
Lab 3
Abstract Syntax Tree - Simple Evaluator

Objective

• Understand the notion of Abstract Syntax Tree (AST)
• Write a simple language evaluator with visitors.

Companion files are on the course website. Project is due on Wed, October 12th.

3.1 Implicit tree walking using Listeners and Visitors

Error recovery with listeners

By default, ANTLR4 can generate code implemeting a Listener over your AST. This listener will basically use
ANTLR4’s built-in ParseTreeWalker to implement a traversal of the whole AST.

EXERCISE #1 Ï
Observe and play with the Hello grammar and its PYTHON Listener.

Evaluating arithmetic expressions with visitors

In the previous exercise, we have traversed our AST with a listener. The main limit of using a listener is that the
traversal of the AST is directed by the walker object provided by ANTLR4. So if you want to apply transforma-
tions to parts of your AST only, using listener will get rather cumbersome.

To overcome this limitation, we can use the Visitor design pattern1, which is yet another way to seperate
algorithms from the data structure they apply to. Contrary to listeners, it is the visitor’s programmer who
decides, for each node in the AST, whether the traversal should continue with each of the node’s children.

For every possible type of node in your AST, a visitor will implement a function that will apply to nodes of
this type.

EXERCISE #2 Ï
During the previous lab, you have implemented an expression evaluator with “right actions”. Observe and
play with the Arit grammar and its PYTHON Visitor. You can start by opening the AritVisitor.py, which is
generated by ANTLR4: it provides an abstract visitor which you need to extend to build your own.

Also note the #blabla pragmas in the g4 file. They are here to provide ANTLR4 a name for each alternative
in grammar rules. These names are used in the visitor classes.

We depict the relationship between visitors’ classes in Figure 3.1.

1https://en.wikipedia.org/wiki/Visitor_pattern

Aurélien Cavelan, Laure Gonnord, Lionel Morel 1/6

https://en.wikipedia.org/wiki/Visitor_pattern

ENS de Lyon, Département Informatique, M1 CAP Lab #3 – Automne 2016

Arit.g4

AritParser.py AritVisitor.py

Tree.py

inherits from

MyAritVisitor.py

antlr -visitor

inherits from

Figure 3.1: Visitor implementation Python/ANTLR4. ANTLR4 generates AritParser as well as AritVisitor. This

AritVisitor inherits from the ParseTree visitor class (defined in Tree.py of the ANTLR4-Python library, use find to

search for it). When visiting a grammar object, a call to visit calls the highest level visit, which itself calls the accept

method of the Parser object of the good type (in AritParser) which finally calls your implementation of MyAritVisitor

that match this particuler type (here Multiplication). This process is depicted by the red cycle.

3.2 A patchwork evaluator - mini project

Credits This subject has been adapted from http://www.enseignement.polytechnique.fr/profs/informatique/Philippe.

Chassignet/02-03/INF_431/dm_1.html.

In this part, you will write an evaluator of a Patchwork language 2. The patchwork to draw will be described
in a text file, and your program will interpret and draw in a Python Frame. For instance, the following program :

def losange = rot (b+rot rot rot b) + rot (rot b+rot rot b);
def ligne = losange[3];
def damier = (rot ligne)[3];
show damier;

will produce :

The patchwork language

A patchwork is defined with the following ANTLR4 syntax :

’PatchWork.g4’

grammar PatchWork;

2http://en.wikipedia.org/wiki/Patchwork

Aurélien Cavelan, Laure Gonnord, Lionel Morel 2/6

http://www.enseignement.polytechnique.fr/profs/informatique/Philippe.Chassignet/02-03/INF_431/dm_1.html
http://www.enseignement.polytechnique.fr/profs/informatique/Philippe.Chassignet/02-03/INF_431/dm_1.html
http://en.wikipedia.org/wiki/Patchwork

ENS de Lyon, Département Informatique, M1 CAP Lab #3 – Automne 2016

@header {
#header - global vars
}

@members {
members
}

prog: instruction+ #ins
;

instruction:
’show’ draw ’;’ #showDraw

| ’size’ draw ’;’ #sizeDraw
| ’def’ ID ’=’ draw ’;’#defDraw
;

draw:
primitive #primDraw

| ID #idDraw
| ’(’ draw ’)’ #copyDraw
| draw ’[’ INT ’]’ #repeatDraw
| ’rot’ draw #rotDraw
| draw ’+’ draw #concatDraw
;

primitive:
’a’

| ’b’
| ’c’
| ’d’
;

ID : (’a’..’z’|’A’..’Z’|’_’)+ ;
INT : ’0’..’9’+ ;
WS : (’ ’|’\t’|’\n’)+ -> skip;

Priorities : [] has precedence on rot which has precedence on + (concatenation).

