation

Christophe Alias & Laure Gonnord & Matthieu Moy

September 8, 2017

LIP � UMR CNRS / ENS Lyon / UCB Lyon 1 / Inria � 69007 Lyon
E-mail : Christophe.Alias@inria.fr, Laure.Gonnord@univ-lyon1.fr, Matthieu.Moy@univ-lyon1.fr

1 Research Statement
The advent of parallelism in supercomputers and in more classical end-user computers increases the
need for high-level code optimization and improved compilers.

Until 2006, the typical power-consumption of a chip remained constant for a given area as the tran-
sistor size decreased (this evolution is referred to as Dennard scaling). In other words, energy efficiency
was following an exponential law similar to Moore’s law. This is no longer true, hence radical changes are
needed to further improve power efficiency, which is the limiting factor for large-scale computing. Im-
proving the performance under a limited energy budget must be done by rethinking computing systems
at all levels: hardware, software, compilers and runtimes.

One of the bottlenecks of performance and energy efficiency is data movements. The operational
intensity must be optimized to avoid memory-bounded performance. Compiler analysis are strongly
required to explore the trade-offs (operational intensity vs local memory size, operational intensity vs
peak performance for reconfigurable circuits).

These issues are considered as one of the main challenges in the Hipeac roadmap [13] which, among
others, cites the two major issues :

• Enhance the energy efficiency of the design of embedded systems, and especially the design of
optimized specialized hardware.

• Invent techniques to “expose data movement in applications and optimize them at runtime and
compile time and to investigate communication-optimized algorithms”.

Parallelism based on dataflow is one way to tackle these two issues. A dataflow application is made
of several actors that can perform computations and communicate with other actors. It can be imple-
mented in several ways: as software running on a parallel general-purpose architecture or on accelera-
tors like GPU or many-core, or as hardware implementation, possibly running on reconfigurable chips
(FPGA).

The overall objective of the CASH team is to take advantage of the characteristics of the specific hard-
ware (generic hardware, hardware accelerators or reconfigurable chips) to compile energy efficient soft-
ware and hardware. The long-term objective is to provide solutions for the end-user developers to use
at their best the huge opportunities of these emerging platforms.



In this project, we plan to work on:
• The design of dataflow-based intermediate representations, that are expressive enough and enable

further optimizations (Section 1.1).
• The extensions of these intermediate representations to enable complex control flow and complex

data structures, and the design of associated analysis for optimized code generation for multicore
processors and accelerators (Section 1.2).

• The application of the two preceding activities on High Level Synthesis, with additional resource
constraints (Section 1.3).

• A parallel and scalable simulation of Systems-on-Chips, which, combined with the preceding ac-
tivity, will result in a complete workflow for circuit design (Section 1.4).

1.1 Dataflow models for HPC applications

The transverse theme of this proposal is the study of the dataflow model for parallel programs: the
dataflow formalism expresses a computation on an infinite number of values, that can be viewed as
successive values of a variable during time. A dataflow program is structured as a set of communicating
processes that communicate values through communicating buffers.

Examples of dataflow languages include the synchronous languages Lustre and Signal, as well as Sig-
maC; the DPN representation [5] (data-aware process network) is an example of a dataflow intermediate
representation for a parallelizing compiler.

The dataflow model, which expresses at the same time data parallelism and task parallelism, is in our
opinion one of the best models for analysis, verification and synthesis of parallel systems. This model
will be our favorite representation for our programs. Indeed, it shares the “equational” description of
computation and data with the polyhedral model, and the static single assignment representation inside
compilers. The dataflow formalism can be used both as a programming language and as an intermediate
representation within compilers.

This topic is transverse to the proposal. While we will not a priori restrict ourselves to dataflow ap-
plications (we also consider approaches to optimize CUDA and OpenCL code for example), it will be a
good starting point and a convergence point to all the members of the team.

Participants. Christophe Alias, Laure Gonnord, Matthieu Moy.

1.2 Compiler algorithms and tools for irregular applications

The design and implementation of efficient compilers becomes more difficult each day, as they need to
bridge the gap between complex languages and complex architectures. On one hand, high-level program-
ming languages tend to become more distant from the hardware which they are meant to command.
Application developers use languages that bring them close to the problem that they need to solve.

This topic is closely linked to Section 1.1 since the design of an efficient intermediate representation
is made while regarding the analyzes it enables. The intermediate representation should be expressive
enough to embed maximal information; however if the representation is too complex the design of scal-
able analyzes would be harder.

The dataflow model alone is not capable of expressing fine-grain parallelism such as instruction-level
parallelism. For this, we advocate for the use of another intermediate representation for the analyses of
dataflow blocks code as well as communicating buffers.

We consider two categories of approaches: heavyweight analysis and optimizations like the polyhe-
dral model that can be applied locally to small compute-intensive kernels, and low-cost analysis that
scale to very large programs to allow global optimization and diagnostic.

CASH: Inria/UCBL joint team pre-proposal, Spring 2017 2/19



The polyhedral model focuses on regular programs, whose execution trace are predictable statically.
Unfortunately, most of the algorithms used in scientific computing do not fit totally in this category.

We plan to explore the extensions of polyhedral techniques to handle irregular programs with while
loops and complex data structures (such as trees and lists).

To extend the applicability of polyhedral-like analysis, we plan to incorporate new ideas coming from
the abstract interpretation community: control flow, approximations, and also shape analysis; and from
the termination community: rewriting is one of the major techniques that are able to handle complex
data structures and also recursive programs.

To develop low-cost and scalable analysis, we plan to cross fertilize ideas coming from the abstract
interpretation community as well as language design, dataflow semantics, and WCET estimation tech-
niques. We already have experience in designing low-cost semi relational abstract domains for point-
ers [19, 15], as well as tailoring static analyses for specialized applications in compilation [12, 25], Syn-
chronous Dataflow scheduling [24] and extending the polyhedral model to irregular applications [2].

Participants. Christophe Alias, Laure Gonnord, Matthieu Moy.

Targeted applications.
• Dataflow programs (SigmaC [6]) for which the fine grain parallelism is not taken into account.
• Recursive programs operating on arrays, lists and trees.
• Worklist algorithms: lists are not handled within the polyhedral domain.
• Generalist programs with complex behaviors: detecting non licit memory accesses, memory con-

sumption, hotspots, . . .
• Functional properties for large programs.
• GPGPU programs where we want to optimize copies from the global memory to the block kernels,

to perform less data accesses and change data layout to improve locality.
• Dataflow programs with arrays and iterators operating on arrays.

Expected impact. The impact of this work is the significantly widened applicability of various tools/compilers
related to parallelization: allow optimizations for a larger class of programs, and allow low-cost analysis
that scale to very large programs.

We target both analysis for optimization and analysis to detect, or prove the absence of bugs.

1.3 Compiler Algorithms, Simulation and Tools for Reconfigurable Circuits

Reconfigurable circuits (Field Programmable Gate Arrays, FPGA) are now a credible solution for low-
energy HPC. An FPGA chip can deliver the same computing power as a GPU for 10× less energy budget.
Major companies (including Intel, Google, Facebook and Microsoft) show a growing interest for FPGA
and are pushing for programming languages and compilers (High-Level Synthesis, HLS) for FPGA.

