Proving array properties of programs

Experiences in Program Analysis and Compilation

Laure Gonnord
December 3rd, 2020

University Claude Bernard Lyon 1 / LIP, Lyon, France

ompilation and Analysis for Software and Hardware - Location

LIP:

Laboratoire
de I'Informatique du
Parallélisme

CASH : Topics + People

Optimized (software/hardware) compilation for HPC software with
data-intensive computations.

~» Means : dataflow IR, static analyses, optimisations, simulation.

Hardware
(FPGA)

Sequential
Program

Polyhedral o
[Model)—;lOptlmlzatlon

Analysis Abstract
4 Interpretation

Paralleli
Extraction

HPC
Applications

Intermediate
Parallel
Representation

Code
Generation

Fii:”ai [Dataflow Semantics]

Software

[Simulation]

(CPU & accelerators)

Christophe Alias, Laure Gonnord, Ludovic Henrio, Matthieu Moy

+ (2020) Gabriel Radanne + Yannick Zakowski
http://www.ens-1lyon.fr/LIP/CASH/

ol

3/46

http://www.ens-lyon.fr/LIP/CASH/

Motivations

4/46

Software needs safety and performance

)

P

e
2N

e For safety-critical
systems . ..

e and general
purpose systems !

» Programs crash because of array out-of-bounds accesses,

complex pointer behaviour, ... 5/46

Goal : safety - ex

Prove that (some) memory accesses are safe :

int main () {
int v[10];
v[0]=0; /
return v[20]; X
}

» This program has an illegal array access.

6/46

Goal : performance -ex

Enable loop parallelism :

void fill_array (char #*p){
unsigned int i;
for (i=0; i<4; i++) E:;i?el
*x(p + 1) = 0 ;
for (i=4; i<8; i++)
x(p + 1) = 2*i ;
}

’

I
T T 1T

» The two regions do not overlap.

7/46

Proving non trivial properties of software

e Basic idea : software has mathematically defined behaviour.

e Automatically prove properties.

Acceptable
Behaviours (verif) No crash
Program (compil) Optimisable

8/46

There is no free lunch

i.e. no magical static analyser. It is impossible to prove interesting
properties :
e automatically

e exactly
e on unbounded programs

9/46

There is no free lunch

i.e. no magical static analyser. It is #mpossible to prove interesting
properties :

e automatically
o exactly with false positives !
e on unbounded programs

» Abstractions = conservative approximations.

9/46

Abstract Interpretation

10/46

Computing (inductive) invariants

» {x € N,0 < x <100} is the most precise invariant in control !170
point loop.

11/46

Problems and solution

We want to :

e Compute infinite sets.

e In finite time.
» How?

e Approximate sets (abstract domains), compute in this
abstract world.

e Extrapolate (widening).

12/46

Main ingredient : abstract values

Idea : represent values of variables :
Rpc € P(NY)

by a finite computable superset Rf,c ;

» And compute such abstract values for each control point.
» How ? mimic the program operations
Oé 170

N9 x pcs—>Nd X pcs

by their abstract versions. 13/46

Computing (inductive) invariants with intervals

» ex : Propagate range information CDlj7<)

14/46

Example (Pagai, Verimag)

Aint main(int arqc, char** argv){

int x, y;
x = 1;
y = 2

[* reachable #*/
[* invariant:
3-2%y+x = 0

while (x<8){
X = X+2;
y = y+l;

}
[* reachable */

' return o; OL'?O

15/46

see http://pagai.forge.imag.fr

http://pagai.forge.imag.fr

Challenges in Abstract Interpretation

e More data structures : pointers, arrays, ...
e Thousands, millions of lines of code to analyze.

e Static analyzers and compilers are complex programs (that

also have bugs).
» Growing need for simple specialized analyses that scale

Memory Analyses
Focus on expressivity - scalability - compilers.

16/46

Green Arrays
Overview
Scalable symbolic abstract domain

Experimental results

17/46

Abstract Interpretation in Compilers

Classical analyses (and optimisation) inside (production)

compilers :

e Apart from classical dataflow algorithm, often syntactic.
e Usual abstract-interpretation based algorithms are too costly.

e Expressive algorithms : rely on “high level information”.

