
Lab 1
Warm-up : discovering the target machine, LC-3

Credits

This sequence of compilation labs has been inspired by those designed by C. Alias and G. Iooss in 2013/14. In
2016/17 we changed the support language for Python and the target machine LC-3. All the material will be on
the course webpage (bookmark now).

http://laure.gonnord.org/pro/teaching/capM1.html

Objective

• Be familiar with the LC-3 instruction set.
• Understand how it executes on the LC-3 processor with the help of a simulator.
• Write simple programs, assemble, execute.

EXERCISE #1 Ï Configuration
To install and run PennSim, you can follow this simple guide up to step 4: https://www.cis.upenn.edu/
~milom/cse240-Fall06/pennsim/pennsim-guide.html

1.1 The LC-3 processor and instruction set

In the architecture course, you already saw a version of the target machine LC-3. The instruction set is depicted
in Appendix A.

EXERCISE #2 Ï TD
On paper, write (in LC-3 assembly language) a program which initializes the R0 register to 1 and increments it
until it becomes equal to 10.

EXERCISE #3 Ï TD : another one
Write a program in LC-3 assembly that writes the character ‘Z’ 10 times in the output.

1.2 Assembling, disasembling

EXERCISE #4 Ï Hand assembling
Assemble by hand the two instructions :

1 begin:
AND r0 r0 #0 ;
BRp begin

You will need the set of instructions depicted in Appendix A and their associated opcode.

EXERCISE #5 Ï Hand disassembling
In Figure 1.1 we depicted a toy example with its corresponding assembly code. Disasemble the two first in-
structions in the table. Then...

Fill the first two row of the table, read the rest of the solution, and answer the following questions:
• Which instruction is used to load data from memory?
• Could we do it another way?
• How is the pointer jumping done to create the loop?
• What happens to the labels in the disassemble program?

Aurélien Cavelan, Laure Gonnord, Lionel Morel 1/5

http://laure.gonnord.org/pro/teaching/capM1.html
https://www.cis.upenn.edu/~milom/cse240-Fall06/pennsim/pennsim-guide.html
https://www.cis.upenn.edu/~milom/cse240-Fall06/pennsim/pennsim-guide.html


ENS de Lyon, Département Informatique, M1 CAP Lab #1 – Automne 2016

Address Content Binary Instructions pseudo-code

x3000 x5020

x3001 x1221

x3002 xE404 1110 010 0 0000 0100 LEA R2, Offset9=4 R2 ← x3007 (label end)

x3003 x6681 010 011 010 00 0001 LDR R3, R2, 1
R3 ← mem[R2+1]

(label of data→ x3008)

loop:x3004 x1262 0001 001 001 1 00010 ADD R1, R1, 2 R1 ← R1 +2

x3005 x16FF 0001 011 011 1 11111 ADD R3, R3, -1 R3 ← R3 −1

x3006 x03FD 0000 001 1 1111 1101 BRp Offset9=-3 if R3 > 0 goto loop

end:x3007 xF025 1111 0000 0010 0101 TRAP x25 H ALT

data:x3008 x0006 data -

Figure 1.1: A binary/hexadecimal program (tp1-52.asm)

1.3 Pennsim Simulator

EXERCISE #6 Ï Run the simulator with the hex code

Run the simulation step-by-step on the file tp1-52.asm :

Listing 1.1: tp1-52.asm

; ; Author: Bill Slough for MAT 3670
2 ; ; Adapted by Laure Gonnord, oct 2014.

.ORIG X3000 ; where to load the program in memory

.FILL x5020

.FILL x1221

.FILL xE404
7 .FILL x6681

.FILL x1262

.FILL x16FF

.FILL x03FD

.FILL xF025
12 .FILL x0006

.END

. Even if we have “assembled” the program by hand, we still need to use the command as in order to create
the corresponding binary file .obj. Carefully follow each step of the execution. Note that the LC-3 simulator
gives an equivalent in assembly language for each instruction.

