Abstract Interpretation 101
I3S Seminar

Laure Gonnord

University of Lyon / LIP

May 13th, 2017

Plan

Motivation

2/52

Goal: Safety

Prove that (some) memory accesses are safe:

int main () {
int v[;

=0; M
return v[20] x
}

» Fight against bugs and overflow attacks.

3/52

Goal: Correctness

Automatically generate loop invariants:

void £ill mini (int a[N],int 1,
unsigned int i=1;

int b=al[l] @loop i,
while (i<=u) { b=min(a]l..i-1])

if(al[i]l<b) b=ali] ;
i++

int u) {

’

//here b contains min(a[l..m])

}

» Functional assurance.
A

4/52

Goal: Performance 1/2

Enable code motion:
int main () {
unsigned int 1,]
i=42 ; 3=1515 ;
Vwhile (i>0) i--— ;
foo (]j);
}

» Safe iff the loop terminates.

.
’

5/52

Goal: Performance 2/2

Enable loop parallelism:

void fill_array (char *p) {
unsigned int 1i;

yfor (1i=0;i<4;1i++)
< *(p + 1) =0 ;

for (i=4;i<8;i++)
*(p + 1) = 2*1 5
}

3 4
Pﬁp_‘_ rp_l‘_—p—l-?
EEEE ____BHE

» The two regions do not overlap.

6/52

Proving non trivial properties of software 1/2

» Basic idea: software has mathematically defined
behaviour,

» We want to prove: behaviours C acceptable behaviours

» |n an automatic way!

7/52

The Halting Problem, proof - Program Version.

Suppose we have a “magical analyzer” A: answer A(P,X) =1
if “program P terminates eventually on input X" A(P,X) =0
otherwise.

int B(Program x) {
if (A(x,x)==0) {
return 1;
} else {
while (true) {}
}
}

What is B(B)? (B applied to its own source code)?

» If B(B) =1 then A(B, B) =0 “program B does not
terminate on input B". Absurd!

» If B(B) loops then A(B,B) =1 "program B terminates
on input B"”. Absurd!

» There is no magical static analyzer. 0(170

8/52

Workarounds

What is impossible is to check reachability:
automatically

without false positives

without false negatives

on systems of unbounded state

ok W=

with unbounded execution time

Lifting restrictions opens possibilities!

» Abstract Interpretation = enabling false positives.

Static Analysis with Abstract Interpretation

Warning, here 1A is not artificial intelligence :-) But it is still
magic!

10 /52

In the rest of the talk

Plan:

» Abstract Interpretation basics (in the case of numerical
programs).

» Toward more efficient abstract domains for compilation.

ol

11 /52

Plan

Basic ingredients of abstract interpretation

12/52

What's an invariant?

» {x € N,0 < x < 100} is the most precise invariant in

control point loop. 0670

13 /52

How to compute an invariant?

» {0,...100}: set of 101 elements, thus 101 steps. This can
be infinite! O(
|70

14 /52

Solving the impossible

Magic?
» compute until it stops, and cross fingers?

» compute but be imprecise!

15 /52

Main ingredient: abstract values - intuition

Idea: represent values of variables:
Roc € P(N9)

by a finite computable superset Rgcz

Y
ee®e 9 o o
e o o e o
e e e e o L]
e o o o

T T ‘ T

» And compute such abstract values for each control point.
0(170

16 /52

Second ingredient: abstract operations

Idea: mimic the program operations
N? x pcs — N? x pcs

by their abstract versions.

» And execute/interpret the abstract program!

17 /52

Example: Interval abstract domain

Try to compute an interval for each variable at each program
point using:

assume (x >= 0 && x<= 1);
assume(y >= 2 && y <= 3);
assume (z >= 3 && z <= 4);
t = (x+y) * z;

Interval for z? [6, 16]

» Interval abstract operations : +, —, X on intervals :
interval arithmetic

18 /52

Abstract tests

assume (x >= 0 && x<= 10);
if (x <= bB)

y = x-3
else

y = x+3;
z = y+1

We have to speculate, and invent an abstract union at the end
of the test: [a, b] U [c, d] = [min(a, b), max(b, d)].

ol

19 /52

Loops?

Loops are special cases of tests
int x=0;
while (x<1000) {

x=x+1;

}
Loop iterations (with union) [0, 0], [0, 1], [0,2], [0, 3]....

» Stricly growing interval during 1000 iterations, then
stabilizes : [0,1000] is an invariant.

20 /52

Some nice properties

» If the computation stabilizes, all sets are super-sets of the
actual values of the program variables.

» If the abstract domain is simple enough (signs) this
termination is guaranteed.

» :-(It is not the case for intervals.

21 /52

Termination Problem

Third problem to cope with : stopping the computation :

» Too many computations.

