
Compilation and Program Analysis(#7):
Register Allocation + Data Flow Analyses

Laure Gonnord
http://laure.gonnord.org/pro/teaching/capM1.html

Laure.Gonnord@ens-lyon.fr

Master 1, ENS de Lyon

oct 2016

http://laure.gonnord.org/pro/teaching/capM1.html
Laure.Gonnord@ens-lyon.fr

Where are we ?

source code
↓

lexical+syntactic analysis + typing
↓

decorated AST
↓

code production (numerous phases)
↓

assembly language

I We work on IRs (Middle-end).

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 2 / 41 �

Register allocation - Intro

1 Register allocation - Intro

2 A tour on data-flow Analyses

3 Back on register allocation

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 3 / 41 �

Register allocation - Intro

Credits

Fernando Pereira’s course on register allocation :

http://homepages.dcc.ufmg.br/~fernando/classes/dcc888/

ementa/slides/RegisterAllocation.pdf

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 4 / 41 �

http://homepages.dcc.ufmg.br/~fernando/classes/dcc888/ementa/slides/RegisterAllocation.pdf
http://homepages.dcc.ufmg.br/~fernando/classes/dcc888/ementa/slides/RegisterAllocation.pdf

Register allocation - Intro

What for ?
Finding storage locations to the values manipulated by the
program I registers or memory.

registers are fast but in small quantity.

memory is plenty, but slower access time.

I A good register allocator should strive to keep in registers the
variables used more often.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 5 / 41 �

Register allocation - Intro

What for ?

Expected behavior of register allocation :

Input : a CFG with basic blocks with 3-address code (and
pseudo-registers, aka temporaries)

Output : same CFG but without pseudo-registers :
replace with physical registers as much as possible.
if not splill, ie allocate a place in memory.
all copies assigned to the same physical registers (“moves”)
can be removed : coalescing

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 6 / 41 �

Register allocation - Intro

Register constraints
Some variable are assigned to some specific registers
(compiler, architecture constraints)

I r1,r2,r3 are used to pass function arguments here.
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 7 / 41 �

Register allocation - Intro

The key notion : liveness

Observation
Two variables that are simultaneously alive must be assigned
different registers.

(formal definition of alive follows)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 8 / 41 �

Register allocation - Intro

Register assignment is NP-complete

Theorem
Given P and K general purpose registers, is there an
assignment of the variables P in registers, such that (i) every
variable gets at least one register along its entire live range, and
(ii) simultaneously live variables are given different registers ?

Gregory Chaitin has shown, in the early 80’s, that the register
assignment problem is NP-Complete (register allocation via
coloring, 1981)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 9 / 41 �

Register allocation - Intro

3-phase algorithm

Liveness analysis
When is a given value necessary for the rest of the
computation ?

Interference graph
A graph that encodes which pseudo-registers cannot be
mapped to the same location.

Graph coloring then register allocation.
The effective allocation : physical registers and stack
allocation for pseudo-registers.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 10 / 41 �

A tour on data-flow Analyses

1 Register allocation - Intro

2 A tour on data-flow Analyses
A first example : Liveness Analysis
Other data-flow analyses

3 Back on register allocation

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 11 / 41 �

A tour on data-flow Analyses A first example : Liveness Analysis

1 Register allocation - Intro

2 A tour on data-flow Analyses
A first example : Liveness Analysis
Other data-flow analyses

3 Back on register allocation

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 12 / 41 �

A tour on data-flow Analyses A first example : Liveness Analysis

Liveness analysis

In the sequel we call variable a pseudo-register or a physical
register.

Definition (Alive Variable)
In a given program point, a variable is said to be alive if the
value she contains may be used in the rest of the execution.

May : non decidable property I overapproximation.

Important remark : here a block = a statement/program point.
We have the same kind of analyses with block=basic block.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 13 / 41 �

A tour on data-flow Analyses A first example : Liveness Analysis

An example for live ranges

Definition
A variable is live at the exit of a block if there exists a path from
the block to a use of the variable that does not redefine the
variable.

x:=2;

y:=4;

x:=1;

if (y>x)

then z:=y

else z=y*y ;

x:=z;

x:=2

B1

y:=4

B2

x:=1

B3

y>x ?

B4

z:=y*y

B6

x is not alive here !

z:=y

B5

x:=z

B7 z is alive here

no one is alive here (end)

I The information flow is backward : from uses to definitions.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 14 / 41 �

A tour on data-flow Analyses A first example : Liveness Analysis

Data flow expressions

Definition
A variable that appears on the left hand side of an assignment
is killed by the block. Tests do no kill variables.

