
Proving array properties of programs

Experiences in Program Analysis and Compilation

Laure Gonnord

December 3rd, 2020

University Claude Bernard Lyon 1 / LIP, Lyon, France

Compilation and Analysis for Software and Hardware - Location

LIP:
Laboratoire
de l'Informatique du
Parallélisme

2/46

CASH : Topics + People

Optimized (software/hardware) compilation for HPC software with

data-intensive computations.

 Means : dataflow IR, static analyses, optimisations, simulation.

Sequential
Program

Parallel
Program

H
P

C
A

p
p

lic
at

io
n

s Parallelism
Extraction Intermediate

Parallel
Representation

Code
Generation

Hardware
(FPGA)

Software
(CPU & accelerators)

Optimization

Dataflow Semantics

Analysis
Abstract

Interpretation

Simulation

Polyhedral
Model

Christophe Alias, Laure Gonnord, Ludovic Henrio, Matthieu Moy

+ (2020) Gabriel Radanne + Yannick Zakowski

http://www.ens-lyon.fr/LIP/CASH/

3/46

http://www.ens-lyon.fr/LIP/CASH/

Plan

Motivations

Abstract Interpretation

Green Arrays

Overview

Scalable symbolic abstract domain

Experimental results

A more expressive analysis for arrays

4/46

Software needs safety and performance

I Programs crash because of array out-of-bounds accesses,

complex pointer behaviour, . . .
5/46

� For safety-critical

systems . . .

� and general

purpose systems !

Goal : safety - ex

Prove that (some) memory accesses are safe :

int main () {

int v[10];

v[0]=0;

return v[20];

}

3
7

I This program has an illegal array access.

6/46

Goal : performance -ex

Enable loop parallelism :

void fill_array (char *p){

unsigned int i;

for (i=0; i<4; i++)

*(p + i) = 0 ;

for (i=4; i<8; i++)

*(p + i) = 2*i ;

}

Parallel
loops

p p+ 7
p+ 3 p+ 4

I The two regions do not overlap.

7/46

Proving non trivial properties of software

� Basic idea : software has mathematically defined behaviour.

� Automatically prove properties.

Acceptable
Behaviours

Program

(verif) No crash

(compil) Optimisable

8/46

There is no free lunch

i.e. no magical static analyser. It is impossible to prove interesting

properties :

� automatically

� exactly

� on unbounded programs

I Abstractions = conservative approximations.

9/46

There is no free lunch

i.e. no magical static analyser. It is impossible to prove interesting

properties :

� automatically

� exactly with false positives !

� on unbounded programs

I Abstractions = conservative approximations.

9/46

Plan

Motivations

Abstract Interpretation

Green Arrays

Overview

Scalable symbolic abstract domain

Experimental results

A more expressive analysis for arrays

10/46

Computing (inductive) invariants

init

loop

end

x := 0

x ≥ 100

x ≤ 99

→ x++

I {x ∈ N, 0 ≤ x ≤ 100} is the most precise invariant in control

point loop.

11/46

Problems and solution

We want to :

� Compute infinite sets.

� In finite time.

I How ?

� Approximate sets (abstract domains), compute in this

abstract world.

� Extrapolate (widening).

12/46

Main ingredient : abstract values

Idea : represent values of variables :

Rpc ∈ P(Nd)

by a finite computable superset R]pc :

y

xxx

y y

I And compute such abstract values for each control point.

I How ? mimic the program operations

Nd × pcs → Nd × pcs

by their abstract versions.

There is also this magical widening stuff, let’s forget it in this talk

13/46

Computing (inductive) invariants with intervals

init

loop

end

x := 0

x ≥ 100

x ≤ 99

→ x++

I ex : Propagate range information

14/46

Example (Pagai, Verimag)

see http://pagai.forge.imag.fr

15/46

http://pagai.forge.imag.fr

Challenges in Abstract Interpretation

� More data structures : pointers, arrays, . . .

� Thousands, millions of lines of code to analyze.

� Static analyzers and compilers are complex programs (that

also have bugs).

I Growing need for simple specialized analyses that scale

Memory Analyses
Focus on expressivity - scalability - compilers.

16/46

Plan

Motivations

Abstract Interpretation

Green Arrays

Overview

Scalable symbolic abstract domain

Experimental results

A more expressive analysis for arrays

17/46

Abstract Interpretation in Compilers

Classical analyses (and optimisation) inside (production)

compilers :

� Apart from classical dataflow algorithm, often syntactic.

� Usual abstract-interpretation based algorithms are too costly.

� Expressive algorithms : rely on “high level information”.

I Need for safe and precise quasi linear-time algorithms at

low-level.

