
Lab 9
Functional languages: compilation for an abstract

machine

Objective

Understand the semantics of a toy functional programing language, and:
• discover an implementation of the compilation and execution of the abstract machine seen in the course.
• extend it.

First, download the archive.

9.1 Compiling Fun programs for an abstract machine

Discovering the toplevel In this week’s archive, there is a toplevel for the compiler and virtual machine seen
during the lectures. Hit make to compile it, it should generate a toplevel binary. When you run it, you get a
toplevel where you can ask to compile expressions, run bytecode, or compile and run some expressions. The
documentation of the options is available with ./toplevel �-help. You can find examples of valid source in
the repository tests/ of the archive, here is one 1:

$ ledit ./toplevel
> c 2 + 2
Cst 2; Cst 2; Add
> cr 2 + 2
4
> cr 17 + (3 + 42)
62

Here is the abstract syntax of our (input) language:

(* Syntax of the input language of terms . *)
type expr =

(* Arithmetic fragment *)
| Constant of i n t
| Addition of expr * expr

(* Let fragment *)
| Variable of variable
| Let of variable * expr * expr (* [Let (x , a , b)] stands f o r [l e t x = a in b] *)

(* Functional fragment *)
| Function of variable * expr
| Application of expr * expr

EXERCISE #1 Ï Abstract machine for Fun
The objective is is to complete the given code in order to be able to compile and execute the whole language:

1. Read the files main.ml syntax.ml and tP.ml in order to become familiar with the syntax of the language
and the machine code, and the structure of the code. The compilation into the abstract machine and its
evaluation are done in tP.ml.

1ledit is a one-line editor written in OCaml. It provides line editing for the Caml toplevels, as well as other interactive Unix commands.
On the ENS machines you can find it in /usr/bin/.

Aurélien Cavelan, Laure Gonnord, Lionel Morel 1/5

ENS de Lyon, Département Informatique, M1 CAP Lab #9 – Automne 2016

2. For local definitions, here is the expected output:

> c (let x = 1 in x+2)
Cst 1; Let "x"; Access "x"; Cst 2; Add; EndLet
> cr (let x = 1 in x+2)
3

Complete the following table that mimics the execution of the compiled program:

Code Env. Stack comment
Cst 1;Let "x";...EndLet ; ; push the constant

on the stack
Let "x";...EndLet ; Vint(1)

Access "x";...EndLet

Cte 2;Add;EndLet

Add;EndLet

EndLet

(end)

Now complete the TP.compile and TP.transition functions.

3. (This is the hardest question of the lab) First, implement the compilation of user-defined functions (dec-
laration, application):

> c ((fun x -> x+1) 42)
Cst 42; Closure("x", Access "x"; Cst 1; Add; Ret); App
> c ((let y=2 in fun x -> x+y)) 40
Cst 40; Cst 2; Let "y"; Closure("x", Access "x"; Access "y"; Add;
Ret); EndLet; App

The compilation of a given function thus only produces an element Closure(var,code).

Then, the objective is to implement the execution steps, so that to obtain:

> cr ((fun x -> x+1) 41)
42
> cr ((let y=2 in fun x -> x+y)) 40
42

For the execution, you have to use the VClosure of string * code * environment value type for
functions, that links together the argument of the function, its code and the environment at its definition
point. A bit of the execution scheme for functions is depicted in Figure 9.1.

Aurélien Cavelan, Laure Gonnord, Lionel Morel 2/5

ENS de Lyon, Département Informatique, M1 CAP Lab #9 – Automne 2016

Code Env. Stack Code Env. Stack Comment
Closure(x,c’);c σ s c σ (x,c ′)[σ].s a new closure

(x,c ′) on top
of stack

App;c σ (x,c ′)[σ′].v.s c ′ (x, v).σ′ c.σ.s push the
code and
initial env

Ret;c σ v.c ′.σ′.s′ c’ σ′ v.s stack top
= returned
value

Figure 9.1: Execution scheme for user-defined functions

First do the two following examples by hand:

Code Env. Stack
Cst 41;Closure("x",Acces x;Cst 1; Add; Ret);App) ; ;

Closure("x",Acces x;Cst 1; Add; Ret);App ; Vint(41)

Code Env. Stack
Cst 40;Cst 2; Let “y”; Closure("x",Acces x;Access
y; Add; Ret);EndLet; App (Let code be Acces x;Access
y; Add; Ret)

; ;

