
A journey on static analyses of programs

From code verification to code optimisation

Laure Gonnord

6 mai 2021

University Claude Bernard Lyon 1 / LIP, Lyon, France

Plan

Motivations

Abstract Interpretation for compilers

Scalable analyses for pointers

Code analysis for binaries

Impact on compiler optimisation passes

2/37

Software needs safety and performance

I Programs crash because of array out-of-bounds accesses, complex pointer behaviour,

. . .
3/37

� For safety-critical

systems . . .

� and general

purpose systems !

Goal : safety - ex

Prove that (some) memory accesses are safe :

int main () {

int v[10];

v[0]=0;

return v[20];

}

3
7

I This program has an illegal array access.

4/37

Goal : performance -ex

Enable loop parallelism :

void fill_array (char *p){

unsigned int i;

for (i=0; i<4; i++)

*(p + i) = 0 ;

for (i=4; i<8; i++)

*(p + i) = 2*i ;

}

Parallel
loops

p p+ 7
p+ 3 p+ 4

I The two regions do not overlap.

5/37

Proving non trivial properties of software

� Basic idea : software has mathematically defined behaviour.

� Automatically prove properties.

Acceptable
Behaviours

Program

(verif) No crash

(compil) Optimisable

6/37

There is no free lunch

i.e. no magical static analyser. It is impossible to prove interesting properties :

� automatically

� exactly

� on unbounded programs

I Abstractions = conservative approximations.

7/37

There is no free lunch

i.e. no magical static analyser. It is impossible to prove interesting properties :

� automatically

� exactly with false positives !

� on unbounded programs

I Abstractions = conservative approximations.

7/37

Plan

Motivations

Abstract Interpretation for compilers

Scalable analyses for pointers

Code analysis for binaries

Impact on compiler optimisation passes

8/37

Computing (inductive) invariants

init

loop

end

x := 0

x ≥ 100

x ≤ 99

→ x++

I {x ∈ N, 0 ≤ x ≤ 100} is the most precise invariant in control point loop.

9/37

Problems and solution

We want to :

� Compute infinite sets.

� In finite time.

I How ?

� Approximate sets (abstract domains), compute in this abstract world.

� Extrapolate (widening).

10/37

Main ingredient : abstract values

Idea : represent values of variables :

Rpc ∈ P(Nd)

by a finite computable superset R]
pc :

y

xxx

y y

I And compute such abstract values for each control point.

I How ? mimic the program operations by their abstract versions.

There is also this magical widening stuff, let’s forget it in this talk 11/37

Computing (inductive) invariants with intervals

init

loop

end

x := 0

x ≥ 100

x ≤ 99

→ x++

I ex : Propagate range information

12/37

Example (Pagai, Verimag)

see http://pagai.forge.imag.fr

13/37

http://pagai.forge.imag.fr

Challenges in Abstract Interpretation

� More data structures : pointers, arrays, . . .

� Thousands, millions of lines of code to analyze.

� Static analyzers and compilers are complex programs (that also have bugs).

I Growing need for simple specialized analyses that scale

Memory Analyses
Focus on expressivity - scalability - compilers.

14/37

Safe compilation ?

� Correct-by-construction non-optimising compilers : Lustre, Scade.

� Translation validation : specialized proof of the generated code.

� Compcert.

I An evolution toward more trustable compilers. But what about code optimisation ?

15/37

Motivation

Classical analyses (and optimisation) inside (production) compilers :

� Apart from classical dataflow algorithm, often syntactic.

� Usual abstract-interpretation based algorithms are too costly.

� Expressive algorithms : rely on “high level information” information that is usually

absent in the low level program representations adopted by compilers.

I Need for safe and precise quasi linear-time algorithms at low-level.

I Illustrations in the rest of the talk.

16/37

Some contributions

� Abstract domains/iteration strategies for numerical invariants [SAS11],

[OOPSLA14].

� Applications to memory analysis [OOPSLA14], just in time compilers [WST14].

� Pointer analysis with “sparse” abstract interpretation [CGO16] [CGO17]

[SCP17].