» Unbounded loops.

22 /52

One solution. ..

Extrapolation!
[0,0], [0,1], [0,2], [0,3] — [0, +00)

Push interval:

int x=0; /* [0, 0] */

while /* [0, +infty)*/ (x<1000) {
/* [0, 999] x/
x=x+1;
/* [1, 1000] */

}

Yes! [0, o] is stable!

23 /52

Extrapolation with widening

Widening operator for intervals : (1Vh with /; C)
[a, b]V][c, d] = [if ¢ < athen — oo else a,

if d > b then + oo else b]
On the example (on board):

int x=0;
while (x<1000) x=x+1;

» At the loop control point, the computation of
next = f*(previous) is replaced by previousV next.

24 /52

Computing inductive invariants as intervals -
Summary

» Representation : intervals. The union leads to an
overapproximation.

» We don't know how to compute R(P) with P interval
(The statements may be too complex, ...)
» Replace computation by simpler over-approximation
R(X) C R¥(X).
» The convergence is ensured by extrapolation/widening.
» We always compute ¢#(X) with : ¢(X) C ¢*(X)
In the end, over-approximation of the least fixed point of ¢.

ol

25 /52

Computing inductive invariants as intervals -
Property

Theorem

(Cousot/Cousot 77) Iteratively computing the reachable states
from the entry point with the interval operators and applying
widening at entry nodes of loops converges in a finite number

of steps to a overapproximation of the least invariant (aka
postfixpoint).

ol

26 /52

Demo!

Pagai tool (Verimag)

erimac

27 /52

Design your own abstract domain!

» Abstract values must have a lattice structure.
» concretization(abstraction(val)) bigger than val.
» The abstract operations must be correctly designed.

» If the lattice is infinite height, then the widening operator
must satisfy the non ascending chain condition (see
Cousot/Cousot 1977).

» There are generic analyzers where you only have to provide
your domain operations.

ol

28 /52

Plan

An example of a tailored abstract domain design
Overview
Experimental results
Scalable symbolic abstract domain

29 /52

Challenges in Abstract Interpretation

» Precision of the abstract domain.
» Thousands, millions of lines of code to analyze.

» Static analyzers and compilers are complex programs
(that also have bugs)

» Growing need for simple specialized analyses that scale

ol

30 /52

Designing a scalable static analysis: an example

OOPSLA'14:
» A technique to prove that (some) memory accesses are

safe :
» Less need for additional guards.
» Based on abstract interpretation.
» Precision and cost compromise.
» Implemented in LLVM-compiler infrastructure :
» Eliminate 50% of the guards inserted by AddressSanitizer

» SPEC CPU 2006 17% faster

ol

31/52

Outline

An example of a tailored abstract domain design
Overview

32/52

A bit on sanitizing memory accesses

Different techniques : but all have an overhead.

Ex : Address Sanitizer

» Shadow every memory allocated : 1 byte — 1 bit
(allocated or not).

» Guard every array access : check if its shadow bit is valid.
» slows down SPEC CPU 2006 by 25%

» We want to remove these guards.

ol

33 /52

Green Arrays : overview 1/2

ess
1 int main(int argc, char** argv) { Any dbdd; +
u
2 int size = argc + 1; f\'ot ; Q‘ng
e o0 bu
3 char* buf = malloc(size) hNR ! s safe!
N ’
4 unsigned index = 0; .ol —
5. scanf("%u", &index); _
6 if (index < argc) { ,” b h
-~ .7 ranch index i
7 buf[index] = 0; ~~ Index is
at least 0 and
8 } (—\af most argc-]
9 return index; D

10. }
we o no
have integer
an argc
overflows!
—

ol

34/52

Green Arrays : overview 2/2

Symbolic Range Analysis: --- -~ - N oddress
finds the lower and upper M If’] ;:2\:“ puf + 9
values that variables can . / to buf * argc
assume Lot is sofe

Symbolic Region Analysis: - =~ B !
finds the lower and upper

values that a pointer can

address

T Inside the L
branch index is

e at least ¢ and
i "~~._ at most arge-1
Integer Overflow - s N
Analysis: T \ong 85
Which arithmetic | We know that e

_ . i we do nof
operations can arge - 17 is $ nave integer

overflow? (BRSNS overflows!

Symbolic ranges: How to ensure scalability?

The idea is to work on the intermediate representation to
ensure the following key property:

SSI Property

All abstract values are stable on their live ranges.

How ? Splitting variables (v, i in the last example).