I Illustration with OOPLSA’14 paper

Collaborations with M. Maalej, F. Pereira and his team at UFMG, Brasil, slides inpired

from theirs.

18/46

Designing a scalable static analyses sequence : an example

OOPSLA’14 :

� A technique to prove that (some) memory accesses are safe :

� Less need for additional guards.

� Based on abstract interpretation.

� Precision and cost compromise.

� Implemented in LLVM-compiler infrastructure :

� Eliminate 50% of the guards inserted by AddressSanitizer

� SPEC CPU 2006 17% faster

19/46

A bit on sanitizing memory accesses

Different techniques : but all have an overhead.

Ex : Address Sanitizer

� Shadow every memory allocated : 1 byte → 1 bit (allocated or

not).

� Guard every array access : check if its shadow bit is valid. I

slows down SPEC CPU 2006 by 25%

I We want to remove these guards.

20/46

Green Arrays : overview 1/2

21/46

Green Arrays : overview 2/2

22/46

Symbolic ranges : How to ensure scalability ?

The idea is to work on the intermediate representation to ensure

the following key property :

SSI Property
All abstract values are stable on their live ranges.

How ? Splitting variables work on the Intermediate

representation.

23/46

Symbolic Ranges (SRA) : Running example

int main(int argc){

int* v = malloc(sizeof(int)*argc);

int i = argc - 1;

v[i] = 0;

if (?) {v = realloc(sizeof(int)*2); i=1 ;}

v[i] = 0;

}

I Are all accesses to v safe ?

24/46

Symbolic Ranges (SRA) : ex within the SSA form

SSA = Static Single Assignment

25/46

SRA on SSA form : a sparse analysis

� An abtract interpretation-based technique.

� Very similar to classic range analysis.

� One abstract value (R) per variable : sparsity.

I Easy to implement (simple algorithm, simple data structure).

26/46

SRA on SSA form : an example

N = randunsigned ()

i_0 = 0

i_1 = phi(i_0 ,i_2)

i_1 < N ?

i_2 = i_1 + 1

� R(i0) = [0, 0]

� R(i1) = [0,+∞]

� R(i2) = [1,+∞]

27/46

Improving precision of SRA : live-range splitting 1/2

I e-SSA form.

28/46

SRA + live-range on an example

N = randunsigned ()

i_0 = 0

i_1 = phi(i_0 ,i_2)

i_1 < N ?

i_t = sigma(i_1)

i_2 = i_t + 1
R(it) = [R(i1) ↓,min(N − 1,R(i1) ↑)]

� R(i0) = [0, 0]

� R(i1) = [0,N]

29/46

Experimental setup

30/46

Percentage of bound checks removed

31/46

Runtime improvement

32/46

Conclusion and Research Questions

In the presented work :

� Work on an appropriate intermediate representation.

� Safety is proved.

� Interprocedural analysis.

On this part :

� More relational analyses ?

� Combination of analysis/optimisation ?

� Inside LLVM ecosystem ?

33/46

Plan

Motivations

Abstract Interpretation

Green Arrays

Overview

Scalable symbolic abstract domain

Experimental results

A more expressive analysis for arrays

34/46

Goal : more functional properties

� Array bound check is “Index-based verification.”

� What about relationship between indices and contents ?

 int a[N]
 for(i=0; i<N; i++) {

a[i] = 42;
}

 #forall i,a[i]==42 ; ✔

35/46

Program Verification as solving Horn Clauses

(Horn clause : ∀ . . .A ∧ B ∧ C =⇒ D)

� Abstract semantics as Horn Clauses :

∀x, x ∈ initial values =⇒ x ∈ invar(i0)

∀x, x′ x ∈ invar(i) ∧ (x, x′) ∈ trans(i , j) =⇒ x′ ∈ invar(j)

� Invariants are unknown.

� Safety property as Horn Clause.

� SAT ↪→ the property is proven.

I Toward a new IR for verification : at least expressive.

36/46

Contributions : SAS 2016 [Gonnord Monniaux] and NSAD 2020

[Braine Gonnord]

� (SAS16) A new abstraction for programs with arrays :

� with tunable precision.

� into Horn clauses (a special type of formula) without arrays.

� extensible to other data structures (maps, . . .).

� (NSAD20) (with J. Braine) : a general technique to abstract

data-structures in Horn problems.

� WIP (J. Braine) : other nice results such as completeness.

Some of the next slides are adapted from Julien Braine’s talk at NSAD 2020.

37/46

On logics with arrays

Expressivity/Decidability :

� Numerical (affine) constraints + ∃ + ∀ : OK

� Numerical constraints + ∃ + uninterpreted fun : OK

� Numerical constraints + ∃ + uninterpreted fun + ∀ : Undec.

