
Lab 7
Abstract Interpretation:

Numerical Non Relational Abstract Domains

Objective

• Play with an implementation of a fixpoint static analyser (In OCAML).
• Implement classical finite abstract domains, and the interval abstract domain.
• Understand how the fixpoint computation is made.
This lab is adapted from material kindly provided by Pierre Roux. Download the archive and untar it.

Binoms are authorized only for non ocaml-native speakers.

7.1 Play with tiny

In the archive of today, you will find tiny, a static analyzer based on abstract interpretation, written in OCaml.
To compile it, run make at the root of the (uncompressed) archive. This should produce a binary src/tiny that
you can test as follows:

src/tiny examples/ex01.tiny

This outputs the input source code.

What tiny does tiny computes the abstract interpretation of a given program, which means at every stage,
compute the abstract value for each variable, as well as loop invariants. This information is used to perform
various static analysis such as: no division by zero occur.

How does tiny work tiny is parametrized over the domain to consider. In src/domains, you will find a
few domains that you will have to implement throughout this lab session. To use a specific domain, use:

src/tiny --domain <name> file

where domain is the name of your domain (dummy, kildall, sign, and intervals).

EXERCISE #1 Ï Discovering the analysis
In the bin directory of the archive, there is a compiled version of all the domains. Run it through the examples
and become familiar with the output of tiny via:

bin/tiny --domain <domain> file

(You can make the output more verbose via the option -v 4.)
For the examples ex05.tiny, ex06.tiny, ex07.tinywhich analysis can prove that the codes are correct?

Why?

tiny source code architecture Here are the main files/functions of the implementation: (src directory)
• lexer.mll, parser.mly, location.ml, ast.ml are the front-end. From an input in the tiny language

(that ressembles Mu), it computes an abstract syntax described in ast.mli, for instance a statement is
one of the following types 1:

1The location module is used to track back the corresponding lines of code in the source.

Aurélien Cavelan, Laure Gonnord, Lionel Morel 1/4

ENS de Lyon, Département Informatique, M1 CAP Lab #7 – Automne 2016

type stm =
| Asn of Location . t * Name. t * expr (* * v = expr ; *)
| Seq of Location . t * stm * stm (* * stm stm *)
| I t e of Location . t * expr * stm * stm (* * i f (expr > 0) \ { stm \ } else \ { stm \ } *)
| While of Location . t * expr * stm (* * while (expr > 0) \ { stm \ } *)

• main.ml is responsible for the command line options, and calling either the compiler (useless in this
lab) or the analyser.

• analyser.ml will perform the fixpoint analysis on non-relational domains only (which is the scope of
this Lab). This analysis is parametrised by an abstract domain module called Dom, from which the com-
putation is performed (see ex 2).

• The abstract domain module Dom is constructed by nonrelation.ml, which provides the generic fol-
lowing functions (see nonrelation.mli for their signatures): order, top, bottom, join (union), meet
(intersection), as well as the forward abstract semantic function assignment.

• This module Dom is himself constructed from domains implemented in the src/domains directory. All
you have to do is to implement the abstract functions for each new domain by mimicking dummy.ml.

EXERCISE #2 Ï Code review
Quickly open the source code:

• Find the analysis function in main.ml.
• In analyse.ml, the analysis is performed by a call to post_stm on the program AST. Observe the code

of this function. What is the name of the function that performs the fixpoint computation ?
• In this last function, find the code that permits to stop this fixpoint computation. The order function is

specific to each abstract domain, you will have to implement it.

7.2 Implementing new domains in tiny

A cheat sheet about abstract domains can be found at the address:

http://perso.ens-lyon.fr/pierre.roux/vas_2013_2014/rappels_domaines_abstraits.pdf

(talk to your TA if you need help in reading the french there).
For each domain, we provide a skeleton of source code (in src/domain/). You will have to define the type

of abstract values, operation such as union and abstract transformers, as well as printing functions.

We recall that:
• Top is the biggest abstract value, Bottom the lowest.
• The order of two abstract values is given by their respective positions in the Hass diagram of the under-

lying issue.
• Join (union) computes an abstract value that gathers the information given by its two operands.
• Meet makes an intersection of the two operands.
• sem_plus is the abstract transfer function for the concrete ’+’, i.e. it gives the “effect of + in the abstract

world”.

Finite domains

EXERCISE #3 Ï Kildall
This domain makes it possible to find variables which are constants at a certain point in the program. It can
also be used to simplify programs in a compiler.

>

·· · −2 −1 0 1 2 · · · 42 · · ·

⊥

γ(>) = Z

γ(n) = {n }
γ(⊥) = ;

Aurélien Cavelan, Laure Gonnord, Lionel Morel 2/4

http://perso.ens-lyon.fr/pierre.roux/vas_2013_2014/rappels_domaines_abstraits.pdf

ENS de Lyon, Département Informatique, M1 CAP Lab #7 – Automne 2016

Implement this domain in src/domains/kildall.ml. Check your implementation on examples. What
happens using your domain on the example examples/ex08.tiny?