(technical stuff later if there remains time)

36 /52

Outline

An example of a tailored abstract domain design

Experimental results

37/52

Experimental setup

* Implementation: LLVM + AddressSanitizer
* Benchmarks: SPEC CPU 2006 + LLVM test suite

* Machine: Intel(R) Xeon(R) 2.00GHz,with 15,360KB of
cache and 16GB or RAM

* Baseline: Pentagons int i = 0;
unsigned j = read();
— Abstract interpretation if (...)
that combines "less-than" i=29;
and "integer ranges".t if (3 < i)

C
P(3) = (less than {i}, [0, 8])

1: Pentagons: A weakly relational abstract domain for the efficient validation of array accesses,
2010, Science of Computer Programming J

38 /52

Percentage of bound checks removed

75% The higher, the better.
Pentagons: 27%.
GreenArrays: 43%

50%

25%

0%

B Pentagon B GreenArrays

39/52

Runtime improvement

1
0.8
0.6 -
0.4
T SN R & & & & & &> S 2
THIF T F T K F &
RO S FUSERN S
+ M Pentagons ™ GreenArrays Unsafe

The lower the bar, the faster. Time is normalized to AddressSanitizer
without bound-check elimination. Average speedup: Pentagons = 9%.
GreenArrays = 16%.

ol

40/52

Outline

An example of a tailored abstract domain design

Scalable symbolic abstract domain

41/52

Symbolic Ranges (SRA): Running example

int main(int argc){

int* v = malloc(sizeof (int)x*argc);

int i = argc - 1;

v[i] = 0;

if (?) {v = realloc(sizeof (int)=*2); i=1 ;}
v[i] = 0;

}

» Are all accesses to v safe?

42 /52

Symbolic Ranges (SRA): On the SSA form

vo = alloca(argc) - TTTTT > R(i,) = [arge — 1, arge — 1]
io=arge-1 - _ _ | __-—”/
v4=vo+io
*yy=0 \
v1 = alloca(2)
\ =l __/,,R(il):[la 1]

V2 = $(vo, V1)

2= (o, il)\

AY

*y3 =10

vi=va+ia N
b

e

~

=> R(i,) = [min(1, argc — 1), max(1, argc — 1)]

o~

43 /52

SRA on SSA form: a sparse analysis

» An abtract interpretation-based technique.
» Very similar to classic range analysis.
» One abstract value (R) per variable: sparsity.

» Easy to implement (simple algorithm, simple data
structure).

44 /52

SRA on SSA form: constraint system

v=e = R(v)=]v,v]

v=vi®w = R(v)=R(v)a R(vn)
v=2¢(wn,vn) = R(v)=R(vi)UR(v)
other instructions = ()

@®': abstract effect of the operation @ on two intervals.
L: convex hull of two intervals. » All these operation are
performed symbolically thanks to GiNaC 0670

45 /52

SRA on SSA form: an example

(o]

=0

!

phi(i_O,i_Q)}

randunsigned ()]

<N ?

46 /52

Improving precision of SRA : live-range splitting
1/2

io = arge - | io=arge - 1
(io < 10)? /—> (o< 10)?
vi=vo+ip va=vp+ip i1 =1iop N [~o0, 9] ’i_]:i()n[lo,"*ot)]
A -
*vi=0 *yva=10 A1 vi=vot+is i V2=Vt iz
4 ”
e *yvi=0 7 vy =10
s 7
______________ - - ’,
” /,
R(i,) = [arge — 1, max(9, argc — 1)] R(i,) = [min(10, argc — 1), arge — 1]

» e-SSA form. 0670

47 /52

Improving precision of SRA : live-range splitting

2/2

Rule for live-range splitting :

t=a<b
br (¢,¢)

=

asy= o(a)
by= o(b)

/ \

a, = o(a)
b, = o(b)

R(a,) = [R(a),, min(R(b),~ 1, R(a),)]
R(b,) = [max(R(a), + 1, R(a),), R(b);]
R(ay) = [max(R(a),, R(a),), R(a);]
R(b,) = [R(D),, min(R(a);, R(D),)]

» All simplications are done by GiNaC.

48 /52

SRA + live-range on an example

randunsigned ()
=0

!

phi(i_0,i_2)
< N ?

¥

(o]

it sigma(i_1)

i2 =it + 1 R(i;) = [R(i) |, min(N — 1, R(i1) 1)]
> R(Io) — [070]

> R(i1) = [0, N]

ol

49 /52

Plan

Conclusion

50 /52

In the paper (OOPSLA'14)

A complete formalisation of all the analyses :
» Concrete and abstract semantics.
» Safety is proved.
» Interprocedural analysis.

» https://code.google.com/p/ecosoc/

Remaining question : improving precision of the symbolic
range analysis ?

ol

51 /52

https://code.google.com/p/ecosoc/

Take away message

Abstract Interpretation is a powerful tool!

52/ 52

	Motivation
	Basic ingredients of abstract interpretation
	An example of a tailored abstract domain design
	Overview
	Experimental results
	Scalable symbolic abstract domain

	Conclusion