Our final goal is to compile a dataflow representation optimized for multiple criteria (throughput,
energy consumption, FPGA resources) (front-end). In turn, this dataflow representation will be mapped
on the reconfigurable chip (back-end). CASH will only focus on front-end algorithms. Producing an
end-to-end compiler chain for FPGA is out of our scope. Our front-end compiler algorithms will be
implemented as source-to-source transformations for HLS compilers (e.g. Intel HLS compiler, Xilinx
VivadoHLS) which will produce the final FPGA configuration. Several issues must be tackled before de-
signing a compiler algorithm: which target architecture? Which cost model?

An architecture template will be designed to fit FPGA resources. Our architecture template will
strongly depend on the optimizations applied by the front-end (parallelism, I/O, throughput). Both
should be studied at the same time. Dataflow architectures are a natural candidate, but adjustments

CASH: Inria/UCBL joint team pre-proposal, Spring 2017 3/19



are required to fit FPGA constraints (2D circuit, few memory blocks). Ideas from systolic arrays [23] can
be borrowed, despite the limitation to regular kernels and the lack of I/O flexibility. A trade-off must
be found between pure dataflow and systolic communications. Also, irregular applications may require
efficient speculation mechanisms.

A cost model for our architecture template will be defined to guide our compiler optimizations. As
mentioned earlier, external data transfers are the main limiting factor for performances. The roofline
model [27] must be redefined in light of FPGA constraints. Indeed, the peak performance is no longer
constant: it depends on the optimization itself. The more operational intensity we get, the more local
memory we use, the less parallelization we get (since FPGA resources are limited) and finally the less
performances we get. At the same time, operational intensity allows to get rid of data transfers and to get
more performances. Hence, an optimum must be found.

Finally, compiler algorithms must be designed to produce the architecture template while optimizing
the cost model. We plan to invent new algorithms and to extend/modify HPC compiler algorithms. For
example, but not exclusively, those of the polyhedral model. Our program model will include: regular
constructions (for loops, array, affine constraints) as well as irregular constructions found in real life HPC
kernels (early exits, while loops, indirect array accesses). This is mandatory to handle iterative kernels
and sparse matrices, which are extensively used in HPC. Handling irregular constructions fundamentally
change the way we think compiler algorithms: which iteration domain? Which schedule? Which target
architecture? This topic will cross fertilize with topic 1.2 (Compiler algorithms and tools for irregular
applications).

We already have an experience in designing dataflow models, scheduling and resource allocation
algorithms, and data transfer optimization for HLS [5, 4, 1, 3].

This activity will benefit from the “simulation” axis of the team.

Participants. Christophe Alias, Matthieu Moy.

Targeted applications. We will target HPC and big data kernels:
• HPC kernels: linear solvers, stencils, matrix factorizations, BLAS kernels, etc. Many kernels can be

found in the Polybench/C benchmark suite [20]. The irregular versions can be found in [21].
• Big data kernels used in data center applications such as deep learning algorithms [14].

Expected Impact. The short term impact is to improve the power of HLS compilers by putting to work
polyhedral optimizations through resource-aware / IO-aware automatic parallelization. As for the long-
term impact, we believe that high-level synthesis can leverage the concepts involved in the irregular
analysis described in section 1.2, thus extending profitably the scope of our compiler analysis. From an
industrial point of view, we plan to transfer the results of this research to the XtremLogic start-up [28],
co-founded by Christophe Alias and Alexandru Plesco.

1.4 Simulation of Systems on a Chip

One of the bottlenecks in complex Systems on a Chip (SoCs) design flow is the simulation speed: it is
necessary to be able to simulate the behavior of a complete system, including software, before the actual
chip is available. Raising the level of abstraction from Register Transfer Level to more abstract simula-
tions like Transaction Level Modeling (TLM) [18] in SystemC [17] allowed gaining several orders of mag-
nitude of speed. We are particularly interested in the loosely timed coding style where the timing of the
platform is not modeled precisely, and which allows the fastest simulations. Still, SystemC implementa-
tions used in production are still sequential, and one more order of magnitude in simulation speed could
be obtained with proper parallelization techniques.

CASH: Inria/UCBL joint team pre-proposal, Spring 2017 4/19



Work on SystemC/TLM parallel execution is both an application of other work on parallelism in the
team and a tool complementary to HLS presented in Section 1.3. Indeed, some of the parallelization
techniques we develop in CASH could apply to SystemC/TLM programs. Conversely, a complete design-
flow based on HLS often needs fast system-level simulation: the full-system usually contains both parts
designed using HLS, handwritten hardware components and software.

Participants. Christophe Alias, Matthieu Moy.

Targeted applications.
• TLM models of SoCs including processors and hardware accelerators, written in a loosely timed

coding style.
• Heterogeneous simulations including a SystemC/TLM part to model the numerical part of the

chip, and other simulators to model physical parts of the system.

Expected Impact. The short term impact is the possibility to improve simulation speed with a reasonable
additional programming effort. Automatic parallelization has been shown to be hard, if at all possible on
loosely timed models [7]. We focus on semi-automatic approaches where the programmer only needs
minor modifications to the programs to get significant speedup.

2 Research group
The members of the proposed team are (short bio available in appendix B):

• Matthieu Moy, HDR, “maître de conférences” UCBL from Sept 1st 2017 (https://matthieu-moy.
fr). Proposed team leader.

• Christophe Alias, “chargé de recherche” Inria, (http://perso.ens-lyon.fr/christophe.alias)
• Laure Gonnord, “maître de conférences” UCBL (http://laure.gonnord.org/pro/).

3 Positioning and added value
The current project proposal intends to make progress in the quest for performance of dataflow pro-
grams in particular on FPGAs, building upon the expertise of its members on algorithm design and for-
mal methods.

The research teams that work in these domains in the Inria ecosystem are thus coming from two
“themes” inside “Algorithms, programs, software and architecture”:

• Architecture, languages, compilation: especially CAMUS and CORSE.
• Embedded systems and real time: especially SPADES and PARKAS.

Some other Inria teams belonging to other themes have also some shared research themes: ANTIQUE,
CELTIQUE, and SOCRATE. There are also national non-Inria teams whose topics are close to ours.

We believe that High-Level Synthesis (HLS) is an understudied topic. It is studied in CAIRN and
TIMA-SLS, but both use different approach. One contribution of CASH is the cross-fertilization with the
compilation and abstract interpretation communities.

Abstract interpretation is studied in many teams, including ANTIQUE and Verimag-PACSS. What
distinguishes CASH from these teams is the focus on low-cost analysis to allow more applications to
compilers.

The added value of CASH in the compilation domain is the static-analysis based approach. Unlike
CORSE and CAMUS, we do not consider dynamic approach. We distinguish the analysis phase and the
optimization phase and focus on the analysis more than the optimization.

CASH: Inria/UCBL joint team pre-proposal, Spring 2017 5/19

https://matthieu-moy.fr
https://matthieu-moy.fr
http://perso.ens-lyon.fr/christophe.alias
http://laure.gonnord.org/pro/


CASH is complementary with many other teams with which we plan to collaborate. Inside LIP, we
will collaborate with Avalon on HPC applications, with ROMA on scheduling, with PLUME on program
semantics and with AriC on arithmetic operators. Outside LIP, SOCRATE could both provide us tools
and expertise in arithmetic operators and use our tools to implement radio applications. We already
collaborate with Verimag-PACS on abstract interpretation.

