Proving Termination with polyhedra

Laure Gonnord
with Christophe Alias, Alain Darte, and Paul Feautrier
(Compsys, ENS Lyon)

LIFL - LIP

http://laure.gonnord.org/pro/ —
Laure.Gonnord@lifl.fr

thx to C. Alias who gave the sources of his slides
Example: GCD of 2 polynomials

\[
da = 2r; \ db = 2r;
\]

while (da >= r) {
 cond = (da >= db || A[expr] == 0);
 if (!cond) {
 tmp = db; db = da; da = tmp - 1;
 } else da = da - 1;
}

Hard to optimize for a high-level synthesis tool:

- No loop unrolling possible.
- Limited software pipelining.

Need to bound the number of iterations.
Contributions

Program termination with global multi-dimensional affine rankings

- Proven to be complete, fully implemented
- Worst-case computational complexity, in case of success.
- Sometimes a candidate to be an infinite loop
- WIP : sufficient preconditions for termination.

▶ for general flowcharts programs (with a proper preprocessing !)
1. The Method

2. Implementation and Experimental results

3. Extensions and work in progress
From a Program to an affine Automaton

// expression expr,
// array A,
// r>0 integer.
da = 2r; db = 2r;
while (da >= r) {
 cond = (da >= db || A[expr] == 0);
 if (!cond) {
 tmp = db;
 db = da;
da = tmp - 1;
 } else da = da - 1;
}

▶ Safe abstractions of non-affine behaviours.
From an affine Automaton to invariants

System of equations:

\[
\begin{align*}
P_{init} &= \{1 \leq r\} \\
P_{loop} &= P_{init} \cup t_2(P_{loop}) \cup t_3(P_{loop}) \\
P_{stop} &= t_4(P_{loop})
\end{align*}
\]

- Fixpoint system with affine guards and actions. Use abstract interpretation to get (an over approximation of) the live space of variables.
Ranking functions

A ranking function is:
- A mapping from \((\text{state}, \text{value})\) to a well-founded set
- Decreasing (strictly) on each transition.

We restrict to \(\mathbb{N}^p\) with \(\leq_{\text{lex}}\), and **multidimensional** affine rankings:

\[
\rho(k, \vec{x}) = A_k \cdot \vec{x} + \vec{b}_k
\]
Finding a ranking function - 1

The 1D-case:

\[
\text{assume}(N>0); \\
i=N; \\
\text{while}(i>0) --i;
\]

\[
\begin{align*}
\rho(\text{start}, \vec{x}) &= \alpha^1_{\text{start}} \cdot i + \alpha^2_{\text{start}} \cdot N \\
&\quad + \alpha^3_{\text{start}} \cdot i_0 + \alpha^4_{\text{start}} \cdot N_0 + \alpha^5_{\text{start}} \\
\rho(w, \vec{x}) &= \alpha^1_w \cdot i + \ldots \\
\rho(\text{stop}, \vec{x}) &= \alpha^1_{\text{stop}} \cdot i + \ldots
\end{align*}
\]

The constraints are:

- For each pc: \(\rho(pc, \vec{x}) \geq 0 \) on \(P_{pc} \)
- For each transition \((\vec{x}', \vec{x}) \in t \Rightarrow \rho(\text{dest}, \vec{x}') - \rho(\text{src}, \vec{x}') > 0 \)
The Method | Phase 3 : compute a ranking function

Finding a ranking function - 2

The 1D-case (cont’) : incoding into a \textit{linear programming} problem!

1 Constraints $\rho(pc, \vec{x}) \geq 0$ on P_{pc}:
 - Invariant for $W = \{N_0 > 0, N = N_0, 0 \leq i \leq N\}$
 - Farkas lemma

\[
\rho(W, \vec{x}) = \lambda^1_W(N_0 - 1) + \lambda^2_W(N_0 - N) + \lambda^3_W(N - N_0) + \lambda^4_W i + \lambda^5_W (N - i)
\]

+ affine form for $\rho(W, \vec{x})$:

\[
\rho(W, \vec{x}) = \alpha^1_W i + \alpha^2_W N + \alpha^3_W i_0 + \alpha^4_W N_0 + \alpha^5_W
\]

- Identifying $i : \alpha^1_W = \lambda^4_W - \lambda^3_W, \ldots$

2 Constraints for decreasing transitions : similar
The 1D-case:
assume(N>0);
i=N;
while(i>0) --i;

We find:
state start:
2+N__o

state W:
1+i

state stop:
0
The nD-case, a greedy algorithm

- $i = 0 \; ; \; T = \mathcal{T}$, set of all transitions.
- While T is not empty do
 - Find a 1D affine function σ, not increasing for any transition, and decreasing for as many transitions as possible.
 - Let $\rho_i = \sigma \; ; \; i = i + 1$; ($i^{th}$ dimension)
 - If no transition is decreasing, return false.
 - Remove from T all decreasing transitions.

- $d = i$, return true.
Example - 1

```c
//N>0
i = N;
while(i>0) {
    j = N;
    while(j>0) j--;
    i--;
}
```
Example - 2

//N>0
i = N;
while(i>0){
 j = N;
 while(j>0) j--;
i--;
}

Invariant for whiles :

\[-1 < i \leq N, -1 < j \leq N, N > 0, N = N_o\]
Example - 2

//N>0
i = N;
while(i>0){
 j = N;
 while(j>0) j--;
 i--;
}

Invariant for whiles:

\[-1 < i \leq N, -1 < j \leq N, N > 0, N = N_o\]
Example - 2

```c
//N>0
i = N;
while(i>0){
    j = N;
    while(j>0) j--;
    i--;
}
```

Invariant for `whiles`:

\[-1 < i \leq N, -1 < j \leq N, N > 0, N = N_0\]
Example - 2

```cpp
//N>0
i = N;
while(i>0){
    j = N;
    while(j>0) j--;
    i--;
}
```

Invariant for whiles:

\[-1 < i \leq N, -1 < j \leq N, N > 0, N = N_o\]
In summary

From (arbitrary) flowchart programs:
- Compute an affine abstraction.
- Compute invariants on each.
- Compute and solve linear programming problems from the graph and its invariants.
An additional result!