To solve this problem, if you have time, you can try to rely on the module InfInt, which is provided (see
src/domains/infInt.mli), to handle this situation 2

EXERCISE #4 Ï Signs
This domain makes it possible to find variables which are strictly positive or strictly negative, or zero, hence
allowing to guarantee the correctness of more divisions.

>

- 0 +

⊥

γ(>) = Z

γ(+) = {n ∈Z | n > 0}
γ(−) = {n ∈Z | n < 0}
γ(0) = {0}
γ(⊥) = ;

Implement this domain in src/domains/sign.ml

Intervals and widening

In this section, we wish to implement a domain of intervals, where variables are interpreted by the range of
values they can take.
The lattice is (D],v]) with D] =⊥ ∪ {(n1,n2) ∈ (Z∪ {−∞ })× (Z∪ {+∞ }) | n1 ≤ n2}.

(−∞,+∞)

...

· · · (−1,1) · · ·

· · · (−1,0) (0,1) · · ·

· · · (−1,−1) (0,0) (1,1) · · ·

⊥

γ(−∞,+∞) = �−∞,+∞�
γ(−∞,n) = �−∞,n�
γ(n,+∞) = �n,+∞�
γ(n1,n2) = �n1,n2�
γ(⊥) = ;

EXERCISE #5 Ï Intervals
Implement this domain in src/domains/intervals.ml: for the moment, do not modify the definitions for
widening, sem_times, sem_div (and forget about backsem_times and backsem_div).

Some hints :

• You can use the following type :

type t = Bot | I t v of i n t option * i n t option

where None stands for ±∞ and Some n stands for the finite bound n3.

• It will be useful to extend some functions acting on integers to Z∪ {−∞ } or Z∪ {+∞ }. For instance, for
“≤” :

(* Extending <= to Z U {−oo } . *)
l e t leq_minf x y = match x , y with

| None, _ −> true (* −oo <= y *)

2documentation : src/doc/InfInt.html).
3 Reminder: the option type constructor, which is provided by OCAML, is defined as follows :

type ’a option = None | Some of ’a.

Aurélien Cavelan, Laure Gonnord, Lionel Morel 3/4

ENS de Lyon, Département Informatique, M1 CAP Lab #7 – Automne 2016

| _ , None −> f a l s e (* x > −oo (x != −oo) *)
| Some x , Some y −> x <= y

(* Extending <= to Z U {+oo } . *)
l e t leq_pinf x y = match x , y with

| _ , None −> true (* x <= +oo *)
| None, _ −> f a l s e (* +oo > y (y != +oo) *)
| Some x , Some y −> x <= y

• You can use the following function to enforce the invariant n1 ≤ n2 when defining intervals :

l e t mk_itv o1 o2 = match o1 , o2 with
| None, _ | _ , None −> I t v (o1 , o2)
| Some n1 , Some n2 −> i f n1 > n2 then Bot else I t v (o1 , o2)

Test the domain on the following program (file examples/ex09.tiny) :

i =0;
while (i < 10) {

++ i ; }

then on the same program, after replacing 10 with 1 000 000. What can be observed? (use option -v 2 if no
difference shows up)

The problem is now that our domain is has infinite depth, so the fixpoint iteration to compute the inter-
pretation of a while loop may take infinitely many steps: computing the exact interpretation becomes unde-
cidable. In the next exercise, we will see a way to over-approximate the fixpoint through widening.

EXERCISE #6 Ï Widening in the domain of intervals

• To address this problem, exploit widening, by implementing the following operator.

x]Oy] =

�a,b� if x] = �a,b� , y] = �c,d� ,c ≥ a,d ≤ b
�a,+∞� if x] = �a,b� , y] = �c,d� ,c ≥ a,d > b
�−∞,b� if x] = �a,b� , y] = �c,d� ,c < a,d ≤ b
�−∞,+∞� if x] = �a,b� , y] = �c,d� ,c < a,d > b
y] if x] =⊥
x] if y] =⊥

Reminder: a widening operator can be used to accelerate the convergence of the fixpoint calculation.
The idea is to extrapolate in the computation, so that we reach a result without going upwards ad infini-
tum in a lattice of unbounded height.

• Run the program using the new domain on the programs tested before, then on the following program
(file examples/ex10.tiny) :

i = 0 ; j = 0 ;
while (i < 10) {

i f (i <= 0) {
j = 1 ;
++ i ;

} e lse {
++ i ; } }

What interval does one get for variable j? First try to improve by using a descending sequence (-d n
option). If it doesn’t work, come up with a new widening operator that makes it possible to obtain the
exact answer �0,1� (hint : this widening is called delayed).

• Additional question : what happens in the domain if the program contains expressions such as those
that appear in examples/ex08.tiny ? This can in some cases be handled using the module InfInt,
which is provided 4

4(documentation : src/doc/InfInt.html).

Aurélien Cavelan, Laure Gonnord, Lionel Morel 4/4

	Abstract Interpretation: Numerical Non Relational Abstract Domains
	Play with tiny
	Implementing new domains in tiny
	Finite domains
	Intervals and widening