We already have industrial partnerships with STMicroelectronics on hardware simulation, with Kalray
on dataflow programming for many-core and with XtremLogic on HLS, and obviously plan to continue
these collaborations.

More details can be found in section A.

References
[1] Christophe Alias, Fabrice Baray, and Alain Darte. Bee+Cl@k: An implementation of lattice-based

array contraction in the source-to-source translator Rose. In ACM Conf. on Languages, Compilers,
and Tools for Embedded Systems (LCTES’07), 2007.

[2] Christophe Alias, Alain Darte, Paul Feautrier, and Laure Gonnord. Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In International Static Analysis
Symposium (SAS’10), 2010.

[3] Christophe Alias, Alain Darte, and Alexandru Plesco. Optimizing remote accesses for offloaded
kernels: Application to high-level synthesis for FPGA. In ACM SIGDA Intl. Conference on Design,
Automation and Test in Europe (DATE’13), Grenoble, France, 2013.

[4] Christophe Alias, Bogdan Pasca, and Alexandru Plesco. FPGA-specific synthesis of loop-nests with
pipeline computational cores. Microprocessors and Microsystems, 36(8):606–619, November 2012.

[5] Christophe Alias and Alexandru Plesco. Data-aware Process Networks. Research Report RR-8735,
Inria - Research Centre Grenoble – Rhône-Alpes, June 2015.

[6] Pascal Aubry, Pierre-Edouard Beaucamps, Frédéric Blanc, Bruno Bodin, Sergiu Carpov, Loïc Cud-
ennec, Vincent David, Philippe Doré, Paul Dubrulle, Benoît Dupont De Dinechin, François Galea,
Thierry Goubier, Michel Harrand, Samuel Jones, Jean-Denis Lesage, Stéphane Louise, Nicolas
Morey Chaisemartin, Thanh Hai Nguyen, Xavier Raynaud, and Renaud Sirdey. Extended Cyclostatic
Dataflow Program Compilation and Execution for an Integrated Manycore Processor. In Alchemy
2013 - Architecture, Languages, Compilation and Hardware support for Emerging ManYcore systems,
volume 18 of Proceedings of the International Conference on Computational Science, ICCS 2013,
pages 1624–1633, Barcelona, Spain, June 2013.

[7] Denis Becker, Matthieu Moy, and Jérôme Cornet. Parallel Simulation of Loosely Timed Sys-
temC/TLM Programs: Challenges Raised by an Industrial Case Study. MDPI Electronics, 5(2):22,
2016.

[8] Louis Besème. Vers une accélération matérielle de gnuradio. Master’s thesis, INSA de Lyon, Dé-
partement informatique, mars 2015. Encadrants : Tanguy Risset et Florent De Dinechin.

[9] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,
David Monniaux, and Xavier Rival. A static analyzer for large safety-critical software. In Program-
ming Language Design and Implementation (PLDI), pages 196–207, 2003.

CASH: Inria/UCBL joint team pre-proposal, Spring 2017 6/19



[10] Alban Bourge, Olivier Muller, and Frédéric Rousseau. Automatic high-level hardware checkpoint
selection for reconfigurable systems. In Field-Programmable Custom Computing Machines (FCCM),
2015 IEEE 23rd Annual International Symposium on, pages 155–158. IEEE, 2015.

[11] Mickaël Dardaillon, Kevin Marquet, Tanguy Risset, Jérôme Martin, and Henri-Pierre Charles. A
new compilation flow for software-defined radio applications on heterogeneous mpsocs. TACO,
13(2):19:1–19:25, 2016.

[12] Paul Feautrier, Abdoulaye Gamatié, and Laure Gonnord. Enhancing the Compilation of Syn-
chronous Dataflow Programs with a Combined Numerical-Boolean Abstraction. CSI Journal of
Computing, 1(4):8:86–8:99, 2012. RR version = http://hal.inria.fr/hal-00780521/en.

[13] Hipeac roadmap for high performance computing, http://www.hipeac.net/system/files/

hipeac_roadmap1_0.pdf, 2013.

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pages 1097–1105,
2012.

[15] Maroua Maalej, Vitor Paisante, Pedro Ramos, Laure Gonnord, and Fernando Pereira. Pointer Dis-
ambiguation via Strict Inequalities. In Code Generation and Optimisation, Austin, United States,
February 2017.

[16] David Monniaux and Laure Gonnord. Cell morphing: from array programs to array-free Horn
clauses. In Xavier Rival, editor, 23rd Static Analysis Symposium (SAS 2016), Static Analysis Sym-
posium, Edimbourg, United Kingdom, September 2016.

[17] Open SystemC Initiative. IEEE 1666 Standard: SystemC Language Reference Manual, 2011.

[18] Open SystemC Initiative (OSCI). OSCI TLM-2.0 Language Reference Manual, June 2008.

[19] Vitor Paisante, Maroua Maalej, Leonardo Barbosa, Laure Gonnord, and Fernando Magno Quintao
Pereira. Symbolic Range Analysis of Pointers. In International Symposium of Code Generation and
Optmization, pages 791–809, Barcelon, Spain, March 2016.

[20] Louis-Noël Pouchet. Polybench: The polyhedral benchmark suite. URL: http://www. cs. ucla. edu/˜
pouchet/software/polybench/[cited July,], 2012.

[21] William H Press, Saul A Teukolsky, William T Vetterling, and Brian P Flannery. Numerical recipes in
c++. The art of scientific computing, 2015.

[22] Adrien Prost-Boucle, Olivier Muller, and Frédéric Rousseau. Fast and standalone design space
exploration for high-level synthesis under resource constraints. Journal of Systems Architecture,
60(1):79–93, 2014.

[23] Patrice Quinton. Automatic synthesis of systolic arrays from uniform recurrent equations. ACM
SIGARCH Computer Architecture News, 12(3):208–214, 1984.

[24] Hamza Rihani, Matthieu Moy, Claire Maiza, Robert I. Davis, and Sebastian Altmeyer. Response time
analysis of synchronous data flow programs on a many-core processor. In Proceedings of the 24th
International Conference on Real-Time Networks and Systems, RTNS ’16, pages 67–76, New York, NY,
USA, 2016. ACM.

CASH: Inria/UCBL joint team pre-proposal, Spring 2017 7/19

http://www.hipeac.net/system/files/hipeac_roadmap1_0.pdf
http://www.hipeac.net/system/files/hipeac_roadmap1_0.pdf


[25] Henrique Nazaré Willer Santos, Izabella Maffra, Leonardo Oliveira, Fernando Pereira, and Laure
Gonnord. Validation of Memory Accesses Through Symbolic Analyses. In Proceedings of the 2014
ACM International Conference on Object Oriented Programming Systems Languages And Applica-
tions (OOPSLA’14), Portland, Oregon, United States, October 2014.

[26] Manuel Selva, Lionel Morel, and Kevin Marquet. numap: A portable library for low-level memory
profiling. In SAMOS, pages 55–62. IEEE, 2016.

[27] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an insightful visual perfor-
mance model for multicore architectures. Communications of the ACM, 52(4):65–76, 2009.

