
Introduction - CAP Course

Laure Gonnord
http://laure.gonnord.org/pro/teaching/

Laure.Gonnord@ens-lyon.fr

Master 1, ENS de Lyon

sept 2016

http://laure.gonnord.org/pro/teaching/
Laure.Gonnord@ens-lyon.fr

Credits

A large part of the compilation part of this course is inspired by
the Compilation Course of JC Filliâtre at ENS Ulm who kindly
offered the source code of his slides.

Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 � 2 / 20 �

What’s compilation ?

source language targuet languagecompiler

errors

Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 � 3 / 20 �

Compilation toward the machine language
We immediatly think of the translation of a high-level language
(C,Java,OCaml) into the machine language of a processor
(Pentium, PowerPC. . .)
% gcc -o sum sum.c

i n t main (i n t argc , char ∗∗argv) {
i n t i , s = 0 ;
for (i = 0 ; i <= 100; i ++) s += i ∗ i ;
p r i n t f (" 0∗0+.. .+100∗100 = %d \ n " , s) ;

}

−→
0010011110111101111111111110000010101111101111110000000000010100

1010111110100100000000000010000010101111101001010000000000100100

1010111110100000000000000001100010101111101000000000000000011100

10001111101011100000000000011100

Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 � 4 / 20 �

Target Language
This aspect (compilation into assembly) will be presented in this
course, but we will do more :

Compilation is not (only) code generation
A large number of compilation techniques are not linked to
assembly code production.

Moreover, languages can be

interpreted (Basic, COBOL, Ruby, Python, etc.)

compiled into an intermediate language that will be
interpreted (Java, OCaml, Scala, etc.)

compiled into another high level language (or the same !)

compiled “on the fly” (or just on time)

Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 � 5 / 20 �

Compiler/ Interpreter

A compiler translates a program P intro a program Q such
that for all entry x, the output Q(x) is the same as P (x).

∀P ∃Q ∀x...

An interpreter is a program that, given a program P and an
entry x, computes the output of P (x) :

∀P ∀x ∃s...

Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 � 6 / 20 �

Compiler vs Interpreter

Or :

The compler makes a complex work once, to produce a
code for whatever entry.

An interpreter makes a simpler job, but on every entry.

I In general the code after compilation is more efficient.

Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 � 7 / 20 �

Example

source PostScript file imagegslilypond

\chords { c2 c f2 c }

\new Staff \relative c' { \time 2/4 c4 c g'4 g a4 a g2 }

\new Lyrics \lyricmode { twin4 kle twin kle lit tle star2 }

kle

�
twin

�
C

�
C

twin kle
� �
4
2�

lit

�
F

star

�
C

tle

Music engraving by LilyPond 2.10.33—www.lilypond.org

Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 � 8 / 20 �

Compiler Quality

Quality criteria ?

correctness

efficiency of the generated code

its own efficiency

”Optimizing compilers are so difficult
to get right that we dare say that no
optimizing compiler is completely
error-free ! Thus, the most important
objective in writing a compiler is that it
is correct.”

(Dragon Book, 2006)

Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 � 9 / 20 �

Program Analysis

To prove :

Correctness of compilers/optimisations phases.

Correctnes of programs : invariants

. . . the second part of the course.

Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 � 10 / 20 �

Course Objective

Be familiar with the mecanisms inside a (simple) compiler. Be
familiar with basis of program analysis.

I And understand the links between them !

Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 � 11 / 20 �

Course Content - Compilation Part

Syntax Analysis : lexing, parsing, AST, types.

Evaluators.

Code generation.

Code Optimisation.

Lab : a complete compiler for the LC-3 architecture !
Support language : Python 2.7
Frontend infrastructure : ANTLR 4.

Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 � 12 / 20 �

Course Content - Analysis Part

Concrete semantics

Abstract Interpretation

A bit of verification : abstract interpretation, Hoare logic, . . .

Labs : abstract interpretation. Support language : (most
probably) Ocaml

Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 � 13 / 20 �

Course Organization

13 + 1 course slots : Laure Gonnord.

14 lab slots : Aurélien Cavelan and Lionel Morel.

The official URL :
http://laure.gonnord.org/pro/teaching/capM1.html

Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 � 14 / 20 �

http://laure.gonnord.org/pro/teaching/capM1.html

Evaluation

One partial exam.

2 mini-projects (labs).

A final exam.

Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 � 15 / 20 �

Compiler phases

1 Compiler phases

Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 � 16 / 20 �

Compiler phases

Compiler phases

Usually, we distinguish two parts in the design of a compiler :

an analysis phase :
recognizes the program to translate and its meaning.
launch errors (syntax, scope, types . . .)

Then a synthesis phase :
produces a target file.
sometimes optmises.

Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 � 17 / 20 �

Compiler phases

Analysis Phase

source code
↓

lexical analysis
↓

sequence of “lexems” (tokens)
↓

syntactic analysis (Parsing)
↓

abstract syntax tree (AST)
↓

semantic analysis
↓

abstract syntax (+ symbol table)
Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 � 18 / 20 �

Compiler phases

Synthesis Phase

abstract syntax
↓

code production (numerous phases)
↓

assembly language
↓

assembly (as)
↓

machine language
↓

linker (ld)
↓

executable code
Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 � 19 / 20 �

Compiler phases

Today

assembly

Laure Gonnord (M1/DI-ENSL) Introduction - CAP Course 2016 � 20 / 20 �

	Compiler phases