Informal Semantics:
• a programme is a sequence of instructions;
• an instruction is either a definition, either a show, either a size
• a definition gives a way to save a patchwork into a variable, for instance:
def x = rot a;
show x;
defines a new patchwork called x which value is rot a. Later, we use x as a patchwork.

a patchwork itself can be of the 5 following types:

• the four primitives ’a’, ’b’, ’c’ or ’d’ (the little base squares) ’a’ , ’b’ , ’c’ et ’d’ ;
• an id (different from ’a’, ’b’, ’c’ or ’d’) that makes reference to a previous definition;

• a concatenation of two patchworks (+): a+b+c+d = ;

• a rotation of a patchwork (rot is 90 degrées clockwise):a+rot a+rot rot a+rot rot rot a = ; ;

• a repetition of a given patchwork: (b+d)[3] = .

EXERCISE #3 Ï Interpret by hand!
An example is given in Figure 3.2. Represent on paper the different steps of the construction of the patchwork.
Do all the intermediate steps.

Aurélien Cavelan, Laure Gonnord, Lionel Morel 3/6

ENS de Lyon, Département Informatique, M1 CAP Lab #3 – Automne 2016

def losange = rot (b+rot rot rot b)
+rot (rot b+rot rot b) ;

def l igne = losange [3] ;
def damier = (rot l igne) [3] ;
show damier ;

(a) Definition

(b) Interpreta-
tion

Figure 3.2: A program and its interpretation.

EXERCISE #4 Ï Pretty Printer Visitor
Write a visitor MyPatchworkPPVisitor.py with the following model:

class MyPatchWorkPPVisitor(PatchWorkVisitor):
def __init__(self):

pass;
def visitProg(self, ctx): #method to visit Prog rule

n= len(ctx.instruction())
print("Program with "+str(n)+" instructions.");
for ins in ctx.instruction():

self.visit(ins);

that pretty-prints a given patchwork file. Show that rot a+b is parsed as (rot a)+b and a+b[7] is parsed as
a+(b[7]).

EXERCISE #5 Ï Evaluator as a visitor
The file LibPatchwork.py contains all stuff to store and display the little squares. The file TestLib.py show
you how to use it 3.

Now write a visitor that evaluates our language in terms of nice pictures. First of all, fill Tables 3.1 and 3.2.
Then, write the appropriate Visitor.

Grammar element Action

prog create new Patchork
evaluate all instructions

show draw
evaluate draw
resize the Patchwork according to draw’s size
call the Patchwork showPicture() method

size draw

def id = draw

(use Python dictionaries)

Table 3.1: Actions at Instruction level

3launch with python TestLib.py

Aurélien Cavelan, Laure Gonnord, Lionel Morel 4/6

ENS de Lyon, Département Informatique, M1 CAP Lab #3 – Automne 2016

Grammar element Action Size

primitive (’a’,’b’,. . .)
add (corresponding) square in patchwork
at current (x, y)
be careful if the primitive is under a rot

size=(1,1)

ID (in draw)

(draw)

(should be easy!)

draw1+draw2 (concat)

strongly depends on the rotation factor!
if this rotation is 0 :

evaluate draw1 (at current (x,y,r))
evaluate draw2 (at (x+length(draw1),y,r)

else ...

rot draw

draw[n] (repeat)

evaluate draw once
decide if repeat is horizontal or vertical (depends
on rotation)
compute the offsets accordingly (depends on
draw’s size)
evaluate (n-1) times with offsets
set final length

size=(n*length(draw),
height(draw))

Table 3.2: Actions at ’draw’ level

For the code, we strongly encourage to :
• Add the following attributes to your visitor: x, y,r (position of the current picture, rotation), si zex, si ze y

(sizes), show (true if the ’draw’ under evaluation will be drawn), and of course, pa (the current patch-
work).

• First evaluate draws that do not contain variables;
• Compute only sizes and test intensively at this point;

Aurélien Cavelan, Laure Gonnord, Lionel Morel 5/6

ENS de Lyon, Département Informatique, M1 CAP Lab # – Automne 2016

• Compute drawing instructions for: primitives, repeat, rot, concat in this order;
• Def and use of variables in draw at the very end. (Use a table - dict in Python - to store the correspon-

dance between id and draws)
• Intensively test, be careful to priorities.
• Write exceptions and handlers for user feedback.

For a little help, we give you our method implementation for “repeat” :

def visitRepeatDraw(self,ctx):
n = int(ctx.INT().getText())
print(’repeat ’+str(n)+’ times ’)
if (n<=0): #todo exception here

pass
else:

self.visit(ctx.draw())#do it once
x,y=self._x,self._y
l,h=self._sizex,self._sizey
(decx,decy)=(0,0)
if (self._r==0 or self._r==2):

decx=l #repeat horizontally
else:

decy=h #vertically
#now repeat!!
for i in range(1,n):

self._x,self._y=(x+i*decx,y+i*decy)
self.visit(ctx.draw())#do it but shifted

#set final length
self._sizex=n*l
self._sizey=h

EXERCISE #6 Ï Homework
Make an archive, a Readme, and send your work.

Aurélien Cavelan, Laure Gonnord, Lionel Morel 6/6

	Abstract Syntax Tree - Simple Evaluator
	Implicit tree walking using Listeners and Visitors
	Error recovery with listeners
	Evaluating arithmetic expressions with visitors

	A patchwork evaluator - mini project
	The patchwork language