[28] Xtremlogic sas, http://www.xtremlogic.com, 2017.

Appendices

A Details on Positioning and Added Value
The current project proposal intends to make progress in the quest for performance of dataflow pro-
grams on FPGAs, building upon the expertise of its members on algorithm design and formal methods.

The research teams that work in these domains in the Inria ecosystem are thus coming from two
“themes” inside “Algorithms, programs, software and architecture”:

• Architecture, languages, compilation: especially CAMUS, CORSE, CAIRN and PACAP.
• Embedded systems and real time: especially SPADES and PARKAS.

Some other Inria teams belonging to other themes have also some shared research themes: ANTIQUE,
CELTIQUE, and SOCRATE. There are also national non-Inria teams whose topics are close to ours.

The following section does not have the vocation to be exhaustive. We quickly summarize the dif-
ferences and convergences with the closest teams who share common topics with us, with a particular
focus on local (Lyon and Grenoble) teams.

A.1 Inside the LIP

LIP is composed of the following teams:
• AriC (Arithmetic and Computing)
• Avalon (Algorithms and Software Architectures for Distributed and HPC Platforms)
• DANTE (Dynamic Network)
• MC2 (Models of computation, Complexity, Combinatorics)
• PLUME (programs and proofs)
• ROMA (Resource Optimization: Models, Algorithms and Scheduling)
The main topics of CASH (compilation, abstract interpretation, high-level synthesis) are not in the

scope of any other teams.
Teams with the strongest relationships with us are:
• AVALON: The AVALON team also targets HPC applications, with a focus on the design on pro-

gramming models supporting many kinds of architectures. “The team focuses in particular in
energy and data intensive application profiling and modelization, data management, component
based application description, and application mapping and scheduling”. AVALON’s activities are
complementary to us since we specifically target HPC kernels (or programs designed around HPC
kernels) for which we want to aggressively compute/compile an optimized (software of hardware)
version. Clearly, all applications cannot be statically scheduled (or at least, only part of some large

CASH: Inria/UCBL joint team pre-proposal, Spring 2017 8/19

http://www.xtremlogic.com


applications can be statically scheduled), and we would need efficient algorithms for our opti-
mized kernels to be scheduled with other (possibly unknown) tasks. CASH does not target dy-
namic approaches like profiling that are in the scope of AVALON. AVALON considers the assembly
of software components at the application level, while CASH considers computation kernels, or
assembly of a few computation kernels. In other words, what CASH considers as a program is what
AVALON considers as a component.

• PLUME: The activities of PLUME on program proofs focus on semantics and typing. For example,
abstract interpretation is not in the scope of PLUME. PLUME works on abstract formalisms (λ-
calculus, π-calculus, automata) rather than targeting concrete programming languages. We will
benefit of the Plume team proximity for our activities in expressing parallel languages semantics
(our vision is however more focused on efficiency than expressivity). In the converse, PLUME’s
activity on program verification of parallel models could benefit from the formalization of new
research problems coming from the CASH activities on optimizations.

• ROMA: Roma works on models, algorithms, and scheduling strategies at OS level. Roma’s pro-
gramming model considers tasks as black boxes (unlike CASH). The compilation or analyses of in-
dividual boxes are not under the scope of ROMA. However, we strongly believe that working on the
scheduling of dataflow applications could lead to a better understanding of their characteristics
that could benefit to ROMA in the form of more accurate task models. Also, on-the-fly compilation
of tasks under resource constraint can enable new runtime scheduling strategies. These are more
long term possible collaborations.

A.2 CORSE

A.2.1 Summary of CORSE’s activities

CORSE’s activity report is available here:

http://raweb.inria.fr/rapportsactivite/RA2016/corse/corse.pdf

The overall objective of CORSE1 is to address the ever increasing complexity of applications as well
as the complexity of emerging platforms by combining static and dynamic compilation techniques. The
team focuses on the interaction of the program and the runtime. Its main activities are:

• The design of efficient runtimes via strong interactions with the compiler/debugger.
• Runtime verification through the generation of observers or enforcers for temporal-logic proper-

ties.
• The design of efficient compiler optimizations via the combination of static and dynamic analyses.

Only the last research direction is relevant for CASH, as we do not have any expert in debugging nor
runtime. The activities of CORSE in this direction are:

• Compiler Architecture Design. The activity focus on the design of an efficient single intermediate
representation that is capable of expressing the program semantics at multiple levels (control-
flow, data dependencies, profiling information). The particular focus of this activity is the design
of representations that are easily maintainable and refinable at each step of static and dynamic
compilation, thus can handle “information telescoping”. Participants: Fabrice Rastello, Florent
Bouchez Tichadou.

• Combining Static with Dynamic Analysis, Static Compiler Optimization with Run-Time Decisions.
The hope of this activity is to provide to compiler back-end the information required to perform

1All the text concerning CORSE has been proof-read, discussed and validated by F. Rastello, head of the team.

CASH: Inria/UCBL joint team pre-proposal, Spring 2017 9/19

http://raweb.inria.fr/rapportsactivite/RA2016/corse/corse.pdf


optimizing transformations (such as combined scheduling, vectorization, register tiling, and reg-
ister allocation/promotion). For that purpose, the team develops combinations of static analyses
and code duplication (hybrid analyses), use intensive profiling information to gather pertinent in-
formation such as runtime dependencies, and use it to perform more accurate code optimization.
Participants: Fabrice Rastello, Florent Bouchez Tichadou, Frédéric Desprez.

A.2.2 Positioning of CASH

CORSE’s project intersects ours mostly with Section 1.2 for which we plan future collaborations de-
scribed in Section A.2.3. There is a huge amount of work to understand irregular applications, find ways
to reason on them and perform clever static and runtime optimizations, for which a single team will
clearly not be sufficient.

CORSE’s research on static compilation has two objectives. The first one is to estimate performance
characteristics of the code (bandwidth and operational intensity estimation) so that to construct a per-
formance model of it. The second is to be combined with dynamic analyses. While we share the idea
that purely static approaches will not be the definitive solutions for HPC compilation, our approach will
mainly focus on the characterization of technical and scientific limits of static compilation, with a “high
level language” approach.

CORSE’s activity on runtime property verification is completely different from the property verifica-
tion targeted by CASH. CORSE focuses on generation of observers or enforcers from possibly complex
temporal logic properties, and consider programs under verification as black-boxes. As opposed to that,
we analyze programs and do not consider temporal-logic properties, but only invariants.

There is a simulation activity in CORSE as well as in the current CASH proposal, but the targets are
not the same: in CASH we target SoCs and FPGAs, in CORSE the objective is to generate simulators from
existing architectures’ ISA (instruction set).

The code generation for FPGAs is not studied in CORSE. The dynamic analyses of CORSE target clas-
sic platforms (multiprocessors, accelerators GPU/XeonPhi). CORSE does not work on abstract interpre-
tation.

A.2.3 Possible collaborations

The activities of the “hybrid” axis of CORSE are complementary to the ones CASH plans to work on. We
plan to collaborate on the following topics:

• Static Analyses for dynamic compilation: CORSE’s work on profiling is complementary to the fully
static approach of CASH. Laure Gonnord and Fabrice Rastello already share a research project on
this topic within the PROSPIEL Inria associate team 2: the idea is to use static analyses to reduce
the number of parameters to profile while optimizing a given application.