» Need for safe and precise quasi linear-time algorithms at

low-level.

» lllustration with OOPLSA’14 paper

Collaborations with M. Maalej, F. Pereira and his team at UFMG, Brasil, slides inpired
Oll

from theirs. ;

18/46

Designing a scalable static analyses sequence : an example

OOPSLA'14 :

e A technique to prove that (some) memory accesses are safe :

o Less need for additional guards.
e Based on abstract interpretation.
e Precision and cost compromise.

e Implemented in LLVM-compiler infrastructure :

e Eliminate 50% of the guards inserted by AddressSanitizer
e SPEC CPU 2006 17% faster

ol

19/46

A bit on sanitizing memory accesses

Different techniques : but all have an overhead.

Ex : Address Sanitizer

e Shadow every memory allocated : 1 byte — 1 bit (allocated or
not).

e Guard every array access : check if its shadow bit is valid. »
slows down SPEC CPU 2006 by 25%

» We want to remove these guards.
oLl?O

20/46

Green Arrays : overview 1/2

any address

1 int main(int argc, char** argv) { 0
2 int size = argc + 1; from L)Q[" [
! PR o buf * e
3 char* buf = malloc(size); S o s Safe‘.
4 unsigned index = 0; R
5. scanf("%u", &index); o {
6. if (index < argc) { ,"’ b Ins';de the
c--i_.-7 ranch in i
7 buf[index] = 0; "=~ t Index s
ar least 0 and
o } (\Cf most ar =
9 return index; \f
10. as
’ We know that hs long <
" w o we do no
arge - 1" is .
have integer
less than argc \
overflows:

21/46

Symbolic Range Analysis: ----- -

. N _--> pny oddress
finds the lower and upper s K from puf + 9
values that variables can v to buf + arge

1 7
assume P is so
-
Symbolic Region Analysis: -~~~ \

finds the lower gnd upper "> Inside the L
values that a pointer can

branch index j
address =

_____ at least ¢ and
. o F\\af most arge-1
Integer Overflow ~ Sy AR

~
~

Analysis:)

as
Which arithmetic | We know that = l::,‘gno’f
operations can e L ::zvg integer
overflow? lise bide e e overflows!

ol

22/46

Symbolic ranges : How to ensure scalability ?

The idea is to work on the intermediate representation to ensure
the following key property :

SSI Property
All abstract values are stable on their live ranges.

How 7 Splitting variables work on the Intermediate
representation.

23/46

Symbolic Ranges (SRA) : Running example

int main(int argc){
malloc(sizeof (int)*argc) ;

int*x v =

int i = argc - 1;

v[i] = 0;

if (?) {v = realloc(sizeof (int)=*2); i=1 ;}
v[i] = 0;

» Are all accesses to v safe?

ol

24 /46

Symbolic Ranges (SRA) : ex within the SSA form

SSA = Static Single Assignment

vp = alloca(argc) emmmm >R(i,) = [argc — 1, argc — 1]
ip=argc-1-_ _ | ___,—”/
va=vp+1ip
*yy=0 \
v = alloca(2)

, | JRG-@L
v2 = ¢(vo, V1) /
i2 = (o, 1)
Vi=va+is N\ X >)
*yi=0 T R(i,) = [min(1, argc — 1), max(1, argc — 1)]

25/46

SRA on SSA form : a sparse analysis

e An abtract interpretation-based technique.
e Very similar to classic range analysis.

e One abstract value (R) per variable : sparsity.

» Easy to implement (simple algorithm, simple data structure).

ol

26/46

SRA on SSA form : an example

randun51gned()

ph1(1 0,1 2)}

i_2 =i 1 + 1

e R(ip) =10,0]
e R(i1) =[0,+00]

27/46

Improving precision of SRA : live-range splitting 1/2

ip = arge - 1 ip=arge - 1

(i < 10)? /-——-> (o< 10)?