� Polyhedral analysis on binary code [VMCAI19]

Collaborations with M. Maalej, F. Pereira and his team at UFMG, Brasil

+ with C. Ballagria, J. Forget, Lille

17/37

Plan

Motivations

Abstract Interpretation for compilers

Scalable analyses for pointers

Code analysis for binaries

Impact on compiler optimisation passes

18/37

Pointer analysis : motivating example

void partition(int *v, int N) {

int i, j, p, tmp;

p = v[N/2];

for (i = 0, j = N - 1;; i++, j--) {

while (v[i] < p) i++;

while (p < v[j]) j--;

if (i >= j)

break;

tmp = v[i];

v[i] = v[j];

v[j] = tmp;

}

}

v[i] = *(v+i)

... ...

v + i v + j

19/37

Motivating example - LLVM version

for.cond: ; preds = %for.inc , %entry

%i.0 = phi i32 [0, %entry], [%inc18 , %for.inc]

%j.0 = phi i32 [%sub , %entry], [%dec19 , %for.inc]

br label %while.cond

while.cond: ; preds = %while.body , %for.cond

%i.1 = phi i32 [%i.0 , %for.cond], [%inc , %while.body]

%idxprom1 = sext i32 %i.1 to i64

%arrayidx2 = getelementptr inbounds i32* %v, i64 %idxprom1

%1 = load i32* %arrayidx2 , align 4

%cmp = icmp slt i32 %1, %0

br i1 %cmp , label %while.body , label %while.end

I On a perdu une partie du contrôle (et les tableaux)

20/37

Scaling analyses : program representation (simpl.) 1/2

Static Single Assignment (SSA) form : each variable is defined/assigned once.

void partition(int *v, int N) {

int i, j, p, tmp;

p = v[N/2];

for (i = 0, j = N - 1;; i++, j--) {

while (v[i] < p) i++;

...

}

. . .
i0 = 0
. . .

i3 = φ(i0, i1, i2)
. . .

i1 = i3 + 1 ...

...

I Sparse storage of value information (one value range per variable name).
21/37

Our setting for scaling analyses

Classical abstract interpretation analyses :

� Information attached to (block, variable).

� A new information is computed after each statement.

Sparse analyses ⇒ Static Single Information (SSI) Property :

� Attach information to variables.

� The information must be invariant throughout the live range of the variable.

I Work on suitable intermediate representations.

22/37

Scaling analyses : program representation 2/2

But, in our analysis, range information is not sufficient to disambiguate v[i] and v[j]

Within SSA form, tests/relational information cannot be propagated !

void partition(int *v, int N) {

...

if (i >= j)

break;

tmp = v[i];

v[i] = v[j];

}

(i ≥ j)?

• iF = σ(i)
jF = σ(j)
vi = v + iF
tmp = ∗vi
vj = v + jF

∗vi = ∗vj
. . .

False

I i ≥ j is invariant nowhere in classical SSA.

I The σ renaming (e-SSA) enables to propagate “iF < jF”.
23/37

Contributions on static analyses for pointers

(with Maroua Maalej) [CGO16, CGO17, SCP17]

� A new sequence of static analyses for pointers.

� Based on semi-relational sparse abstract domains :

� In CGO’16 : p 7→ loc + [a, b].

� In CGO’17 : adaptation of Pentagons.

� Implemented in LLVM.

� Used as oracles for a common pass called AliasAnalysis.

� Experimental evaluation on classical benchmarks.

24/37

Experimental results [SCP17]

0 20 40 60 80 100
benchmarks sorted by size

102

103

104

105

106

107

108

109

#
pa

irs
 o

f p
oi

nt
er

s

total #pairs
basicaa (LLVM)
basicaa+sraa (SCP17)

� Comparison with LLVM basic alias analysis.

� Our sraa outperforms basicaa in the majority of the tests.

� The combination outperforms each of these analyses separately in every one of

the 100 programs.
25/37

Plan

Motivations

Abstract Interpretation for compilers

Scalable analyses for pointers

Code analysis for binaries

Impact on compiler optimisation passes

26/37

Context, Contribution

Real-time systems, scheduling needs precise worst-case execution time evaluation : on

the binary.

I A new abstract interpretation on binary with polyhedra.

Slides from C. Ballabriga.