• Dependence hybrid analysis for efficient scheduling: CASH shares with CORSE the idea that the
polyhedral model is not sufficient to express all data dependencies in HPC programs. Our theoret-
ical work on dependencies will most probably have an echo in the hybrid compilation part of the
CORSE’s project. Indeed, we will have to deal with over-approximations of these dependencies,
and computing preconditions for a code to be optimized efficiently would clearly be a way to limit

2The two other senior participants of this project are Sylvain Collange, from the PACAP Inria team (Rennes) and Fernando
Pereira, from the Compilation Lab of the University of Mineas Gerais, Brasil. The objective of this project is to develop com-
pilation techniques that let developers code high-performance programs in high-level parallel languages such as OpenCL or
NVIDIA C for CUDA, while taking maximum benefit from modern hardware.

CASH: Inria/UCBL joint team pre-proposal, Spring 2017 10/19



the impact of these over-approximations. In the other direction, code profiling and monitoring
can give hints to static code optimizers. Fabrice Rastello is a collaborator in an ANR JCJC proposal
led by Laure Gonnord in Spring 20173, where these topics are developed in the context of data
structure optimization.

• CORSE’s activities on performance evaluation and debugging can be applied to SystemC simula-
tions. Actually, a european project (SIM-RIDER, on Parallel and Distributed Simulation Engines)
has been submitted and passed the first selection, including Matthieu Moy and the CORSE team
(J.-F. Méhaut).

A.3 SOCRATE

A.3.1 Summary of SOCRATE’s activities

SOCRATE’s activity report is available here:

http://raweb.inria.fr/rapportsactivite/RA2016/socrate/socrate.pdf.

The SOCRATE team is composed of 3 research axes: “Flexible Radio Front-End”, “Multi-User Com-
munications” and “Software Radio Programming Model” (also referred to as the “embedded” axis). Only
the last one is relevant in a comparison with CASH (others are strongly oriented towards signal process-
ing and information theory).

The activities of the “embedded” axis of SOCRATE are: 4

• Low-power systems: impact of the capabilities of modern hardware on low-level software. A topic
of growing interest is non-volatile RAM (NVRAM), which do not loose their content when powered
off. This allows in particular the design of transiently powered systems able to snapshot relevant
parts of their state before being powered off. NVRAM raises new challenges in memory manage-
ment and in the design of operating systems. This topic is of growing importance in SOCRATE. It
is supported among others by IPL ZEP5 and an ARC6 regional Ph.D grant. Participants are: Kevin
Marquet, Tanguy Risset, Guillaume Salagnac.

• Data-flow programming model: SOCRATE works on code generation flows using data-flow lan-
guages as input and on the monitoring of these programs. Work on code generation consider
dataflow programs as a set of tasks that are mapped and scheduled on a parallel and possibly het-
erogeneous architecture (e.g. M. Dardaillon’s Ph.D [11] targeting the Magali many-core processor).
A large part of SOCRATE’s work on data-flow consider dynamic aspects like performance moni-
toring, for example the numap [26] library used to identify the performance bottlenecks due to
memory accesses at runtime. This activity’s importance is decreasing in SOCRATE because Tanguy
Risset and Kevin Marquet are strongly involved in the “low-power systems” activity, Lionel Morel is
currently looking for a mobility, and the collaboration with CEA on Magali is over. SOCRATE is still
interested in data-flow programming models, but currently has other priorities and would wel-
come another team working on the subject in Lyon. More details in section 6.3.1 of the SOCRATE
activity report. Participants: Kevin Marquet, Lionel Morel, Tanguy Risset.

• Tools for FPGA development. SOCRATE’s activities on FPGA development are centered around
the design of efficient and precise arithmetic operators. A great success of SOCRATE is the tool
FloPoCo, http://flopoco.gforge.inria.fr/, which allows generating arithmetic operators from

3Other collaborators are Tomofumi Yuki, Inria Rennes; Carsten Fuhs, Univ Birbeck, UK; Lionel Morel, Insa Lyon, and
Christophe Alias of CASH.

4All the text concerning SOCRATE has been proof-read, discussed and validated by T. Risset, head of the team.
5Inria Project Lab “Zero-power computation”, https://project.inria.fr/iplzep/teams/

CASH: Inria/UCBL joint team pre-proposal, Spring 2017 11/19

http://raweb.inria.fr/rapportsactivite/RA2016/socrate/socrate.pdf
http://flopoco.gforge.inria.fr/
https://project.inria.fr/iplzep/teams/


a set of parameters (like precision in number of bits). SOCRATE also works on the design of nu-
merical filters outside FloPoCo, and the integration of computing cores generated by FloPoCo in a
High-Level Synthesis (HLS) flow. More details in sections 6.3.2 to 6.3.4 of the activity report. Par-
ticipant: Florent de Dinechin.

A.3.2 Positioning of CASH

We share with the SOCRATE team the diagnostic that dataflow applications are an essential application
domain for HPC techniques, and the fact that memory transfer issues are crucial.

However, we study dataflow applications with completely different approaches and different applica-
tions in mind. SOCRATE’s work on dataflow applications focuses on dynamic monitoring and task map-
ping on possibly heterogeneous architectures. SOCRATE has no activity in program analysis, neither for
formal verification nor for optimizing compilers. There is no current work on languages or intermediate
representations in SOCRATE.

Another point where SOCRATE and CASH can be compared is hardware design. SOCRATE works
on the design of efficient and precise arithmetic operators, targeting FPGA. This work targets specific
operators and unlike the HLS approach followed in CASH, do not attempt to synthesize hardware circuits
for general programs. Work was started to use the data-flow language GNU Radio to assemble hardware
components (Internship report of Louis Besème in 2015 [8]), but in this case GNU Radio is used as an
architecture description language and not as a fully-fledged programming language as it is the case with
HLS approaches.

Obviously, SOCRATE and CASH target different application domains. The main target of the “embed-
ded” axis of SOCRATE is embedded system, with an emphasis on low or ultra-low power systems. CASH
targets primarily HPC applications. This has a strong impact on the scientific approach: for example
memory-management techniques for transiently-powered systems are out of scope for CASH. The focus
of optimization is also different: for example large matrix manipulation is a common operation in HPC,
which motivates the importance of the polyhedral optimizations studied in CASH.

A.3.3 Possible collaborations

The activities of the “embedded” axis of SOCRATE are complementary to the one CASH plans to work
on. The geographical proximity will allow collaboration on several topics such as:

• Data-flow programming models: SOCRATE’s work on dynamic profiling of data-flow application
is complementary to the static approach of CASH. Laure Gonnord already has close interactions
with Lionel Morel on this topic (in 2017 they co-advise two students) and we plan to continue the
collaboration which, for the moment, mainly focuses on the extension of expressivity of dataflow
languages (SigmaC, Lustre) to target more code optimizations.

• Efficient hardware generation flow: CASH’s work on HLS uses imperative code as input, and takes
care of splitting the code into a network of communicating processes. It needs hardware imple-
mentations of arithmetic operators, and could use the work of Florent Dinechin for that. In other
words, CASH works on the compiler, and SOCRATE works on the basic operators used as library by
the code generated by the compiler. SOCRATE would be very interested in HLS tools for FPGA to
apply them to radio applications, in particular for the CorteXlab platform: the platform includes
FPGA, but radio applications are too complex to be written by hand in VHDL. SOCRATE could
therefore be both a partner of CASH to design HLS tools, and a user of these tools.