/N [N\

vi=vp+ip va=vo+io ir=10 N [0, 9] L, i2 =10 N [10, +o0]
A

*vi=0 *va=0 1 vi=votin e va=vo+ia

s
-
, *vi=0 - *ya =10
. ’
- g

- 7
[s

R(i,) = [arge — 1, max(9, argc — 1)] R(iz)/= [min(10, argc — 1), arge — 1]

ol

» e-SSA form.

28/46

SRA + live-range on an example

randunsigned()]

0 =0
phi(i_0,i_2)
i1 <N 7

sigma(i_1)

i2 =it + 1 R(it) = [R(i1) 4, min(N — 1, R(i1) 1)]

-
[

e R(ip) =[0,0]
e R(i1) =[0,N]

ol

29/46

Experimental setup

* Implementation: LLVM + AddressSanitizer
* Benchmarks: SPEC CPU 2006 + LLVM test suite

* Machine: Intel(R) Xeon(R) 2.00GHz,with 15,360KB of
cache and 16GB or RAM

* Baseline: Pentagons int i = 0;
unsigned j = read();
— Abstract interpretation if (...)
that combines "less-than" i=9;
and "integer ranges".t if (3 < 1)

C
P(3) = (less than {i}, [0, 8])

+: Pentagons: A weakly relational abstract domain for the efficient validation of array accesses,
2010, Science of Computer Programming

30/46

Percentage of bound checks removed

75% The higher, the better.
Pentagons: 27%.
GreenArrays: 43%

50%

25%

0%

< N+ B N N 'S & 1 < & <
(o) < Q/ () 2 @)
T & &E &S
& & 2 N
2) & AN X
+q) Q?z [§) &
¥ Pent H GreenA N ,L7o

Runtime improvement

1

0.8 —
0.6 - B
0.4 A

< N X N X A 3 S O <

& & & R AP é\"a PGPS 6\5 @Q‘,
& F P F & e 2 &
'b\'b QQ}\ % 06\ AN AN v
K¢

¥ Pentagons GreenArrays Unsafe

The lower the bar, the faster. Time is normalized to AddressSanitizer
without bound-check elimination. Average speedup: Pentagons = 9%.

GreenArrays = 16%. lvo

32/46

Conclusion and Research Questions

In the presented work :

e Work on an appropriate intermediate representation.
e Safety is proved.

e Interprocedural analysis.

On this part :

e More relational analyses?
e Combination of analysis/optimisation 7

e Inside LLVM ecosystem ?

33/46

A more expressive analysis for arrays

34/46

Goal : more functional properties

e Array bound check is “Index-based verification.”

e What about relationship between indices and contents?

int a[N]
for (1=0; 1i<N; i++) {
ali] = 42;

}
#forall i,a[i]l==42 ; V

35/46

Program Verification as solving Horn Clauses

(Horn clause : V...AABAC = D)

e Abstract semantics as Horn Clauses :

Vx, x € initial values = x € invar(ip)

Vx, X' x € invar(i) A (x,x') € trans(i,j) = X' € invar(j)

e Invariants are unknown.
e Safety property as Horn Clause.
e SAT < the property is proven.

» Toward a new IR for verification : at least expressive. !170

36/46

Contributions : SAS 2016 [Gonnord Monniaux] and NSAD 2020

[Braine Gonnord]

e (SAS16) A new abstraction for programs with arrays :

e with tunable precision.
e into Horn clauses (a special type of formula) without arrays.
e extensible to other data structures (maps, ...).

e (NSAD20) (with J. Braine) : a general technique to abstract
data-structures in Horn problems.

e WIP (J. Braine) : other nice results such as completeness.
Some of the next slides are adapted from Julien Braine's talk at NSAD 2020.
oLl?O

37/46

On logics with arrays

Expressivity /Decidability :

e Numerical (affine) constraints + 3 + V : OK
e Numerical constraints + 3 + uninterpreted fun : OK
e Numerical constraints + 3 + uninterpreted fun + V : Undec.

e Uninterpreted + ifthenelse — Arrays (store/update)

» Arrays + V : Undecidable.

