
Abstract Interpretation 101
I3S Seminar

Laure Gonnord

University of Lyon / LIP

May 13th, 2017

Plan

Motivation

Basic ingredients of abstract interpretation

An example of a tailored abstract domain design
Overview
Experimental results
Scalable symbolic abstract domain

Conclusion

2 / 52

Goal: Safety

Prove that (some) memory accesses are safe:

int main () {
int v[10] ;
v[0]=0;
return v[20] ;

}

✔
✘

I Fight against bugs and overflow attacks.

3 / 52

Goal: Correctness

Automatically generate loop invariants:

void fill_mini (int a[N],int l, int u) {
unsigned int i=l;

 int b=a[l]
while (i<=u){

 if(a[i]<b) b=a[i] ;
 i++ ;

}
 //here b contains min(a[l..m])
}

@loop_i ,
b=min(a[l..i-1])

I Functional assurance.

4 / 52

Goal: Performance 1/2

Enable code motion:

int main () {
unsigned int i,j ;
i=42 ; j=1515 ;
while(i>0) i-- ;
foo(j);

}

✔

I Safe iff the loop terminates.

5 / 52

Goal: Performance 2/2

Enable loop parallelism:

void fill_array (char *p) {
unsigned int i;
for (i=0;i<4;i++)

 *(p + i) = 0 ;
 for (i=4;i<8;i++)
 *(p + i) = 2*i ;
}

I The two regions do not overlap.

6 / 52

Proving non trivial properties of software 1/2

I Basic idea: software has mathematically defined
behaviour,

I We want to prove: behaviours ⊆ acceptable behaviours

I In an automatic way!

7 / 52

The Halting Problem, proof - Program Version.

Suppose we have a “magical analyzer” A: answer A(P ,X) = 1
if “program P terminates eventually on input X” A(P ,X) = 0
otherwise.

int B(Program x) {

if (A(x,x)==0) {

return 1;

} else {

while(true) {}

}

}

What is B(B)? (B applied to its own source code)?

I If B(B) = 1 then A(B ,B) = 0 “program B does not
terminate on input B”. Absurd!

I If B(B) loops then A(B ,B) = 1 “program B terminates
on input B”. Absurd!

I There is no magical static analyzer.

8 / 52

Workarounds

What is impossible is to check reachability:

1. automatically

2. without false positives

3. without false negatives

4. on systems of unbounded state

5. with unbounded execution time

Lifting restrictions opens possibilities!

I Abstract Interpretation = enabling false positives.

9 / 52

Static Analysis with Abstract Interpretation

Warning, here IA is not artificial intelligence :-) But it is still
magic!

10 / 52

In the rest of the talk

Plan:

I Abstract Interpretation basics (in the case of numerical
programs).

I Toward more efficient abstract domains for compilation.

11 / 52

Plan

Motivation

Basic ingredients of abstract interpretation

An example of a tailored abstract domain design
Overview
Experimental results
Scalable symbolic abstract domain

Conclusion

12 / 52

What’s an invariant?

init

loop

end

x := 0

x ≥ 100

x ≤ 99

→ x++

I {x ∈ N, 0 ≤ x ≤ 100} is the most precise invariant in
control point loop.

13 / 52

How to compute an invariant?

init

loop

end

x := 0

x ≥ 100

x ≤ 99

→ x++

I {0, . . . 100}: set of 101 elements, thus 101 steps. This can
be infinite!

14 / 52

Solving the impossible

Magic?

I compute until it stops, and cross fingers?

I compute but be imprecise!

15 / 52

Main ingredient: abstract values - intuition

Idea: represent values of variables:

Rpc ∈ P(Nd)

by a finite computable superset R]
pc :

y

xxx

y y

I And compute such abstract values for each control point.

16 / 52

Second ingredient: abstract operations

Idea: mimic the program operations

Nd × pcs → Nd × pcs

by their abstract versions.

I And execute/interpret the abstract program!