Definition
A generated variable is a variable that appears in the block.

I Sets : killLV (block) and genLV (block)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 15 / 41 �

A tour on data-flow Analyses A first example : Liveness Analysis

Data flow expressions

exit

entry

Block `

LVexit(`) =

∅ if ` = final⋃
{LVentry(`

′)|(`, `′) ∈ flow(G)}

LVentry(`) =
(
LVexit(`)\killLV (`)

)
∪ genLV (`)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 16 / 41 �

A tour on data-flow Analyses A first example : Liveness Analysis

Data flow equation : solving

Here :

Initialise LV sets to ∅.

Compute LVentry sets, then LVexit, and continue.

Stop when a fix point is reached.

I (vector of) Sets are strictly growing, and the live range set is
at most the set of all variables, thus this algorithm terminates.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 17 / 41 �

A tour on data-flow Analyses A first example : Liveness Analysis

Steps

LVentry(`) denoted by In(`), LVentry(`) by Out(`) initilisation to
emptysets is not depicted.

Step 1 Step 2 Step 3 (stable)
` kill(`) gen(`) In(`) Out(`) In(`) Out(`) In(`)

1 {x} ∅ ∅ ∅ ∅ ∅ ∅
2 {y} ∅ ∅ ∅ ∅ {y} ∅
3 {x} ∅ ∅ {x, y} {y} {x, y} {y}
4 ∅ {x, y} {x, y} {y} {x, y} {y} {x, y}
5 {z} {y} {y} {z} {y} {z} {y}
6 {z} {y} {y} {z} {y} {z} {y}
7 {x} {z} {z} ∅ {z} ∅ {z}

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 18 / 41 �

A tour on data-flow Analyses A first example : Liveness Analysis

Final result and use
Backward analysis and we want the smallest sets, here is the
final result : (we assume all vars are dead at the end).

` LVentry(`) LVexit(`)

1 ∅ ∅
2 ∅ {y}
3 {y} {x, y}
4 {x, y} {y}
5 {y} {z}
6 {y} {z}
7 {z} ∅

I Use : Dead code elimination ! Note : can be improved by
computing the use-defs paths. (see Nielson/Nielson/Hankin)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 19 / 41 �

A tour on data-flow Analyses Other data-flow analyses

1 Register allocation - Intro

2 A tour on data-flow Analyses
A first example : Liveness Analysis
Other data-flow analyses

3 Back on register allocation

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 20 / 41 �

A tour on data-flow Analyses Other data-flow analyses

Common subexpressions

Avoiding the computation of an (arithmetic) expression :

x:=a+b;

y:=a*b;

while(y>a+b) do

a:=a+a;

x:=a+b;

done

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 21 / 41 �

A tour on data-flow Analyses Other data-flow analyses

Some defs

Definition
An expression is killed in a block if any of its variables is used
in the block.

Definition
A generated expression is an expression evaluated in the block
and none of its variables is killed in the block.

I Sets : killAE(block) and genAE(block)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 22 / 41 �

A tour on data-flow Analyses Other data-flow analyses

Data flow expressions

exit

entry

Block `

AEentry(`) =

∅ if ` = init⋂
{AEexit(`

′)|(`′, `) ∈ flow(G)}

AEexit(`) =
(
AEentry(`)\killAE(`)

)
∪ genAE(`)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 23 / 41 �

A tour on data-flow Analyses Other data-flow analyses

On the example - equations

` killAE(`) genAE(`)

1 ∅ {a+b}
2 ∅ {a*b}
3 ∅ {a+b}
4 {a+b, a*b, a+1} ∅
5 ∅ {a+b}

non

oui

3

2

1

4

5

x:=a+b

y:=a*b

y>a+b ?

x:=a+b

a:=a+1

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 24 / 41 �

A tour on data-flow Analyses Other data-flow analyses

On the example - final solution

` AEentry(`) AEexit(`)

1 ∅ {a+b}
2 {a+b} {a*b, a*b}
3 {a+b} {a+b}
4 {a+b} ∅
5 ∅ {a+b}

I a+b is available on entry to the
loop, not a*b
I Improvement of code generation

non

oui

3

2

1

4

5

x:=a+b

y:=a*b

y>a+b ?

x:=a+b

a:=a+1

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 25 / 41 �

A tour on data-flow Analyses Other data-flow analyses

Other

Constant propagation, . . .

