
Lab 6
Code generation with smart IRs

Objective

• Construct a CFG, and the interference graph.
• Allocate registers and produce final code

During the previous lab, you have written a dummy code generator for the Mu language. In this lab the
objective is to generate a more efficient LC3 code. You will have 3 sessions for that. Your code is due by email
to your two teaching assistants on December, 9th (code, readme, testfiles, makefile and scripts if any).

First download the archive from the course website.

Installations You may have to install the following PYTHON packages:

pip install --user networkx
pip install --user graphviz
pip install --user pygraphviz
--install-option="--include-path=/usr/include/graphviz"
--install-option="--library-path=/usr/lib/graphviz/"

and also (on your machines):

apt-get install graphviz-dev

6.1 CFG Construction and liveness analysis

EXERCISE #1 Ï CFG
We give you an API for the CFG construction. Contrarily to the course, a block will be a unique LC-3 instruction
(or a label). Adapt the visitor of the previous lab (the first one) to construct the CFG of your program as follows:

s e l f . _prog . addInstructionNOT (dr , reg)
s e l f . _cfg . append(BlockNOT(dr , reg))

In the visitProgRule, you should have the following instructions:

s e l f . _cfg = CFG(BlockPROG ())
s e l f . v i s i t (ctx . block ())

and Main.py already contains a call to the function that prints a dot file from the CFG (A dot file and its
corresponding pdf file must be generated next to the mu input file)

1. First, implement and test for lists of assignments. You should see a chain of blocks.

2. For branchs, loops, it is a bit more complicated. . .

To do that, you will need to proceed as in the following example:

We have a branch!
blockBRn = self._cfg.append(BlockBR("n",labelfalse))

We create the true and false branches
blockTrue = blockBRn.append(BlockLabel(labeltrue)) # TRUE case comes
first

Aurélien Cavelan, Laure Gonnord, Lionel Morel 1/4

ENS de Lyon, Département Informatique, M1 CAP Lab #6 – Automne 2016

blockFalse = blockBRn.append(BlockLabel(labelfalse))

TRUE case:
self._cfg.setEnd(blockTrue) # The end of the CFG now points to

blockTrue
self._cfg.append(...)
endTrue = self._cfg.append(BlockGOTO(labelend)) # When done, we jump to

labelend

FALSE case:
self._cfg.setEnd(blockFalse)
endFalse = self._cfg.append(...)

Finally, we merge the branches
blockLabelend = BlockLABEL(labelend) # Must be the last block created
self._cfg.setEnd(endTrue).append(blockLabelend)
self._cfg.setEnd(endFalse).append(blockLabelend)

Additionally, you must respect the following rules (due to how code generation works using the CFG):

• The BR instruction jumps to the false case (in this example), so we must do the true case FIRST

• The BlockLABEL(labelend) must be the LAST block created (due to internal id incrementation)

Note that the end of the CFG is now blockLabelend. You have to make a demo of this construction to your
teaching assistants on Thursday, Nov, 24th.

Your demo should at least work on the following three programs:

x=1;
y=2+x;
z=x+y;
x=7;

x=2;
if (x < 4)
x=4;

else
x=5;

y=x+1;

x=0;
while (x < 4){
x=x+1;

}
y=x+3;
z=y+x;

EXERCISE #2 Ï Liveness Analysis
For the liveness analysis, in the CFG.py file we give you a function that performs one iteration of the Dataflow
analysis for liveness. You have to:

• Initialise the Gen(B) and K i l l (B) for each block (statement or comment). Be careful to properly handle
the following cases:

ADD temp1 temp1 12

and

AND temp1 temp1 0

• Implement the fixpoint iteration as a method in Cfg.py“while it is not finished, store the old values, do
an iteration, decide if its finished”.

To test the liveness analysis, you’ll have to invent relevant tests.

EXERCISE #3 Ï Interference graph
We recall that two temporaries are in conflict if they are simultaneously alive after a given instruction, which
means:

• There exists a block (an instruction) b and x, y ∈ LVout (b)

Aurélien Cavelan, Laure Gonnord, Lionel Morel 2/4

ENS de Lyon, Département Informatique, M1 CAP Lab #6 – Automne 2016

• OR There exist a block b such that x ∈ LVout (b) and y is defined in the block
• OR the converse.