17 / 52

Example: Interval abstract domain

Try to compute an interval for each variable at each program
point using:

assume(x >= 0 && x<= 1);

assume(y >= 2 && y <= 3);

assume(z >= 3 && z <= 4);

t = (x+y) * z;

Interval for z? [6, 16]

I Interval abstract operations : +,−,× on intervals :
interval arithmetic

18 / 52

Abstract tests

assume(x >= 0 && x<= 10);

if (x <= 5)

y = x-3

else

y = x+3;

z = y+1

We have to speculate, and invent an abstract union at the end
of the test: [a, b] t [c , d] = [min(a, b),max(b, d)].

19 / 52

Loops?

Loops are special cases of tests

int x=0;

while (x <1000) {

x=x+1;

}

Loop iterations (with union) [0, 0], [0, 1], [0, 2], [0, 3],. . .

I Stricly growing interval during 1000 iterations, then
stabilizes : [0, 1000] is an invariant.

20 / 52

Some nice properties

I If the computation stabilizes, all sets are super-sets of the
actual values of the program variables.

I If the abstract domain is simple enough (signs) this
termination is guaranteed.

I :-(It is not the case for intervals.

21 / 52

Termination Problem

Third problem to cope with : stopping the computation :

I Too many computations.

I Unbounded loops.

22 / 52

One solution. . .

Extrapolation!

[0, 0], [0, 1], [0, 2], [0, 3] → [0,+∞)

Push interval:

int x=0; /* [0, 0] */

while /* [0, +infty)*/ (x <1000) {

/* [0, 999] */

x=x+1;

/* [1, 1000] */

}

Yes! [0,∞[is stable!

23 / 52

Extrapolation with widening

Widening operator for intervals : (I1∇I2 with I1 ⊆ I2)

[a, b]∇[c , d] = [if c < a then −∞ else a,

if d > b then +∞ else b]

On the example (on board):

int x=0;

while (x <1000) x=x+1;

I At the loop control point, the computation of
next = f](previous) is replaced by previous∇next.

24 / 52

Computing inductive invariants as intervals -

Summary

I Representation : intervals. The union leads to an
overapproximation.

I We don’t know how to compute R(P) with P interval
(The statements may be too complex, . . .)
I Replace computation by simpler over-approximation
R(X) ⊆ R](X).

I The convergence is ensured by extrapolation/widening.

I We always compute φ](X) with : φ(X) ⊆ φ](X)
In the end, over-approximation of the least fixed point of φ.

25 / 52

Computing inductive invariants as intervals -

Property

Theorem
(Cousot/Cousot 77) Iteratively computing the reachable states
from the entry point with the interval operators and applying
widening at entry nodes of loops converges in a finite number
of steps to a overapproximation of the least invariant (aka
postfixpoint).

26 / 52

Demo!

Pagai tool (Verimag)

27 / 52

Design your own abstract domain!

I Abstract values must have a lattice structure.

I concretization(abstraction(val)) bigger than val .

I The abstract operations must be correctly designed.

I If the lattice is infinite height, then the widening operator
must satisfy the non ascending chain condition (see
Cousot/Cousot 1977).

I There are generic analyzers where you only have to provide
your domain operations.

28 / 52

Plan

Motivation

Basic ingredients of abstract interpretation

An example of a tailored abstract domain design
Overview
Experimental results
Scalable symbolic abstract domain

Conclusion

29 / 52

Challenges in Abstract Interpretation

I Precision of the abstract domain.

I Thousands, millions of lines of code to analyze.

I Static analyzers and compilers are complex programs
(that also have bugs)

I Growing need for simple specialized analyses that scale

30 / 52

Designing a scalable static analysis: an example

OOPSLA’14:

I A technique to prove that (some) memory accesses are
safe :

I Less need for additional guards.
I Based on abstract interpretation.
I Precision and cost compromise.

I Implemented in LLVM-compiler infrastructure :
I Eliminate 50% of the guards inserted by AddressSanitizer
I SPEC CPU 2006 17% faster

31 / 52

Outline

Motivation

Basic ingredients of abstract interpretation

An example of a tailored abstract domain design
Overview
Experimental results
Scalable symbolic abstract domain

Conclusion

32 / 52

A bit on sanitizing memory accesses

Different techniques : but all have an overhead.

Ex : Address Sanitizer

I Shadow every memory allocated : 1 byte → 1 bit
(allocated or not).

I Guard every array access : check if its shadow bit is valid.
I slows down SPEC CPU 2006 by 25%

I We want to remove these guards.