» State-of-the-art solvers (Z3/PDR, Z3/Spacer, Eldarica) are
really not performant.

ol

38/46

Difficulties of datastructures

Example of data structures

1.
2. Sets
3.
4
5

Arrays

Maps

. Trees

. Graphs

Interesting Invariants

1. Involve a non bounded number of elements Vi, a[i] =0

2. Involve relations between elements Vi, j,i < j = a[i] < a[j]

3. Involves the structure Vnl, n2, n2 € child(nl) = nl < n2 OL'?O
We need quantified invariants ! Focus : arrays

39/46

Data abstraction

Idea : define relations between abstracted and concrete elements :

Data-abstraction o
1. Definition : o : A — P(B)
2. Encoded by an explicit formula F,(a,a”) = a” € o(a)

» This is a Galois connection.

40/46

Simple Example : Sign abstraction
1. Sign abstraction : (i € Z) = ite(i >=0,{Pos}, {Neg})
2. F,(i,i*) = ite(i >= 0, i" = Pos, i = Neg)

Some array abstractions
1. Array smashing : F,(a,v) = 3i,a[i]=v
2. Array slicing/partitioning on i : F,((a, 1), (sliceid, v,i")) =
3j, sliceid = ite(j < i,0,ite(j = i,1,2))Av=a[j]Ai" =i
3. 1-Cell Morphing [Gonnord Monniaux SAS16] :
Fs(a,(q,v)) = v = a[q]

ol

Cell Morphing subsumes the others

41/46

Data abstraction technique

Algorithm
Replace P(a, X) by Va*, F,(a,a) = P#(a#, X) everywhere

Result
Given a Horn problem H, H# has a solution iff H has a solution S

such that v o a(S) = S. This implies soundness.

Problem
We have added a quantifier alternation depth! Solvers do not

handle them!

ol

42/46

Example : cell morphing

Initial clause : Array initialization loop
Va,a',i,n, P(a,i,n) Ni<nAa =a[i + 0] :>_

Abstracted clause using cell morphing
Va,a',i,n, (Yq,v,v = a[q] = P#(q,v,i,n)) A

<o = -0 -

Simplified
va? a/7 i? n7 q/7 (vq7 P#(q7 a[q]7 i7 n))

i< o = a0

How to remove the quantifier Vq? OL'?O

43/46

Eliminating the quantifiers

Technique
Replace an infinite conjunction (V) by a finite one. The finite set

most be chosen wisely !

Chosen finite conjunction for Cell abstraction
Idea : focus on the cells that matter in the clause!

In practice : use the cell indices that are used in a read
Example, continued
e Clause : Va,d',i,n,q,(Vq, P#(q,a[q],i,n))
ANi<nAad =ai < 0] = P#(q,d[q],i+1,n)
e Indices used in a read operation : ¢’

e Clause after elimination of quantifier g
Va,a',i,n,q,P*(q,ald'],i,n) Ni<nAa =a[i < 0] = OL'?O
P#(q',d'[q'],i + 1, n)

44/46

A few experiments [l.Dillig T.Dillig Aiken]

Setting
1. Benchmarks written in toy java language

2. Solving with Z3, 30s timeout
3. Comparison : Z3 directly, Vaphor tool from [GM SAS16], Cell

#exp | Noabs | Vaphor Celhl
¢ P & P & P
NotHinted | 12 [0 0|1 o[@ o0
Hinted 12 0O 0|5 0] 12 O
Buggy 4 4 0|4 O 4 0

Analysis

1. No unsound results but _

2. Hints allow to solve the problems = Abstraction is good OLI
=-Z3 has trouble on our non quantified integer problems

3. Great improvement compared to Vaphor for hinted problems 45/46

Conclusion & Research Questions

On the current work :

o WIP : completeness results, and experimental deeper
evaluations.

e Other data structures : trees.
On this part :

e Horn Clauses are a good intermediate representation but
perhaps not mature enough : embed more structural
properties ?

e What about scalability ? OL'?O

46/46

	Motivations
	Abstract Interpretation
	Green Arrays
	Overview
	Scalable symbolic abstract domain
	Experimental results

	A more expressive analysis for arrays