Until now, we have written programs by putting the encoded instructions directly into the memory. From
now on, we are going to write programs using an easier approach. We are going to write instructions using the
LC-3 assembly.

EXERCISE #7 Ï Execution and modification

1. Guess the purpose of the following files: tp1-54a.asm et tp1-54b.asm. Check with the simulator. What
is the difference between the primitives PUTS and OUT, that are provided by the operating system?

Listing 1.2: tp1-54a.asm

; ; Author: Bill Slough MAT 3670
2 ; ; Adapted by Laure Gonnord, oct 2014.

Aurélien Cavelan, Laure Gonnord, Lionel Morel 2/5



ENS de Lyon, Département Informatique, M1 CAP Lab # – Automne 2016

.ORIG x3000 ; specify where to load the program in memory
LEA R0,HELLO
PUTS
LEA R0,COURSE

7 PUTS
HALT

HELLO: .STRINGZ "Hello, world!\n"
COURSE: .STRINGZ "LIF6\n"

.END

Listing 1.3: tp1-54b.asm

; ; Author: Bill Slough for MAT 3670
; ; Adapted by Laure Gonnord, oct 2014.

.ORIG x3000
4 LD R1,N

NOT R1,R1
ADD R1,R1,#1 ; R1 = −N
AND R2,R2,#0

LOOP: ADD R3,R2,R1
9 BRzp ELOOP

LD R0,STAR
OUT
ADD R2,R2,#1
BR LOOP

14 ELOOP: LEA R0,NEWLN
PUTS

STOP: HALT
N: .FILL 6
STAR: .FILL x2A ; the character to display

19 NEWLN: .STRINGZ "\n"
.END

2. Write a program in LC-3 assembly that computes the min and max of two integers, and store the result
in a precise location of the memory that has the label min. Try with different values.

1.4 More advanced assembly code!

EXERCISE #8 Ï Algo in LC-3 assembly
Write and execute the following programs in assembly :

• Draw squares and triangles of stars (character ’*’) of size n, n being given by the user.
• Count the number of non-nul bits of a given integer.

Aurélien Cavelan, Laure Gonnord, Lionel Morel 3/5



Appendix A
LC3

A.1 Installing Pennsim and getting started

To install and use PennSim, read the following documentation :

http://castle.eiu.edu/~mathcs/mat3670/index/Webview/pennsim-guide.html

A.2 The LC3 architecture

Memory, Registers The LC-3 memory is shared into words of 16 bits, with address of size 16 bits (from
(0000)H to (FFFF)H ).

The LC-3 has 8 main registers : R0, . . . , R7. R6 is reserved for the execution stack handling, R7 for the
routine return address. They are also specific 16 bits registers: PC (Program Counter), IR (Instruction Register),
PSR (Program Status Register).

The PSR has 3 bits N,Z and P that indicate if the last value writen in one of the R0 to R7 registers (viewed as
a 16bits 2-complement integer) is strictly negative (N), nul (Z) of strictly positive(P).

Instructions :

Syntax Action NZP
NOT DR,SR DR <- not SR *
ADD DR,SR1,SR2 DR <- SR1 + SR2 *
ADD DR,SR1,Imm5 DR <- SR1 + SEXT(Imm5) *
AND DR,SR1,SR2 DR <- SR1 and SR2 *
AND DR,SR1,Imm5 DR <- SR1 and SEXT(Imm5) *
LEA DR,label DR <- PC + SEXT(PCoffset9) *
LD DR,label DR <- mem[PC + SEXT(PCoffset9)] *
ST SR,label mem[PC + SEXT(PCoffset9)] <- SR
LDR DR,BaseR,Offset6 DR <- mem[BaseR + SEXT(Offset6)] *
STR SR,BaseR,Offset6 mem[BaseR + SEXT(Offset6)] <- SR
BR[n][z][p] label Si (cond) PC <- PC + SEXT(PCoffset9)
NOP No Operation
RET PC <- R7
JSR label R7 <- PC; PC <- PC + SEXT(PCoffset11)