For the two last cases, consider the following list of instructions:

y=2
x=1
z=y+1

where x is not alive after the x=1 statement, however x is in conflict with y since we generate the code for x=1
while y is alive1.

From the result of the previous exercise, construct the interference graph of your program (each time
a pair of temporaries are in conflict, add an edge between them). We give you a non-oriented graph API
(LibGraphes.py) for that. Use the print_dot method and relevant tests to validate your code. You may
have to change a bit the CFG API to collect all the temporaries during its construction..

6.2 Register allocation and code production

Instead of the iterative algorithm of the course, we will implement the following algorithm for k register allo-
cation:

• Color the graph with k −3 colors (r 0 to r 4).
• All the other variables will be allocated on the stack. To compute the offset from the stack pointer (r 6),

recolor the subgraph of remaining variables with an infinite number of colors.
Then the code generation:

• For non-spilled variable: replace the temporary with its associated color/register.
• For a spilled variable (say, temp5 here):
ADD temp6 temp1 temp5
becomes (we use r 5 and r 7 to make load and stores for spilled variables):
LDR R5 R6 #-dec
ADD alloc(temp6) R5 alloc(temp5)
(this is why we need to color with k −3 registers).

EXERCISE #4 Ï Register Allocation
Use the algorithm (with k=8) and the coloration method of the LibGraphes class to allocate registers (or a
place in memory). Validate your allocation on tiny test files that do not need more than 5 physical registers.

EXERCISE #5 Ï Final Code Generation
We are nearly done! Modify the CFG print method to be able to replace temporaries with their new place, and
test your generated asm files.

6.3 Bonus: to go further

If you have time, you can choose among the following improvements for your compiler.

EXERCISE #6 Ï Optimise the test process!
Use the LC3 command line generator and scripts to perform your tests:

https://highered.mheducation.com/sites/0072467509/student_view0/lc-3_simulator.html

You can get inspiration from this webpage:

https://www.cs.colostate.edu/~fsieker/misc/lc3.html

EXERCISE #7 Ï Big constants
Find a way to handle numerical constants that are two big to be stored in 5 bits.

1Another solution consists in eliminating dead code before generating the interference graph.

Aurélien Cavelan, Laure Gonnord, Lionel Morel 3/4

https://highered.mheducation.com/sites/0072467509/student_view0/lc-3_simulator.html
https://www.cs.colostate.edu/~fsieker/misc/lc3.html

ENS de Lyon, Département Informatique, M1 CAP Lab # – Automne 2016

EXERCISE #8 Ï Chains
Find a way to handle log instructions:

• First, constant chains that will be stored in memory.
LEA R0, mychain ; in R0 only
PUTS #print
...
mychain: .STRINGZ "Hello"
prints “Hello.”.

• Then, numerical values computed in a given register (you may have to store it somewhere).
• And finally all log instructions.
• If you want to print a char, you must store its (ASCII) value in the R0 register and use the OUT system call

to print it.

EXERCISE #9 Ï Constant propagation
Design and implement a “constant propagation” dataflow algorithm. Design new examples to test your opti-
misation.

EXERCISE #10 Ï Register Allocation by iterative coloring

Algorithm 1: Register allocation – a less naive version

Algorithm Allocate(C FG, k)
Build interference graph G
Color(G ,k −2) Alloc, G =Gr e f ∪Gm

while Gm 6= ; do
spill ← spill ∪ Gm

Generate the code with spill code
Build interference graph G ′
Colour(G ′,k) G ′ =G ′

r eg ∪Gm

end

The previous allocation freezes two registers, this we color with k-2 registers. What if we need k registers?
Show that it can happen. Use the iterative algorithm 1 to produce the code

EXERCISE #11 Ï Multiplication
Implement a multiplication routine, and produce the code for the multiplication that calls this routine.

Aurélien Cavelan, Laure Gonnord, Lionel Morel 4/4

	Code generation with smart IRs
	CFG Construction and liveness analysis
	Register allocation and code production
	Bonus: to go further