33 / 52

Green Arrays : overview 1/2

34 / 52

Green Arrays : overview 2/2

35 / 52

Symbolic ranges: How to ensure scalability?

The idea is to work on the intermediate representation to
ensure the following key property:

SSI Property
All abstract values are stable on their live ranges.

How ? Splitting variables (v , i in the last example).
(technical stuff later if there remains time)

36 / 52

Outline

Motivation

Basic ingredients of abstract interpretation

An example of a tailored abstract domain design
Overview
Experimental results
Scalable symbolic abstract domain

Conclusion

37 / 52

Experimental setup

38 / 52

Percentage of bound checks removed

39 / 52

Runtime improvement

40 / 52

Outline

Motivation

Basic ingredients of abstract interpretation

An example of a tailored abstract domain design
Overview
Experimental results
Scalable symbolic abstract domain

Conclusion

41 / 52

Symbolic Ranges (SRA): Running example

int main(int argc){

int* v = malloc(sizeof(int)*argc);

int i = argc - 1;

v[i] = 0;

if (?) {v = realloc(sizeof(int)*2); i=1 ;}

v[i] = 0;

}

I Are all accesses to v safe?
Skip technical stuff

42 / 52

Symbolic Ranges (SRA): On the SSA form

43 / 52

SRA on SSA form: a sparse analysis

I An abtract interpretation-based technique.

I Very similar to classic range analysis.

I One abstract value (R) per variable: sparsity.

I Easy to implement (simple algorithm, simple data
structure).

44 / 52

SRA on SSA form: constraint system

v = • ⇒ R(v) = [v , v]

v = o ⇒ R(v) = R(o)

v = v1 ⊕ v2 ⇒ R(v) = R(v1)⊕I R(v2)

v = φ(v1, v2) ⇒ R(v) = R(v1) t R(v2)

other instructions ⇒ ∅

⊕I : abstract effect of the operation ⊕ on two intervals.
t: convex hull of two intervals. I All these operation are
performed symbolically thanks to GiNaC

45 / 52

SRA on SSA form: an example

N = randunsigned ()

i_0 = 0

i_1 = phi(i_0 ,i_2)

i_1 < N ?

i_2 = i_1 + 1

I R(i0) = [0, 0]

I R(i1) = [0,+∞]

I R(i2) = [1,+∞]

46 / 52

Improving precision of SRA : live-range splitting

1/2

I e-SSA form.
47 / 52

Improving precision of SRA : live-range splitting

2/2

Rule for live-range splitting :

t = a < b
br (t, l)

at = σ(a)
bt = σ(b)

af = σ(a)
bf = σ(b)

l

R(at) = [R(a)↓, min(R(b)↑− 1, R(a)↑)]

R(bt) = [max(R(a)↓ + 1, R(a)↓), R(b)↑]

R(af) = [max(R(a)↓, R(a)↑), R(a)↑]

R(bt) = [R(b)↓, min(R(a)↑, R(b)↑)]

�

I All simplications are done by GiNaC.

48 / 52

SRA + live-range on an example

N = randunsigned ()

i_0 = 0

i_1 = phi(i_0 ,i_2)

i_1 < N ?

i_t = sigma(i_1)

i_2 = i_t + 1
R(it) = [R(i1) ↓,min(N − 1,R(i1) ↑)]

I R(i0) = [0, 0]

I R(i1) = [0,N]

49 / 52

Plan

Motivation

Basic ingredients of abstract interpretation

An example of a tailored abstract domain design
Overview
Experimental results
Scalable symbolic abstract domain

Conclusion

50 / 52

In the paper (OOPSLA’14)

A complete formalisation of all the analyses :

I Concrete and abstract semantics.

I Safety is proved.

I Interprocedural analysis.

I https://code.google.com/p/ecosoc/

Remaining question : improving precision of the symbolic
range analysis ?

51 / 52

https://code.google.com/p/ecosoc/

Take away message

Abstract Interpretation is a powerful tool!

52 / 52

	Motivation
	Basic ingredients of abstract interpretation
	An example of a tailored abstract domain design
	Overview
	Experimental results
	Scalable symbolic abstract domain

	Conclusion

