Introduction - CAP Course

Laure Gonnord
http://laure.gonnord.org/pro/teaching/

Laure.Gonnord@ens-1lyon.fr
Master 1, ENS de Lyon

sept 2016

N\ I . S
)))Lyon 1 L N
) [BN

~— ENS DE LYON

http://laure.gonnord.org/pro/teaching/
Laure.Gonnord@ens-lyon.fr

Credits

A large part of the compilation part of this course is inspired by
the Compilation Course of JC Fillidtre at ENS Ulm who kindly
offered the source code of his slides.

:
Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 «2/20 —

What's compilation ?

source language =—y compiler ———3 targuet language

|

errors

:
Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 «3/20 —

Compilation toward the machine language

We immediatly think of the translation of a high-level language
(C,Java,0Caml) into the machine language of a processor
(Pentium, PowerPC...)

% gcc -o sum sum.c

int main(int argc, char xxargv) {
int i, s =0;
for (i = 0; i <= 100; i++) s += ixi;
printf ("0x0+...+100%x100 = %d\n", s);
}

—
0010011110111101111111111110000010101111101111110000000000010100
1010111110100100000000000010000010101111101001010000000000100100

1010111110100000000000000001100010101111101000000000000000011100
10001111101011100000000000011100

Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 «4/20 —

Target Language
This aspect (compilation into assembly) will be presented in this

course, but we will do more :

Compilation is not (only) code generation
A large number of compilation techniques are not linked to
assembly code production.

Moreover, languages can be
@ interpreted (Basic, COBOL, Ruby, Python, etc.)

@ compiled into an intermediate language that will be
interpreted (Java, OCaml, Scala, etc.)

@ compiled into another high level language (or the same !)

@ compiled “on the fly” (or just on time)

Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 «5/20 —

Compiler/ Interpreter

@ A compiler translates a program P intro a program @ such
that for all entry z, the output Q(z) is the same as P(x).

VP 30 Va...

@ An interpreter is a program that, given a program P and an
entry =, computes the output of P(x) :

VP Vx ds...

:
Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 «6/20 —

Compiler vs Interpreter

Or :

@ The compler makes a complex work once, to produce a
code for whatever entry.

@ An interpreter makes a simpler job, but on every entry.
» In general the code after compilation is more efficient.

:
Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 « 7/20 —

Example

source lilypond PostScript file image

\chords { c2 c f2 ¢ }
\new Staff \relative c’ { \time 2/4 c4 c g’4 g a4 a g2 }
\new Lyrics \lyricmode { twin4 kle twin kle 1lit tle star2 }

C C F C

0) | .

)" 4) | |

7\ A~ |

D4 P~ —— &
[Y) 4 @

twin kle twin kle lit tle star

Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 «8/20 —

Compiler Quality

Quality criteria ?
@ correctness
@ efficiency of the generated code
@ its own efficiency

"Optimizing compilers are so difficult
to get right that we dare say that no
optimizing compiler is completely
error-free | Thus, the most important
objective in writing a compiler is that it
is correct.”

Alfred V.Aho g

RaviSethi #8 S (Dragon Book, 2006)

Jeffrey D. Ullman

Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 «9/20 —

Program Analysis

To prove :
@ Correctness of compilers/optimisations phases.
@ Correctnes of programs : invariants

...the second part of the course.

Principles
of Program
r. Analysis

-

:
Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 «10/20 —

Course Objective

Be familiar with the mecanisms inside a (simple) compiler. Be
familiar with basis of program analysis.

» And understand the links between them !

:
Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 «11/20 —

Course Content - Compilation Part

@ Syntax Analysis : lexing, parsing, AST, types.
@ Evaluators.

@ Code generation.

@ Code Optimisation.

Lab : a complete compiler for the LC-3 architecture !
Support language : Python 2.7
Frontend infrastructure : ANTLR 4.

Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016

«12/20 -

Course Content - Analysis Part

@ Concrete semantics
@ Abstract Interpretation

@ A bit of verification : abstract interpretation, Hoare logic, .. .

Labs : abstract interpretation. Support language : (most
probably) Ocaml

:
Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 «13/20 —

Course Organization

@ 13 + 1 course slots : Laure Gonnord.
@ 14 lab slots : Aurélien Cavelan and Lionel Morel.

The official URL :
http://laure.gonnord.org/pro/teaching/capMl.html

Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016

«14/20 —

http://laure.gonnord.org/pro/teaching/capM1.html

Evaluation

@ One partial exam.
@ 2 mini-projects (labs).

@ A final exam.

:
Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 «15/20 —

Compiler phases

0 Compiler phases

:
Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 «16/20 —

Compiler phases

Compiler phases

Usually, we distinguish two parts in the design of a compiler :

@ an analysis phase :

@ recognizes the program to translate and its meaning.
e launch errors (syntax, scope, types ...)

@ Then a synthesis phase :

e produces a target file.
e sometimes optmises.

Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016

«17/20 -

Compiler phases

Analysis Phase

source code

I

|lexical analysis |

1

sequence of “lexems” (fokens)

0

syntactic analysis (Parsing) |

1
abstract syntax tree (AST)

I

| semantic analysis |

1

abstract syntax (+ symbol table)

:
Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 «18/20 —

Compiler phases

Synthesis Phase

abstract syntax

I

| code production (numerous phases) |

1

assembly language

0

| assembly (as)|

1

machine language

{
linker (14)

1

executable code

Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016

«19/20 —»

Compiler phases

Today

assembly

:
Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 «20/20 —

	Compiler phases

