
Lab 2
Lexing and Parsing with ANTLR4

Objective

• Understand the software architecture of ANTLR4.
• Be able to write simple grammars and correct grammar issues in ANTLR4.

WARNING Exercice 4 is evaluated (personal work only). Deadline Octo-
ber 5th.

2.1 User install for ANTLR4 and ANTLR4 Python runtime

User installation steps:

mkdir ~/lib
cd ~/lib
wget http://www.antlr.org/download/antlr-4.5.3-complete.jar
pip install antlr4-python2-runtime --user

Then in your .bashrc:

export CLASSPATH=".:/home/mylogin/lib/antlr-4.5.3-complete.jar:$CLASSPATH"
alias antlr4=’java -jar /home/mylogin/lib/antlr-4.5.3-complete.jar’
alias grun=’java org.antlr.v4.gui.TestRig’

Then, download and uncompress the archive available on the course webpage.

2.2 Structure of a .g4 file and compilation

Links to a bit of ANTLR4 syntax :

• Lexical rules (extended regular expressions): https://github.com/antlr/antlr4/blob/master/doc/
lexer-rules.md

• Parser rules (grammars)https://github.com/antlr/antlr4/blob/master/doc/parser-rules.md

The compilation of a given .g4 (for the PYTHON back-end) is done by the following command line:

java -jar /link/to/antlr-4.5.3-complete.jar -Dlanguage=Python2 filename.g4

or if you modified your .bashrc properly:

\verb!antlr4 -Dlanguage=Python2 filename.g4!

2.3 Simple examples with ANTLR4

EXERCISE #1 Ï Demo files
Work your way through the five examples in the directory demo_files:

Aurélien Cavelan, Laure Gonnord, Lionel Morel 1/4

https://github.com/antlr/antlr4/blob/master/doc/lexer-rules.md
https://github.com/antlr/antlr4/blob/master/doc/lexer-rules.md
https://github.com/antlr/antlr4/blob/master/doc/parser-rules.md

ENS de Lyon, Département Informatique, M1 CAP Lab #2 – Automne 2016

ex1 with ANTLR4 + Java : A very simple lexical analysis1 for simple arithmetic expressions of the form x+3.
To compile, run:

java -jar /link/to/antlr-4.5.3-complete.jar Exemple1.g4
javac *.java

This generates Java code then compile them and you can finally execute using the Java runtime with

grun Example1 tokens

To signal the program you have finished entering the input, use Control-D.
Examples of run: [ˆD means that I pressed Control-D]. What I typed is in boldface.

% ./exemple
1+1^D
% ./exemple
)+^D
line 1:0 token recognition error at: ’)’
line 1:2 token recognition error at: ’}’
%

Questions:
• Read and understand the code.
• Allow for parentheses to appear in the expressions.
• What is an example of a recognized expression that looks odd? To fix this problem we need a syntactic

analyzer (see later).

ex1bis : same with a PYTHON file driver :

make
make run

test the same expressions. Observe the PYTHON file.

ex2 : Now we write a grammar for valid expressions. Observe how we recover information from the lexing
phase (for ID, the associated text is $ID.text$).

If these files read like a novel, go on with the other exercises. Otherwise, make sure that you understand
what is going on. You can ask the Teaching Assistant, or another student, for advice.

EXERCISE #2 Ï Well-founded parenthesis
Write a grammar and files to accept any text with well-formed parenthesis ’)’ and ’[’.

EXERCISE #3 Ï CSV - Skip if you are late
A csv (for comma-separated values2) file:

• is plain text using a character set such as ASCII, various Unicode character sets (e.g. UTF-8), EBCDIC, or
Shift JIS,

• consists of records (typically one record per line),
• with the records divided into fields separated by delimiters (typically a single reserved character such as

comma, semicolon, or tab; sometimes the delimiter may include optional spaces),
• . . .

Write a grammar and files to recognize csv files.
For the sake of the exercise, you’ll only consider one type of separator (comma “,“). You are not obliged to

be able to match strings like "Super, ""luxurious"" truck".

