Compilation and Program Analysis(#7):

Register Allocation + Data Flow Analyses

Laure Gonnord
http://laure.gonnord.org/pro/teaching/capMl.html

Laure.Gonnord@ens-1lyon.fr
Master 1, ENS de Lyon

oct 2016

(\Lyon1 e
) N ey

ENS DE LYON

http://laure.gonnord.org/pro/teaching/capM1.html
Laure.Gonnord@ens-lyon.fr

Where are we ?

source code

I

lexical+syntactic analysis + typing

1
decorated AST

l

\code production (numerous phases) \

1

assembly language

» We work on IRs (Middle-end).

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016

«2/41 >

Register allocation - Intro

o Register allocation - Intro
9 A tour on data-flow Analyses

e Back on register allocation

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 «3/41 —

Register allocation - Intro

Credits

Fernando Pereira’s course on register allocation :

http://homepages.dcc.ufmg.br/"fernando/classes/dcc888/
ementa/slides/RegisterAllocation.pdf

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 “—4/41 —

http://homepages.dcc.ufmg.br/~fernando/classes/dcc888/ementa/slides/RegisterAllocation.pdf
http://homepages.dcc.ufmg.br/~fernando/classes/dcc888/ementa/slides/RegisterAllocation.pdf

Register allocation - Intro

What for ?
@ Finding storage locations to the values manipulated by the
program » registers or memory.
@ registers are fast but in small quantity.
@ memory is plenty, but slower access time.
» A good register allocator should strive to keep in registers the
variables used more often.

"Because of the central role that register allocation plays, T
both in speeding up the code and in making other : 'y
optimizations useful, it is one of the most important - if not ' 8
the most important - of the optimizations."

Hennessy and Patterson (2006) - [Appendix B; p. 26]

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 «5/41 —

Register allocation - Intro

What for ?

Expected behavior of register allocation :

@ Input : a CFG with basic blocks with 3-address code (and
pseudo-registers, aka temporaries)
@ Output : same CFG but without pseudo-registers :

e replace with physical registers as much as possible.

o if not splill, ie allocate a place in memory.

e all copies assigned to the same physical registers (“moves”)
can be removed : coalescing

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 «6/41 —

Register allocation - Intro

Register constraints
Some variable are assigned to some specific registers
(compiler, architecture constraints)

r3
rl
r2
0
a

O QaUTo®aAn

—

Lg: |d d+ b
e e -1
(e > 0)?goto L.

Lg: |rl =d
r3 =c¢
return

» r1,r2,r3 are used to pass function arguments here.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016

«7/41 >

Register allocation - Intro

The key notion : liveness

Observation
Two variables that are simultaneously alive must be assigned

different registers.

(formal definition of alive follows)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 «8/41 —

Register allocation - Intro

Register assignment is NP-complete

Theorem

Given P and K general purpose registers, is there an
assignment of the variables P in registers, such that (i) every
variable gets at least one register along its entire live range, and
(if) simultaneously live variables are given different registers ?

Gregory Chaitin has shown, in the early 80’s, that the register
assignment problem is NP-Complete (register allocation via
coloring, 1981)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 «—9/41 —

Register allocation - Intro

3-phase algorithm

@ Liveness analysis
e When is a given value necessary for the rest of the
computation ?
@ Interference graph

e A graph that encodes which pseudo-registers cannot be
mapped to the same location.

@ Graph coloring then register allocation.

e The effective allocation : physical registers and stack
allocation for pseudo-registers.

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 «10/41 —

A tour on data-flow Analyses

o Register allocation - Intro
@ A tour on data-flow Analyses
@ A first example : Liveness Analysis

@ Other data-flow analyses

0 Back on register allocation

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016

«—11/41 —

A tour on data-flow Analyses A first example : Liveness Analysis

@ Register allocation - Intro

Q A tour on data-flow Analyses
@ A first example : Liveness Analysis

© Back on register allocation

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 «12/41 —

A tour on data-flow Analyses A first example : Liveness Analysis

Liveness analysis

In the sequel we call variable a pseudo-register or a physical
register.

Definition (Alive Variable)
In a given program point, a variable is said to be alive if the
value she contains may be used in the rest of the execution.

May : non decidable property » overapproximation.

Important remark : here a block = a statement/program point.
We have the same kind of analyses with block=basic block.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 «13/41 —

A tour on data-flow Analyses A first example : Liveness Analysis

An example for live ranges

Definition

A variable is live at the exit of a block if there exists a path from
the block to a use of the variable that does not redefine the
variable.

x is not alive here !

Mo
Il
NN

:=1;
if (y>x)
then z:=y

else Z=y‘*y‘ 5 z is alive here

no one is alive here (end)
X:i=z; . . —

» The information flow is backward : from uses to definitions.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 «—14/41 —

A tour on data-flow Analyses A first example : Liveness Analysis

Data flow expressions

Definition
A variable that appears on the left hand side of an assignment
is killed by the block. Tests do no Kill variables.