Assembly directives

.ORIG add Specifies the address where to put the instruction that follows

.END Terminates a block of instructions

.FILL val Reserves a 16-bits word and store the given value at this address

.BLKW nb Reserves nb (consecutive) blocks of 16 bits at this address
; Comments

Predefined interruptions TRAP gives a way to implement system calls, each of them is identified by a 8-bit
constant. This is handled by the OS of the LC-3. The following macros indicate how to call them:

instruction macro description
TRAP x00 HALT ends a program (give back decisions to OS)
TRAP x20 GETC reads from the keyboard an ASCII char, and puts its value into R0
TRAP x21 OUT writes on the screen the ASCII char of R0
TRAP x22 PUTS writes on screen the string whose address of first caracter is stored in R0
TRAP x23 IN reads from keyboard an ASCII char, outputs on screen and stores its value in R0

Aurélien Cavelan, Laure Gonnord, Lionel Morel 4/5

http://castle.eiu.edu/~mathcs/mat3670/index/Webview/pennsim-guide.html


ENS de Lyon, Département Informatique, M1 CAP Lab #A – Automne 2016

Constants : The integer constants encoded in hexadecimal are prefixed by x, in decimal by an optional # ;
they can appear as parameters of the LC-3 instructions (immediate operands, be careful with the sizes) and
directives like .ORIG, .FILL et .BLKW.

Coding tricks
• Initialisation to zero of a given register: AND Ri,Ri,#0
• Initialisation to a constant n (representable on 5 bits in complement to 2):
AND Ri,Ri,#0
ADD Ri,Ri,n

• Computation of the (integer) opposite Ri ← (−R j ) (1+ complement to 2):
NOT Ri,Rj
ADD Ri,Ri,#1

• Multiplication Ri ← 2R j : ADD Ri,Rj,Rj
• Copy Ri ← R j : ADD Ri,Rj,#0

A.3 LC3 simplified instruction set

Here is a recap of instructions and their encoding:

syntaxe action NZP codage
opcode arguments

F E D C B A 9 8 7 6 5 4 3 2 1 0
NOT DR,SR DR ← not SR * 1 0 0 1 DR SR 1 1 1 1 1 1
ADD DR,SR1,SR2 DR ← SR1 + SR2 * 0 0 0 1 DR SR1 0 0 0 SR2
ADD DR,SR1,Imm5 DR ← SR1 + SEXT(Imm5) * 0 0 0 1 DR SR1 1 Imm5
AND DR,SR1,SR2 DR ← SR1 and SR2 * 0 1 0 1 DR SR1 0 0 0 SR2
AND DR,SR1,Imm5 DR ← SR1 and SEXT(Imm5) * 0 1 0 1 DR SR1 1 Imm5
LEA DR,label DR ← PC + SEXT(PCoffset9) * 1 1 1 0 DR PCoffset9
LD DR,label DR ← mem[PC + SEXT(PCoffset9)] * 0 0 1 0 DR PCoffset9
ST SR,label mem[PC + SEXT(PCoffset9)] ← SR 0 0 1 1 SR PCoffset9
LDR DR,BaseR,Offset6 DR ← mem[BaseR + SEXT(Offset6)] * 0 1 1 0 DR BaseR Offset6
STR SR,BaseR,Offset6 mem[BaseR + SEXT(Offset6)] ← SR 0 1 1 1 SR BaseR Offset6
BR[n][z][p] label Si (cond) PC ← PC + SEXT(PCoffset9) 0 0 0 0 n z p PCoffset9
NOP No Operation 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RET (JMP R7) PC ← R7 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0
JSR label R7 ← PC; PC ← PC + SEXT(PCoffset11) 0 1 0 0 1 PCoffset11

Aurélien Cavelan, Laure Gonnord, Lionel Morel 5/5


	Warm-up : discovering the target machine, LC-3
	The LC-3 processor and instruction set
	Assembling, disasembling
	Pennsim Simulator
	More advanced assembly code!

	LC3
	Installing Pennsim and getting started
	The LC3 architecture
	LC3 simplified instruction set