Closure("x",code);EndLet; App (where f v(code) = {x, y}) y 7→ 2 VInt40

Aurélien Cavelan, Laure Gonnord, Lionel Morel 3/5

ENS de Lyon, Département Informatique, M1 CAP Lab #9 – Automne 2016

Now, implement:

• To implement the closure (x,c ′)[σ] that is pushed on the stack you have to produce an element
of type VClosure of string * code * environment. The environment which is pushed is the
current value of all free variables of the code, that you can compute using the following Ocaml
function:

l e t rec fv = function
| Access s : : r e s t −> s : : fv r e s t
| Closure (_ , code) : : r e s t −>

fv code @ fv r e s t
| _ : : r e s t −> fv r e s t
| [] −> []

You only have to filter out the current environnement values to only get track of these free variable
values.

• To implement the App part, you have to recover the VClosure and the argument on top of stack,
localy bind the argument to its value in the environment. Use the following trick to push the
remaining code c and the initial environnement σ on the stack: push a VClosure("_",c,σ) (an
anonymous special closure).

• For Ret, there should be a value followed by the special closure on top of stack. You only have to
recover the initial environment and code, that are stored in this special closure.

4. Manually compile the expression print 2 (where print is to be considered as a variable name)

5. The VBuiltin value type is used to represent concrete operations (like print). Explain how the transi-
tion for the App instruction when the function is not a VClosure but a VBuiltin will be implemented.

An example of such builtins is print defined in TP.builtins, which is an initial environment the ma-
chine is loaded with when running code (See main.ml around line 80).

Implement the transition for the instruction App when there is a VBuiltin on the stack (instead of a
VClosure). Check that this works on the compiled form of print 2 :

> r Cst 2; Access "print"; App
2
0

6. Test your code against the examples in tests/ and write your own ones:

./toplevel <tests/arith.test

7. Introduce a mistake in your compiler, by adopting the following wrong transition rule for the App ma-
chine instruction:

Code Environment Stack Code Environment Stack
App;c σ (x,c ′)[σ′].v.s c’ (x, v).σ c.σ.s

The mistake is in the Environment after the transition, right?

Invent aFunprogram that, when run on this erroneous machine, yields an unexpected result, thus show-
ing the bug.

8. Add references to the language by introducing a new kind of (stack) value: VRef of value ref. Add
three builtins operations to the builtins list, namely ref, get and set that mimick the ML operations
ref, ! and :=.

Aurélien Cavelan, Laure Gonnord, Lionel Morel 4/5

ENS de Lyon, Département Informatique, M1 CAP Lab # – Automne 2016

9.2 Recursion

EXERCISE #2 Ï Adding recursive definitions.

We want here to extend our compiler to handle the definition of recursive functions of the following form:
let rec f = fun x -> e1 in e2

where f can be used in e1 (and in e2, of course).

1. Suppose that we compile letrec like let (and hence a recursive function like a plain function).

What will be the problematic transition in the abstract machine if we do so? (You can explain this on an
example)

2. (More difficult) Extend the definitions in files syntax.ml and tP.ml to handle recursive definitions of
the form given above.

For this, a solution is to have a new kind of value. In absence of recursion, values are either integers or
closures of the form (x,c)[σ] (see definition of type value in the file syntax.ml). To handle recursion,
we also have values of the form Rec(f)(x,c)[σ] (a closure to represent recursive function f).

The transition rule for instruction Access(x) is changed: instead of just looking up in the environment
σ, and returning σ(x):

• we return v in case σ(x) = v and v is either an integer or a plain closure (as before);
• if on the other hand σ(x) = Rec(f)(x,c)[σ], we return a closure (x,c)[σ′], where σ′ is defined ac-

cording to the behaviour we expect for a recursive definition.

(a) Explain the run steps on the following example (that does not terminate):

let rec pr = fun n-> print n+pr (n+1) in pr 0

(b) Describe the behaviour of Access(x) in the case where σ(x) = Rec(f)(x,c)[σ] (this amounts to
defining σ′ as introduced above).

(c) Accordingly, define the compilation of a recursive definition, in which a value of the new form is
added to the environment.

(d) Implement, test!

(e) (hard) Is it possible to get rid of those Rec(f)(x, c)[σ] values? (Only to keep regular closure).

Aurélien Cavelan, Laure Gonnord, Lionel Morel 5/5

	Functional languages: compilation for an abstract machine
	Compiling Fun programs for an abstract machine
	Recursion