Theorem (Completeness of greedy algorithm w.r.t. invariants)

If an affine interpreted automaton, with associated invariants, has a multi-dimensional affine ranking function, then the greedy algorithm generates one such ranking. Moreover, the dimension of the generated ranking is minimal.
1. The Method

2. Implementation and Experimental results

3. Extensions and work in progress
Our toolsuite

1. C2FSM for the front-end
2. ASPIC for the invariants
3. RANK for the computation of the ranking function.

The two first tools are described in:

TAPAS 2010 - Feautrier/Gonnord
Accelerated Invariant Generation for C Programs with Aspic and C2fsm
Sorting algorithms

Sorting arrays:

<table>
<thead>
<tr>
<th>Name</th>
<th>LOCs</th>
<th>Time (c2fsm/analysis)</th>
<th>dim</th>
<th>WCCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection</td>
<td>20</td>
<td>1.0/0.4</td>
<td>3</td>
<td>$\frac{N^2}{2} + \frac{3N}{2} + 1$</td>
</tr>
<tr>
<td>insertion</td>
<td>12</td>
<td>0.6/0.22</td>
<td>3</td>
<td>$\frac{N^2}{2} + \frac{3N}{2} + 1$</td>
</tr>
<tr>
<td>bubble</td>
<td>22</td>
<td>1.2/0.4</td>
<td>3</td>
<td>$N^2 + 2$</td>
</tr>
<tr>
<td>shell</td>
<td>23</td>
<td>1.0/1.1</td>
<td>4</td>
<td>$\frac{N^3}{6} - \frac{N}{6}$</td>
</tr>
<tr>
<td>heap</td>
<td>45</td>
<td>3.0/2.8</td>
<td>3</td>
<td>$4N^2 - 11N + 9$</td>
</tr>
</tbody>
</table>

1. user time in seconds on a Pentium 2GHz with 1Gbyte RAM
Some comments on experimental results

- The algorithm scales (relatively) well.
- The form of the automaton has a strong impact on the invariants.
- The precision of invariants is crucial.
Implementation and Experimental results

Piecewise-affine ranking functions

We expect $loop \mapsto (1, 2(N - i))$, $body \mapsto (1, 2(N - i) - 1)$. But... the unknown sign of N prevents to conclude.

A piece-wise affine ranking is required:

\[
\rho(loop, i, N) = \begin{cases}
N \geq 0 : & (1, 2(N - i)) \\
N < 0 : & (1)
\end{cases}
\]

\[
\rho(body, i, N) = (1, 2(N - i) - 1)
\]
1. The Method

2. Implementation and Experimental results

3. Extensions and work in progress
Modifying the graph : cutpoints

Definition

A set of cut points is a subset of control points such that their removal causes the graph to become acyclic.

- Compute the rankings functions on the cut points after **path compression**

\[(N - i)\] is found for `loop`
Computing a “WCET”

Worst-case computational complexity (WCCC) : maximum number of transitions fired by the automaton :

\[WCCC \leq \text{card}(\bigcup_{k} \rho(k, P_k)) \leq \sum_{k} \text{card}(\rho(k, P_k)) \]

Use counting integer points algorithms

\[WCCC \leq \#\rho(\text{init}, P_{\text{init}}) + \#\rho(\text{loop}, P_{\text{loop}}) + \#\rho(\text{end}, P_{\text{end}}) = 2 + \#\{(1, i) \mid 1 \leq i \leq 2r + 2\} = 2r + 4 \]
Reference

The algorithm, the extensions and the experimental results are published in

SAS 2010 - Alias/Darte/Feautrier/Gonnord
Multi-dimensional Rankings, Program Termination, and Complexity Bounds of Flowchart Programs
Work In Progress: finding sufficient conditions - 1

```c
int catmouse()
{
    int x,n,m;
    x=0;
    while(x<=n) {
        if (x<=m) ++x;
        else --x;
    }
}
```

Laure Gonnord (LIFL and LIP Labs) Proving Termination of programs Mars 2011
int catmouse(){
 int x,n,m;
 x=0;
 W: while(x<=n)
 {
 I: if (x<=m) ++x;
 else --x;
 }
}

Without any additional assumption, our method fails!
WIP : finding sufficient conditions - 3

1. Compute the automaton
2. Try aspic+rank ! If it fails, compute **firing conditions**
3. Find conditions on parameters to prove emptiness (**parametric linear programming**). Then retry !

\[
\begin{align*}
m + 1 & \leq n \\
m + 1 & \leq n \\
0 & \leq m \\
n < m + 1, & \ 0 \leq m \\
m < 0, & \ n < m + 1
\end{align*}
\]
Conclusion

An algorithm to prove termination:

- on arbitrary programs
- using the link between scheduling and ranking functions
- using **polyhedra** in the large: linear relation analysis, (parametric) linear programming, computing schedules, . . .
- that gives upper approximations of the worst case complexity.

Future work:

- More experiments on bigger codes: a modular approach is necessary
- Validate/Publish the sufficient conditions
- Investigate the use of disjunctive invariants