� Uninterpreted + ifthenelse → Arrays (store/update)

I Arrays + ∀ : Undecidable.

I State-of-the-art solvers (Z3/PDR, Z3/Spacer, Eldarica) are

really not performant.

38/46

Difficulties of datastructures

Example of data structures

1. Arrays

2. Sets

3. Maps

4. Trees

5. Graphs

Interesting Invariants

1. Involve a non bounded number of elements ∀i , a[i] = 0

2. Involve relations between elements ∀i , j , i < j ⇒ a[i] < a[j]

3. Involves the structure ∀n1, n2, n2 ∈ child(n1)⇒ n1 < n2

We need quantified invariants ! Focus : arrays
39/46

Data abstraction

Idea : define relations between abstracted and concrete elements :

Data-abstraction σ

1. Definition : σ : A→ P(B)

2. Encoded by an explicit formula Fσ(a, a#) ≡ a# ∈ σ(a)

I This is a Galois connection.

40/46

Examples

Simple Example : Sign abstraction

1. Sign abstraction : σ(i ∈ Z) = ite(i >= 0, {Pos}, {Neg})
2. Fσ(i , i#) ≡ ite(i >= 0, i# = Pos, i# = Neg)

Some array abstractions

1. Array smashing : Fσ(a, v) ≡ ∃i , a[i] = v

2. Array slicing/partitioning on i : Fσ((a, i), (sliceid , v , i ′)) ≡
∃j , sliceid = ite(j < i , 0, ite(j = i , 1, 2)) ∧ v = a[j] ∧ i ′ = i

3. 1-Cell Morphing [Gonnord Monniaux SAS16] :

Fσ(a, (q, v)) ≡ v = a[q]

Cell Morphing subsumes the others

41/46

Data abstraction technique

Algorithm
Replace P(a,−→x) by ∀a#,Fσ(a, a#)⇒ P#(a#,−→x) everywhere

Result
Given a Horn problem H, H# has a solution iff H has a solution S

such that γ ◦ α(S) = S . This implies soundness.

Problem
We have added a quantifier alternation depth ! Solvers do not

handle them !

42/46

Example : cell morphing

Initial clause : Array initialization loop

∀a, a′, i , n, P(a, i , n) ∧ i < n ∧ a′ = a[i ← 0]⇒ P(a′, i + 1, n)

Abstracted clause using cell morphing

∀a, a′, i , n, (∀q, v , v = a[q]⇒ P#(q, v , i , n)) ∧

i < n∧a′ = a[i ← 0]⇒ (∀q′, v ′, v ′ = a′[q′]⇒ P#(q′, v ′, i + 1, n))

Simplified

∀a, a′, i , n, q′, (∀q,P#(q, a[q], i , n))

∧ i < n ∧ a′ = a[i ← 0]⇒ P#(q′, a′[q′], i + 1, n)

How to remove the quantifier ∀q ?

43/46

Eliminating the quantifiers

Technique
Replace an infinite conjunction (∀) by a finite one. The finite set

most be chosen wisely !

Chosen finite conjunction for Cell abstraction
Idea : focus on the cells that matter in the clause !

In practice : use the cell indices that are used in a read

Example, continued

� Clause : ∀a, a′, i , n, q′, (∀q,P#(q, a[q], i , n))

∧ i < n ∧ a′ = a[i ← 0]⇒ P#(q′, a′[q′], i + 1, n)

� Indices used in a read operation : q′

� Clause after elimination of quantifier q

∀a, a′, i , n, q′,P#(q′, a[q′], i , n) ∧ i < n ∧ a′ = a[i ← 0]⇒
P#(q′, a′[q′], i + 1, n)

44/46

A few experiments [I.Dillig T.Dillig Aiken]

Setting
1. Benchmarks written in toy java language

2. Solving with Z3, 30s timeout

3. Comparison : Z3 directly, Vaphor tool from [GM SAS16], Cell1

#exp Noabs Vaphor Cell1

NotHinted 12 0 0 1 0 0 0

Hinted 12 0 0 5 0 12 0

Buggy 4 4 0 4 0 4 0

Analysis

1. No unsound results but Requires hints

2. Hints allow to solve the problems ⇒ Abstraction is good

⇒Z3 has trouble on our non quantified integer problems

3. Great improvement compared to Vaphor for hinted problems 45/46

Conclusion & Research Questions

On the current work :

� WIP : completeness results, and experimental deeper

evaluations.

� Other data structures : trees.

On this part :

� Horn Clauses are a good intermediate representation but

perhaps not mature enough : embed more structural

properties ?

� What about scalability ?

46/46

	Motivations
	Abstract Interpretation
	Green Arrays
	Overview
	Scalable symbolic abstract domain
	Experimental results

	A more expressive analysis for arrays

