
Abstract interpretation for compilers

A journey from theory to practice back to . . .

Laure Gonnord,
http://laure.gonnord.org/pro

PLISS 2022

http://laure.gonnord.org/pro


Intro



Recall memories

Question
How to design static analyses that are correct by construction?

▶ From dataflow analyses to abstract interpretation (course 1)

Question
How to design static analyses that scale enough to be embedded inside
compilers?

▶ From abstract interpretation to sparse abstract interpretation (course 2)

2/40



Questions here

Question
What are sources of (eventual) complexities?

▶ complexity of abstract domains, complexity of fixpoint computation

Question
How to scale?

▶ specialised tailored abstract domains/intermediate representation.

3/40



A tour of some relational abstract
domains



When intervals are not sufficient

assume(x >= 0 && x <= 1);

y = x;

z = x-y;

• The human (smart) sees z = 0 thus interval [0,0], taking into account y = x .

• Interval arithmetic does not see z = 0 because it does not take y = x into
account.

4/40



How to track relations

Using relational domains.

E.g. : Difference bound matrices

• for each variable an interval

• for each pair of variables (x , y) an information x − y ≤ C.

• (One obtains x = y by x − y ≤ 0 and y − x ≤ 0.)

How to compute on that? with difference bound matrices.

5/40



Can we do better (more expressive)?

How about tracking relations such as 2x + 3y ≤ 6?

At a given program point, a set of linear inequalities.

In other words, a convex polyhedron (Linear Relation Analysis).

(also needs widening).
6/40



Complexity of individual operations

(In general) The more precise we are, the higher the costs.

• Intervals : algorithms O(n), n number of variables.

• Differences x − y ≤ C : algorithms O(n3)

• Octagons ±x ± y ≤ C (Miné) : algorithms O(n3)

• Polyhedra (Cousot / Halbwachs) : algorithms often O(2n).

In compilers?

Usually stricly less than n2 algorithms.

7/40



Implementing chaotic iterations

“Concrete complexity” of the chaotic iterations can be improved :

• by using worklists
• by using “clever” iterations strategies (SCCs, for instance)
• by working on abstract domain themselves
• by working on intermediate representations

0

1 2 3 4

7 5 8 9

6

8/40



Sparse dataflow



Liveness rephrased

Liveness is essential for many optimization, notably register allocation.

Alive Variable
In a given program point, a variable is said to be alive if the value it contains may
be used in the rest of the execution.

9/40



Liveness : SSA to the rescue

Live range on a CFG
Live range with SSA

10/40



Liveness on SSA

11/40



Liveness on SSA - 2

Correctness
Our algorithm works due to the key
property of SSA form programs : every
use of a variable v is dominated by the
definition on of v. Thus, we can traverse
the CFG of the program, start from the
uses of a variable, until we stop at its
definition.

12/40



Other dataflow analyses fit well with SSA

• Constant propagation

• Tainted flow

• and much more . . .

▶ Let us see why it helps improving actual complexity

13/40



Another example : Constant propagation

Sparse/Dense

▶ This helps to be quasi-linear. 14/40



Concrete complexity

Experiments by F. Pereira
15/40



Sparse abstract interpretation



Designing a scalable static analysis : an example

OOPSLA’14 :

• A technique to prove that (some) memory accesses are safe :
• Less need for additional guards.
• Based on abstract interpretation.
• Precision and cost compromise.

• Implemented in LLVM-compiler infrastructure :
• Eliminate 50% of the guards inserted by AddressSanitizer
• SPEC CPU 2006 17% faster

16/40



A bit on sanitizing memory accesses

Different techniques : but all have an overhead.

Ex : Address Sanitizer

• Shadow every memory allocated : 1 byte → 1 bit (allocated or not).

• Guard every array access : check if its shadow bit is valid. ▶ slows down
SPEC CPU 2006 by 25%

▶We want to remove these guards.

17/40



Green Arrays : overview 1/2

18/40



Green Arrays : overview 2/2

19/40



Symbolic ranges : How to ensure scalability?

The idea is to work on the intermediate representation to ensure the following key
property :

SSI Property
All abstract values are stable on their live ranges.

How? Splitting variables (v , i in the last example).

20/40



Symbolic Ranges (SRA) : Running example

int main(int argc){

int* v = malloc(sizeof(int)*argc);

int i = argc -1;

v[i] = 0;

if (?) {v = realloc(sizeof(int)*2); i=1 ;}

v[i] = 0;

}

▶ Are all accesses to v safe?