EXERCISE #4 Ï If then else ambiguity - Skip if you are late
We give you the following grammar for imbricated “ifs” :

1Lexer Grammar in ANTLR4 jargon
2see https://en.wikipedia.org/wiki/Comma-separated_values

Aurélien Cavelan, Laure Gonnord, Lionel Morel 2/4

https://en.wikipedia.org/wiki/Comma-separated_values

ENS de Lyon, Département Informatique, M1 CAP Lab #2 – Automne 2016

grammar ITE;

prog: stmt;

stmt : ifStmt | ID ;

ifStmt : ’if’ ID stmt (’else’ stmt)? ;

ID : [a-zA-Z]+;
WS : [\t\r\n]+ -> skip ; // skip spaces, tabs, newlines

Find a way (with right actions) to test if:

if x if y a else b

is parsed as :

if x (if y a else b)

or

if x (if y a) else b

Thus ANTLR4 finds a way to decide which rule to “prioritize”. A simple solution if we want to avoir this prob-
lem consists in inventing “if then elif ...”.

2.4 Grammar Attributes (actions)

Until now, our analyzers are passive oracles, ie language recognizers. Moving towards a “real compiler”, a next
step is to execute code during the analysis, using this code to produce an intermediate representation of the
recognized program, typically ASTs. This representation can then be used to generate code or perform pro-
gram analysis (see next labs) . This is what attribute grammars are made for. We associate to each production
a piece of code that will be executed each time the production will be reduced. This piece of code is called
semantic action and computes attributes of non-terminals.

Let us consider the following grammar (the end of an expression is a semicolon):

Z → E ;

E → E +T

E → T

T → T ∗F

T → F

F → i d

F → (E)

EXERCISE #5 Ï Implement!
Implement this grammar in ANTLR4. Write test files. In particular, verify the fact that ’*’ has higher priority
on ’+.’ Is ’+’ left or right associative ?

EXERCISE #6 Ï Evaluating arithmetic expressions with ANTLR4 and PYTHON

Based on the grammar you just wrote, build an expression evaluator. You can proceed incrementally as follows:
• Attribute the grammar to evaluate arithmetic expressions. For the moment, consider that all ids have

“value 42”.
• Execute your grammar against expressions suchs as 1+(2*3);.
• Augment the grammar to treat lists of assignments. You will use PYTHON dictionaries to store values of

ids when they are defined. The assignements can be separated by line breaks.

Aurélien Cavelan, Laure Gonnord, Lionel Morel 3/4

ENS de Lyon, Département Informatique, M1 CAP Lab # – Automne 2016

• Execute your grammar against lists of assignements such as x=1;2+x;. You should decide what to do
when you encounter a variable name that is not already defined (assigned).

Here is an idea of the expected outputs:

Input Output (on stdout)
1; Value is 1
12; Value is 12

1 + 2; Value is 3
1 + 2 * 3 + 4; Value is 11
(1+2)*(3+4); Value is 21

a=1+4; Variable ’a’ has been defined with value 5
b + 1; Error
a + 8; Value is 13

This exercise is due by email to lionel.morel@insa-lyon.fr and aurelien.cavelan@ens-lyon.fr be-
fore Wednesday, October 5th 8pm

EXERCISE #7 Ï Bonus : prefixed expressions
Consider prefixed expressions like * + * 3 4 5 7 and assigments of such expressions to variables:
a=* + * 3 4 5 7. Identifiers are allowed in expressions.

• Give a grammar that recognizes lists of such assigments. Encode it in ANTLR4. Test.
• Use grammar rules to construct infix assigments during parsing: the former assigment will be trans-

formed into the string a=(3 * 4 + 5)*7. Be careful to avoid useless parentheses.
• Modify the attribution to verify that the use of each identifier is done after his first definition.

Aurélien Cavelan, Laure Gonnord, Lionel Morel 4/4

lionel.morel@insa-lyon.fr
aurelien.cavelan@ens-lyon.fr

	Lexing and Parsing with ANTLR4
	User install for ANTLR4 and ANTLR4 Python runtime
	Structure of a .g4 file and compilation
	Simple examples with ANTLR4
	Grammar Attributes (actions)