CASH: Inria/UCBL joint team pre-proposal, Spring 2017 12/19



• Hardware/software system simulation: SOCRATE works at the interface of software and hardware,
and need simulation to prototype new solutions that can later be integrated in actual hardware.
Matthieu Moy already co-supervises a Ph.D with SOCRATE and plans to continue the interactions
with the team. SOCRATE is a user of simulation tools, while CASH will work on improving the
simulation tools themselves.

In all cases, we envision mutually beneficial collaboration, but the border-line between the teams is
clear, and there is very little overlap in the topic of our activities.

A.4 Synchrone (Verimag)

A.4.1 Summary of Synchrone’s activities

The Synchrone team was created around the Lustre synchronous data-flow programming language. The
team now works on several topics, which can be found on the following webpage:

http://www-verimag.imag.fr/Synchrone-main?lang=fr

The ones relevant in a comparison with CASH are:
• Languages and Tools for Critical Real-Time Systems. Synchrone works in particular on the Lustre

language. The current main topics of interest are the implementation of critical applications on
many-core architectures, and the analysis of worst-case execution time (WCET).

• Virtual Prototyping and Simulation. This research is done in collaboration with STMicroelectron-
ics, and is centered on the SystemC/TLM technology for System-on-a-Chip modeling and sim-
ulation. Recent work on the topic include modeling of extra-functional properties like power-
consumption and temperature and parallel execution of simulation.

A.4.2 Positioning of CASH

The Synchrone team of Verimag is currently led by Matthieu Moy. If Matthieu Moy moves to LIP next
year, part of the simulation-related activities will be brought to CASH, but activities related to real-time
and code generation for Lustre will not.

The common point with the Synchrone team at Verimag is the belief that the dataflow model fits
particularly well the notion of task parallelism. We aim to work on the expressivity of such languages,
but we desire to go beyond the synchronous paradigm. Similarly, we share the idea that working on the
language or appropriate intermediate representations will facilitate further analyses and optimizations.

Different preferred applications (critical embedded programs for Synchrone, HPC for CASH) entail
different constraints: contrarily to the Synchrone team, our objective is not to optimize the worst-case
execution time (WCET), but the average performance. We will not compute WCETs for critical software.
The Synchrone team does not study optimizing compilers, and targets simple compiler implementation
flows to keep traceability between the source code and the generated code.

A.4.3 Possible collaborations

The presence of a former member of Synchrone within CASH will obviously create a favorable context
for collaboration. However, the goal of CASH is clearly not to reproduce the Synchrone team and both
teams have different objectives. We may collaborate on code generation for many-core architectures and
simulation.

CASH: Inria/UCBL joint team pre-proposal, Spring 2017 13/19

http://www-verimag.imag.fr/Synchrone-main?lang=fr


A.5 SPADES

We share with SPADES the idea that the development as well as the efficient and safe compilation of
programs is through the usage of adapted programming paradigms, such as the dataflow formalism.
Their work on distributed synchronous programs is also a common point with us.

As for the Synchrone team, the application domain of SPADES is embedded systems, that have spe-
cific constraints that are different from the constraints of classic HPC. We will work neither on fault tol-
erance, nor on the theoretical aspect of component-based programming. SPADES does not tackle the
problem of optimizing compilation for HPC applications, nor circuit synthesis, nor the design of dedi-
cated static analyses.

A.6 PARKAS

We share with the PARKAS team the vision of a dataflow formalism for parallel programming and for
the construction of compilers. Nevertheless, Marc Pouzet focuses on the resolution on front-end pro-
gramming languages issues (typing, functional and higher order extensions, hybrid control and reactive
systems) than on the generation of optimized code. The activities of Albert Cohen on deterministic par-
allel programming and the optimization of HPC kernels are complementary to ours, such as dynamic
aspects in task parallelism and cross-cutting polyhedral building blocks (scheduling, code generation,
embedding into a back-end compiler).

PARKAS has no activity on the design of static analyses by abstract interpretation, and does not study
HLS.

A.7 PACSS (Verimag), ANTIQUE (Paris), CELTIQUE (Rennes)

A.7.1 Summary of PACSS activities

PACSS (http://www-verimag.imag.fr/PACSS.html?lang=fr) works on program analysis and verifi-
cation6. It follows several directions:

• Static analysis (in particular Abstract Interpretation) to prove properties or extract invariants from
programs.

• Static analysis applied to security.
• Interactive proofs (especially using the coq proof assistant).
Only the first axis is relevant in a comparison with CASH. Its main participants are David Monniaux

and Nicolas Halbwachs.

A.7.2 Summary of ANTIQUE activities

The ANTIQUE team (https://www.di.ens.fr/AntiqueTeam.html.fr) studies:7

• abstraction techniques in general (abstract interpretation of course, but also modeling techniques
in biology);

• abstract domains and static analysis techniques
• applications to software verification with a wide spectrum of software kinds (synchronous, paral-

lel, concurrent, data-structure intensive, numeric. . . ) and properties (safety, security, liveness).
• applications to other fields, such as biology.

6All the text concerning PACSS has been proof-read, discussed and validated by D. Monniaux, head of the team.
7All the text concerning ANTIQUE has been proof-read, discussed and validated by X.Rival, head of the team.

CASH: Inria/UCBL joint team pre-proposal, Spring 2017 14/19

http://www-verimag.imag.fr/PACSS.html?lang=fr
https://www.di.ens.fr/AntiqueTeam.html.fr


Only the activities concerning static analyses of general purpose programs (or safety-critical ones,
with the Astree Analyzer [9]) are relevant for a comparison with CASH. The participants are Xavier Rival,
Cezara Dragoi, Jerôme Féret and Vincent Danos.

A.7.3 Summary of CELTIQUE activities

CELTIQUE (https://www.irisa.fr/celtique/) works on programs reliability and security8, espe-
cially in the following directions:

• Program analyses by abstract interpretation, and decision procedures.
• Formal certification of static analysis tools and compilers.
• Application to software security.
The activities on abstract interpretation and on formal semantics of intermediate representations in-

side compilers (SSA), are relevant for a comparison with CASH. The participants are Delphine Demange,
David Pichardie, Sandrine Blazy, Fréderic Besson, and Thomas Jensen.

A.7.4 Positioning of CASH

These three teams have activities on abstract interpretation that meet ours. We share the ambition of
developing expressive and usable analyzers, that scale.

Nevertheless, the work on suitable intermediate representations and the design of static analyses
for optimizing compilers is only common with some researchers of the CELTIQUE team (Delphine De-
mange, David Cachera). The constraints of an analysis for safety or compilation are different: the former
favor precision and the second has higher performance constraints. CELTIQUE has complementary ac-
tivities on compilation: they share our credo that compilers should be build on solid semantic founda-
tions, as shown by their involvement in the CompCert project, but they do not specifically develop new
compiler optimizations.

Furthermore, PACSS, ANTIQUE and CELTIQUE are only focusing on software while we also target
hardware verification and synthesis.