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 26 / 41 �

A tour on data-flow Analyses Other data-flow analyses

Digression : common points

Computing growing sets from ∅ via fixpoint iterations. (or
the dual)

Sets of equations of the form (collecting semantics) :

(`) =
⋃

(`′,`)∈E

f((`′))

where f is computed w.r.t. the program statements

I is an abstract interpretation of the program (see the
course on Abstract Interpretation, later)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 27 / 41 �

Back on register allocation

1 Register allocation - Intro

2 A tour on data-flow Analyses

3 Back on register allocation

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 28 / 41 �

Back on register allocation

Interference

The liveness analysis gives us for a+ (b+ c) :
tmp1 tmp2 tmp3 tmp4 tmp5 tmp6

ld tmp1,la

ld tmp2,lb

ld tmp3,lc

ADD tmp4, tmp2, tmp3

ADD tmp5, tmp4,0

ADD tmp6, tmp1, tmp5

...

I tmp1 is in conflit with tmp2 (because of instruction 3) denoted
by tmp1 ./ tmp2.

Important remark : technically, ADD tmp5, tmp4,0 is a move
instruction

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 29 / 41 �

Back on register allocation

Interference graph

A denotes tmp1,/ defines a graph :

We want a correct allocation with respect to ./ :
tmp1 ./ tmp2 =⇒ Alloc(tmp1) 6= Alloc(tmp2).

I Graph coloring.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 30 / 41 �

Back on register allocation

Running example

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 31 / 41 �

Back on register allocation

Kempe’s simplification algorithm 1/2

On the interference graph (without coalesce edges) :

Proposition (Kempe 1879)
Suppose the graph contains a node m with fewer than K
neighbours. Then if G′ = G \ {m} can be colored, then G can
be colored as well.

I Pick a low degree node, and remove it, and continue until
remove all (the graph is K-colorable) or . . .

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 32 / 41 �

Back on register allocation

Kempe’s simplification algorithm 2/2

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 33 / 41 �

Back on register allocation

Let’s color !
We assign colors to the nodes greedily, in the reverse
order in which nodes are removed from the graph.
The color of the next node is the first color that is available,
i.e. not used by any neighbour.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 34 / 41 �

Back on register allocation

Greedy coloring example 1/2

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 35 / 41 �

Back on register allocation

Greedy coloring example 2/2

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 36 / 41 �

Back on register allocation

If the graph is not colorable

Non-colored variables are named spilled pseudo-registers.

Idea : Modify the code to lower the number of simultaneously
alive registers. Plenty of solutions, the simplier is to reserve a
dedicated place for a given spilled variable, and store and load
from memory :

ADD temp5, temp4, temp3

...

ADD temp6, temp5, #5

becomes :

ADDINMEMORY [placefortemp5], temp4, temp3

...

ADDxx temp6, [placefortemp5], #5

But we do not have this kind of instruction in our machine !

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 37 / 41 �

Back on register allocation

One solution for spilled variables

We invent 2 versions of the same variable (live-range
splitting), and modify the code into :

ADD temp51, temp4, temp3

ST temp51 [placeinmemory]

..

LD temp52 [placeinmemory]

ADD temp6, temp52, #5

I But now we have to allocate these two new variables !

We relaunch the coloring algorithm. This is called iterative
register coloring. (see Exercise Sheet 6b).

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 38 / 41 �

Back on register allocation

Physical Memory Allocation

We will invent physical memory places from the stack pointer
(see later).

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 39 / 41 �

Back on register allocation

Other Algorithms
Linear scan : greedy coloring of interval graphs. (see
Fernando Pereira’s slides on register allocation : 18 to 35)
Iterative Register Coalescing (George/Appel, TOPLAS,
1996) (same, from slides 44), which uses “coalesce edges”
(variables are related by move instructions).
Plenty of other heuristics for splilling.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 40 / 41 �

Back on register allocation

A nice result

Chordal graphs are P-colorable
For certain classes of graphs, graph coloring is P. This is the
case for cordal graphs where every cycle with 4 or more
edges has a chord (connects 2 vertices in the cycle but not part
of the cycle).

Important result (Sebastian Hack) : Programs in strict SSA form
have this property.
I Pereira Palsberg Register allocation (APLAS 2005).

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 � 41 / 41 �

	Register allocation - Intro
	A tour on data-flow Analyses
	Back on register allocation