21/40



Symbolic Ranges (SRA) : On the SSA form

22/40



SRA on SSA form : a sparse analysis

• An abtract interpretation-based technique.

• Very similar to classic range analysis.

• One abstract value (R) per variable : sparsity.

▶ Easy to implement (simple algorithm, simple data structure).

23/40



SRA on SSA form : constraint system

v = • ⇒ R(v) = [v , v ]
v = o ⇒ R(v) = R(o)

v = v1 ⊕ v2 ⇒ R(v) = R(v1)⊕I R(v2)

v = ϕ(v1, v2) ⇒ R(v) = R(v1) ⊔ R(v2)

other instructions ⇒ ∅

⊕I : abstract effect of the operation ⊕ on two intervals.
⊔ : convex hull of two intervals. ▶ All these operation are performed symbolically
thanks to GiNaC

24/40



SRA on SSA form : an example

N = randunsigned()

i_0 = 0

i_1 = phi(i_0,i_2)

i_1 < N ?

i_2 = i_1 + 1

• R(i0) = [0,0]

• R(i1) = [0,+∞]

• R(i2) = [1,+∞]

25/40



Improving precision of SRA : live-range splitting 1/2

▶ e-SSA form.

26/40



Improving precision of SRA : live-range splitting 2/2

Rule for live-range splitting :
 

t = a < b
br (t, l)
 

 

at = σ(a)
bt = σ(b)
 

 

af = σ(a)
bf = σ(b)
 

l

R(at ) = [R(a)↓, min(R(b)↑− 1, R(a)↑)]

R(bt ) = [max(R(a)↓ + 1, R(a)↓), R(b)↑]

R(af ) = [max(R(a)↓, R(a)↑), R(a)↑]

R(bt ) = [R(b)↓, min(R(a)↑, R(b)↑)]

�

▶ All simplications are done by GiNaC.

27/40



SRA + live-range on an example

N = randunsigned()

i_0 = 0

i_1 = phi(i_0,i_2)

i_1 < N ?

i_t = sigma(i_1)

i_2 = i_t + 1 R(it) = [R(i1) ↓,min(N − 1,R(i1) ↑)]

• R(i0) = [0,0]

• R(i1) = [0,N]

28/40



Experimental setup

29/40



Percentage of bound checks removed

30/40



Runtime improvement

31/40



In the paper (OOPSLA’14)

A complete formalisation of all the analyses :

• Concrete and abstract semantics.

• Safety is proved.

• Interprocedural analysis.

▶ https://code.google.com/p/ecosoc/

Remaining question : improving precision of the symbolic range analysis?

32/40

https://code.google.com/p/ecosoc/


Another example : pointer analysis

void fill_array (char *p){

unsigned int i;

for (i=0; i<4; i++)

*(p + i) = 0 ;

for (i=4; i<8; i++)

*(p + i) = 2*i ;

}

Parallel
loops

p p+ 7
p+ 3 p+ 4

slides courtesy of Maroua Maalej - hence strange colors

33/40



Pre-analysis

34/40



Final result after propagation

We propagate range+offset⇝ not alias information.

35/40



Experimental results 1/2

36/40



Experimental results 2/2

37/40



Conclusion and Open Research questions

We have a framework to design “quasi linear” analyses in compilers.

• How to mechanize the proofs? (for any sparse analysis)

• How to adapt a relational abstract domain into a sparse version? (in general)

• No clean framework for this kind of analysis (even on paper) : live range
splitting is only an attempt (in my opinion).

side? question
How to make an impact on optimisations?

38/40



Evaluating analyses in LLVM?

LLVM compiler :

• comes with a test infrastructure and benchmarks.
• analysis and optimisation passes log information.
• you can add your own pass, but where?

▶ Evaluating the impact of a given analysis is a nightmare !

39/40



Impact of our analyses - negative results?

Program #Inst #moved
O3 O3+our analysis (CGO16)

fixoutput 369 1 5
compiler 3515 0 0
bison 15645 165 179
archie-client 5939 0 0
TimberWolfMC 98792 1287 1447
allroots 574 0 0
unix-smail 5435 3 3
plot2fig 3217 3 3
bc 10632 18 19
yacr2 6583 144 190
ks 1368 8 11
cfrac 7353 5 6
espresso 50751 301 398
gs 55281 20 X

More in Maroua Maalej’s thesis.

40/40


	Intro
	A tour of some relational abstract domains
	Sparse dataflow
	Sparse abstract interpretation
	Overview
	Scalable symbolic abstract domain
	Experimental results
	Another example: pointer analysis - CG0 16