A.7.5 Possible collaborations

Both David Monniaux and Nicolas Halbwachs are former members of the Synchrone team led by Matthieu
Moy up to 2017. PACSS and Synchrone still have very close interactions. David Monniaux and Matthieu
Moy already co-supervised 3 internships and 1 Ph.D. David Monniaux and Laure Gonnord already co-
authored three conference papers. The context is therefore very favorable to collaboration:

• Laure Gonnord and David Monniaux have an ongoing work on designing array abstractions, and
a first paper in SAS ([16]) which is strongly related on the fundamental research on computation
dependencies of the CASH project.

• Since January 2017, we organize a common weekly “Reading Group”, via teleconference, on the
static analysis topic9.

We do not currently have any projects with ANTIQUE, but we could for example on topics related to
the Anastasec ANR project10, whose goal is the automatic proof of security properties on low level codes,

8All the text concerning CELTIQUE has been proof-read, discussed and validated by T. Jensen, head of the team.
9http://stator.imag.fr/w/index.php/VerifGroup

10https://www.di.ens.fr/~feret/anastasec/

CASH: Inria/UCBL joint team pre-proposal, Spring 2017 15/19

https://www.irisa.fr/celtique/
http://stator.imag.fr/w/index.php/VerifGroup
https://www.di.ens.fr/~feret/anastasec/


which could be instantiated in our particular context of HLS, and for which a deep work on scalability is
imperative.

We do not not share any projects with CELTIQUE. With Delphine Demange and David Pichardie we
could collaborate on developing certified compiler optimizations, as a medium-term project.

A.8 Inria teams of the theme “Architecture, languages, compilation”

A.8.1 CAMUS

CAMUS targets the conception of a production chain for efficient execution of an application. CAMUS
has an activity on static parallelization and optimization, which is complementary with dynamic paral-
lelization via profiling and a work on speculative models. We will not study dynamic compilation and
speculative models, nor runtime systems. Rather, we will try to focus on the static part of compilation
and synthesis.

CAMUS has also an activity on the formal proof of formal transformations, that we will not work on.
CAMUS focus on multicore architectures, and do not target HLS.

A.8.2 PACAP

The PACAP team works on two topics related to ours: timing analysis for embedded systems (Worst-
case Execution Time, WCET, analysis and scheduling) and dynamic compilation. We plan to use WCET-
related techniques in our analysis (for load balancing for example), but unlike PACAP we do not target
embedded or critical systems as a target. Regarding the compilation activities, the fundamental distinc-
tion is the focus on static techniques of CASH.

A.8.3 CAIRN

CAIRN’s activities on hardware synthesis and compilation is close to ours. We will share a common
interest for polyhedral-based optimization, but unlike CAIRN we will not use the reconfigurability power
of FPGAs and we plan to address irregular applications. We will also target HPC applications as opposed
to embedded systems.

Summary of CAIRN’s activities CAIRN’s activity report is available here:

http://raweb.inria.fr/rapportsactivite/RA2016/cairn/cairn.pdf

The overall objective of CAIRN is to study reconfigurable architectures as an energy efficient computing
paradigm. Its main activities are:

• The design of new reconfigurable architectures with an emphasis on flexible arithmetic, dynamic
reconfiguration management and low power consumption.

• The design of dedicated synthesis algorithms and compiler optimizations.
• Applications to wireless networks and cryptography.

Only the second direction is relevant for CASH, we do not plan to study dynamic reconfiguration man-
agement. The activities of CAIRN in this direction are:

• Polyhedral Loop Transformations for High-Level Synthesis. The activity focuses on the design of
source-level transformations for HLS based on the polyhedral model. A particular aspect of this
activity is to improve the efficiency and applicability of nested loop pipelining. CAIRN develops a
compiler toolbox called Gecos which capitalizes all its developments. Members: Steven Derrien,
Patrice Quinton, Tomofumi Yuki.

CASH: Inria/UCBL joint team pre-proposal, Spring 2017 16/19

http://raweb.inria.fr/rapportsactivite/RA2016/cairn/cairn.pdf


• Regular Processor Arrays. The activity focuses on the mapping of regular kernels with uniform de-
pendencies (represented as systems of recurrence equations) to parallel processor arrays architec-
tures. This research aims at developing methods and tools to automate the synthesis of such archi-
tectures for data-intensive applications. Systolic array synthesis is one of the fundamental seminal
work of the polyhedral model, for which CAIRN members have a strong competence. Members:
Steven Derrien, Patrice Quinton, Tomofumi Yuki.

Positioning of CASH CAIRN’s project intersects ours mostly with Section 1.3 for which future collabora-
tions are possible. Though static analysis and HPC compilation techniques are progressively disseminat-
ing in the HLS community, many locks have to be overcome, for which a single team is clearly not suffi-
cient. CAIRN’s research on HLS leverages polyhedral techniques to design source-level optimization for
HLS. CASH will rely on direct hardware implementation to validate specific hardware mechanisms (e.g.
synchronizations). But for system-level design, CASH will produce source-to-source program transfor-
mations in front of existing HLS tools. For regular applications, CASH will rely on polyhedral techniques.
We believe that a collaboration is possible on this point. Unlike CAIRN, CASH will study how irregular
applications can be mapped to reconfigurable architectures. Also, CASH does not plan to leverage the
dynamic reconfigurability of FPGA.

A.9 System-Level Synthesis (TIMA)

The SLS team of TIMA is know for its expertise in simulation, in particular using SystemC/TLM. The SLS
team focuses on techniques to integrate embedded software in the platform: dynamic binary translation
and native simulation. CASH does not plan to work on these subjects. Also, SLS targets simulations with
precise timing, while CASH plans to work on loosely timed simulations, which raise completely different
issues especially when it comes to parallelization [7].

SLS also focuses on high-level synthesis for HPC and embedded systems targeting FPGA. Their tool,
AUGH, relies on design-space exploration associated with fast hardware synthesis [22]. CASH targets
program optimizations based on the polyhedral model, which are more accurate, but more expensive;
hence less adapted to design space exploration. Thus our approaches are complementary. Also, SLS
focuses on HLS-level system mechanisms for FPGAs. Recently, they developed a context switch on hard-
ware tasks executed on reconfigurable systems [10]. CASH does not plan to work on these subjects. Our
purpose is to focus on resource efficient synthesis of compute-intensive kernels.

A.10 Département Architectures Conception et Logiciels Embarqués (CEA LIST-LETI)

CEA-LIST works on simulation with SystemC/TLM, with an emphasis on many-core processor, and par-
allel/heterogeneous simulation. We already have a funding for a joint Ph.D and submitted a European
project together, and plan to continue collaboration.

A.11 International projects and teams

A.11.1 High-Level Synthesis (HLS)

• The VAST laboratory (VLSI Architecture, Synthesis, and Technology) led by Prof. Jason Cong from
University of California Los Angeles targets customized computing for big data applications, energy-
efficient computing and electronic design automation. VAST has many achievement, including
source-level optimimations for FPGA: data transfert optimization, parallelization or multibank
memory allocation to quote a few. CASH shares the same goals than VAST, but with a slightly
different approach. Our goal is rather to design dataflow intermediate representation tailored to

CASH: Inria/UCBL joint team pre-proposal, Spring 2017 17/19



the requirements of reconfigurable computing with the corresponding hardware generation algo-
rithms. We believe that a collaboration is possible either on source-level polyhedral analysis or on
low-level hardware generation.