27/37

Analysing binary is difficult

No control, no variable, no type, only data locations.

� Look for memory accesses in the binary code

� Not always obvious that 2 accesses refer to the same data location

Aliasing example (Pseudo-Assembly)

SET r1 , #42

ADD r4 , sp , #8

STORE r1 , [r 4 = #4]

. . .

LOAD r3 , [sp + #4]

ADD r3 , r3 , #1

� LOAD and STORE access the same statically-unknown address
28/37

A taste of the abstract analysis

Abstract state shape : (P(values), register mapping,mem mapping).

� A memory value is represented by the dereferencing of a polyhedra variable

� The “memory mapping” encode (de)references

SET r3 , #42

STORE r3 , [sp + #4]

I Here : (〈x3 = 42, x4 = x5 + 4〉, {r3 : x3, sp : x5}, {x4 : x3})

29/37

Experimental evaluation

� We developed a prototype called Polymalys

� Implements the approach in C++

� Is a plugin for OTAWA

� OTAWA is an open-source modular tool for WCET static analysis

� OTAWA handles :

� ELF binary loading

� CFG reconstruction

� Architecture-independent instruction abstraction

30/37

Evaluation : benchmarks

Bounded loops Time (ms)

Bench LoC Loops Polymalys SWEET Pagai oRange Polymalys Pagai

crc 16 1 1 1 1 1 150 40
fibcall 22 1 1 1 1 1 230 50

janne complex 26 2 1 2 1 1 870 140
expint 56 3 3 2 3 3 850 9140

matmult 84 5 5 5 5 5 3640 1380
fdct 149 2 2 2 2 2 12450 2150

jfdctint 165 3 3 3 3 3 10920 1960
fir 189 2 2 2 2 1 11630 390

edn 198 12 12 12 9 12 25190 15660
ns 414 4 4 4 4 4 1740 380

gemver 186 10 10 N/A 10 10 12136 6029
covariance 138 11 11 N/A 11 11 7248 836
correlation 168 13 13 N/A N/A 13 9129 25062
nussinov 143 8 8 N/A 8 8 7272 2811

floyd-warshall 112 7 7 N/A 2 7 2904 468

� We ran the tools on Mäalardalen and Polybench
� Strength of our tool in this comparison :

� Works on binary

� Tends to better estimate loop bounds

� Reasonable analysis time, guaranteed to terminate
31/37

Plan

Motivations

Abstract Interpretation for compilers

Scalable analyses for pointers

Code analysis for binaries

Impact on compiler optimisation passes

32/37

Evaluating analyses in LLVM

LLVM compiler :

� comes with a test infrastructure and benchmarks.

� analysis and optimisation passes log information.

� you can add your own pass, but where ?

I Evaluating the impact of a given analysis is a nightmare !

33/37

Impact on our alias analysis on LLVM code motion 1/2

Loop invariant code motion (LICM) :

void code_motion(int* p1 , int *p2, int *p){

// ...

while(p2 >p1){

a = *p;

*p2 = 4;

p2 --;

}

}

hoist!

I If p and p2 do not alias, then a=*p is invariant.

34/37

Impact of our analyses (excerpt) 2/2

Program #Inst #moved

O3 O3+our analysis (CGO16)

fixoutput 369 1 5
compiler 3515 0 0

bison 15645 165 179
archie-client 5939 0 0

TimberWolfMC 98792 1287 1447
allroots 574 0 0

unix-smail 5435 3 3

plot2fig 3217 3 3

bc 10632 18 19
yacr2 6583 144 190
ks 1368 8 11
cfrac 7353 5 6
espresso 50751 301 398
gs 55281 20 X

More in Maroua Maalej’s thesis.
35/37

Understanding LLVM internals

 charting the compiler. Figure from S. Michelland. More in the CAPESA project 36/37

Summary

Static analyses for compilers :

� Adaptation of abstract interpretation algorithms inside this particular context

(internal representations).

� Algorithmic and compilation techniques to scale.

� Future work : more relational domains (and data structures), more applications,

continue work on binary. . .

37/37

	Motivations
	Abstract Interpretation for compilers
	Scalable analyses for pointers
	Code analysis for binaries
	Impact on compiler optimisation passes