• ROCCC (Riverside optimizing compiler for configurable computing) is an HLS project led by Prof.
Walid Najjar from University of California Riverside, USA. It features compiler optimizations as
parallelism extraction, data reuse or design space exploration. Though the project is more oriented
to embedded systems, many ideas could profit to HPC, as their hardware mechanism to fetch data
for sliding window loop nest (smart buffer) or to optimize irregular data accesses. We believe that
a collaboration is possible on the hardware generation part.

• The Compaan project was initially led by Prof. Ed Depreterre, Bart Kienhuis, and Todor Stefanov
from University of Leiden, Netherlands. It aims at providing an HLS tool for accelerating compute-
intensive embedded applications. The compaan project came up with the interesting concept
of Polyhedral process network (PPN), a dataflow representation tailored to regular kernels. CASH
shares the idea that dataflow representations are fundamental to design reusable HLS analysis and
optimizations. However, the PPN model is too restricted for our purpose. We believe that a fructfull
collaboration is possible on the dataflow model part.

• The Circuits and Systems group led by George A Constantinides from Imperial College, London,
aims at studying architectures, synthesis tools, and applications of customised hardware. There
achievements range from hardware mechanisms to HLS optimizations. For example, they pro-
posed a source-level data transfert optimization. They also investiguate HLS for irregular applica-
tions. We think a collaboration is possible for most of the issues we plan to investiguate.

• The Panda project led by Fabrizio Ferrandi from Politecnico di Milano (Italy) investiguates HLS
specific issues concerned with parallelism extraction, hardware/software partitioning and map-
ping, metrics for performance estimation of embedded software applications and dynamic recon-
figurable devices. CASH does not target embedded systems. However, we believe that a collabora-
tion is possible on source-level analysis and optimizations.

A.11.2 Simulation of Systems-on-a-Chip

• The group of computer architecture at university of Bremen works among other topics on sim-
ulation, in particular SystemC. Initially, the team worked essentially on low levels of abstraction
like gate-level or Register Transfer Level (RTL). Activities with high-level models like TLM (which is
the scope of CASH) target tools to help the programmer understand a program (fault localization,
visualization) and program verification. The first topic is not in the scope of CASH, but we may
collaborate on the second.

• The Institute for Communication Technologies and Embedded Systems (ICE), Aachen Univer-
sity has activities very close to the simulation axis of CASH: they also work on parallel execution
of SystemC/TLM programs. However, their work target models with fine-grained timing, and we
showed that this category of approach is not applicable to the models we target in CASH [7].

A.11.3 Static analyses groups in Europe/US

(Note: this section is work in progress and will be detailed in the final version)
The following teams work among other topics on abstract interpretation:
• UK: Oxford (Kroening), Kent (King)
• Germany: Freiburg (Podelski)

CASH: Inria/UCBL joint team pre-proposal, Spring 2017 18/19



• Austria: Wien (Kovacz, Sinn)
• Spain: IMDEA Madrid (Hermenegildo, Gallagher)
• Italy: Verona (Giacobazzi), Pescara (Scozzari), Parma (Zaffanella)
• Danemark (Nielsen)
• Switzerland: ETHZ (Vechev), EPFL (Kuncak)
• US: Facebook (Logozzo), NYU (Cousot), Wisconstin (Reps)

B Details on Research Group
We propose Matthieu Moy as team leader. Matthieu was “maître de conférences” at Verimag, Grenoble,
and is recruited with the same status at Université Claude Bernard, Lyon 1 (UCBL) starting from Septem-
ber 2017.

• Matthieu Moy. https://matthieu-moy.fr. Matthieu received his Ph.D degree in Computer Sci-
ence from Grenoble INP in 2005. During his Ph.D, he applied formal verification on models of
Systems-on-a-Chip written in SystemC, as part of a collaboration with STMicroelectronics. After
he joined Verimag/Ensimag as an assistant professor (his current position), he continued work-
ing with STMicroelectronics on various topics including formal verification, compilation tech-
niques for SystemC, modeling of energy consumption and parallel execution of simulations. He
also worked on abstract interpretation and real-time calculus. Recently, his main research interest
moved to critical systems on many-core architecture, including code generation from synchronous
languages and timing analysis. He obtained his Habilitation (HDR) in 2014 from Grenoble INP, and
became the leader of the “Synchrone” team in Verimag in 2015. He co-supervised 2 full Ph.Ds, and
is now supervising 4 Ph.Ds (including 3 as main supervisor).

• Christophe Alias. http://perso.ens-lyon.fr/christophe.alias. Christophe received his
PhD degree in Computer Science from University of Versailles in 2005. He is currently a research
associate (CR1) at INRIA. His research interests focus on compilers for high-performance com-
puting, with a strong emphasis on high-level-synthesis of circuits with polyhedral techniques. He
worked on many subjects around HPC compilers, including array SSA, vectorization, I/O optimiza-
tion, buffer allocation, or dataflow models for circuit synthesis. He co-supervised 2 Ph.D students.
He co-founded the XtremLogic startup, which exploits the parallelizing compiler he wrote to syn-
thesize circuits on FPGA.

• Laure Gonnord. http://laure.gonnord.org/pro/. Laure received her PhD degree in computer
science from the University Joseph Fourier (Grenoble), in 2007. She has been an assistant professor
at the University of Lille, and currently holds an assistant professor position at UCBL. Her main
research interests lie in the design of static analyses, with emphasis on the automatic synthesis
of numerical invariants and application in compilation (scheduling) and termination proofs. She
has experience in the development of static analyses for synchronous programs. She has already
published in major conferences on static analysis or compilation.

CASH: Inria/UCBL joint team pre-proposal, Spring 2017 19/19

https://matthieu-moy.fr
http://perso.ens-lyon.fr/christophe.alias
http://laure.gonnord.org/pro/

	Research Statement
	Dataflow models for HPC applications
	Compiler algorithms and tools for irregular applications
	Compiler Algorithms, Simulation and Tools for Reconfigurable Circuits
	Simulation of Systems on a Chip

	Research group
	Positioning and added value
	Details on Positioning and Added Value
	Inside the LIP
	CORSE
	Summary of CORSE's activities
	Positioning of CASH
	Possible collaborations

	SOCRATE
	Summary of SOCRATE's activities
	Positioning of CASH
	Possible collaborations

	Synchrone (Verimag)
	Summary of Synchrone's activities
	Positioning of CASH
	Possible collaborations

	SPADES
	PARKAS
	PACSS (Verimag), ANTIQUE (Paris), CELTIQUE (Rennes)
	Summary of PACSS activities
	Summary of ANTIQUE activities
	Summary of CELTIQUE activities
	Positioning of CASH
	Possible collaborations

	Inria teams of the theme ``Architecture, languages, compilation''
	CAMUS
	PACAP
	CAIRN

	System-Level Synthesis (TIMA)
	Département Architectures Conception et Logiciels Embarqués (CEA LIST-LETI)
	International projects and teams
	High-Level Synthesis (HLS)
	Simulation of Systems-on-a-Chip
	Static analyses groups in Europe/US


	Details on Research Group