Definition
A generated variable is a variable that appears in the block.

» Sets : killry (block) and genpy (block)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 «15/41 —

A tour on data-flow Analyses A first example : Liveness Analysis

Data flow expressions

entry

Block ¢

exit

0 if £ = final

L‘/emt(g) —
{U{LVemry(@’)(&e') € flow(G)}

LVentTy(f) = (LVezit(f)\killLv(f)) U genLV(E)

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 «16/41 —

A tour on data-flow Analyses A first example : Liveness Analysis

Data flow equation : solving

Here :
@ Initialise LV sets to .
@ Compute LV, sets, then LV,.;, and continue.
@ Stop when a fix point is reached.

» (vector of) Sets are strictly growing, and the live range set is
at most the set of all variables, thus this algorithm terminates.

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 «—17/41 —

A tour on data-flow Analyses

A first example : Liveness Analysis

Steps

LVentry(¢) denoted by In(l), LVeniry(¢) by Out(?) initilisation to

emptysets is not depicted.

Step 1 Step 2 Step 3 (stable)

€| kill(€) | gen(£) In(f) | Out(¥) In(¢) | Out(¥) In(¢)

1 {z} [} 0 1] 1] 0 0

2 {y} 0 0 0 0 {y} 0

31 {=} 0 0 {z,y} {y} {z,y} {y}

4 0 {z,y} || {9} | {y} {z.y} | {y} {z,y}

51 {z} {y} {y} {=} {y} {=} {y}

6 | {z} {y} {y} {=} {y} {=} {y}

7| A{z} {=} {=} 0 {=} 0 {=}

Laure Gonnord (M1/DI-ENSL)

Compilation and Program Analysis (#7): Register Alloc

2016 «18/41 —»

A tour on data-flow Analyses A first example : Liveness Analysis

Final result and use

Backward analysis and we want the smallest sets, here is the
final result : (we assume all vars are dead at the end).

0| LVeniry(€) | LVegit(£)
1 0 0

2 0 {y}

3 {y} {z,y}
41 Azy} {y}

5 {y} {z}

6 {y} {z}

7 {z} 0

» Use : Dead code elimination ! Note : can be improved by
computing the use-defs paths. (see Nielson/Nielson/Hankin)
Laure Gonnord (M1/DI-ENSL)

Compilation and Program Analysis (#7): Register Alloc 2016 «19/41 —»

A tour on data-flow Analyses Other data-flow analyses

@ Register allocation - Intro

Q A tour on data-flow Analyses

@ Other data-flow analyses

© Back on register allocation

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 «20/41 —

A tour on data-flow Analyses Other data-flow analyses

Common subexpressions

Avoiding the computation of an (arithmetic) expression :

x:=atb;

y:=axb;

while(y>a+b) do
a:=ata;
X:=atb;

done

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 «21/41 —

A tour on data-flow Analyses Other data-flow analyses

Some defs

Definition
An expression is killed in a block if any of its variables is used
in the block. |

Definition
A generated expression is an expression evaluated in the block
and none of its variables is killed in the block.)

» Sets : kill g (block) and gen ag(block)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 «22/41 —

A tour on data-flow Analyses Other data-flow analyses

Data flow expressions

entry

Block ¢

exit

0 if £ = init

AEentry(B) -
(HAEeait(€)|(¢,£) € flow(G)}

ABeit(€) = (AEeptry(O\kill ap(£)) U genap(C)

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 «23/41 —

A tour on data-flow Analyses

Other data-flow analyses

On the example - equations

x:=a+b
.
/ killop(0) genag(f) y:=a%b
1 0 {a+b} \ ¢ X
2 (Z) {a*b} y>asb 7 non
3 @ {a+b} i oui
Y 4
4 | {atb,a*b,a+1} 0 aimatt
5 0 {a+b} I
Y 5
x:=a+b
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 «24/41 —

A tour on data-flow Analyses

Other data-flow analyses

On the example - final solution

0

0| ABantry(0) | ABemin(0)
1 0 {a+b}

2 {at+b} {axb,axb}
3 {a+b} {a+b}

4 {atb} 0

5

{a+b}

» a+b is available on entry to the

loop, not axb

» Improvement of code generation

x:=a+b

y:=axb

S

y>a+b ?

i oui

a:=a+l

x:=a+b

non

Laure Gonnord (M1/DI-ENSL)

Compilation and Program Analysis (#7): Register Alloc

«25/41 —»

A tour on data-flow Analyses Other data-flow analyses

Other

Constant propagation, . ..

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 «26/41 —

A tour on data-flow Analyses Other data-flow analyses

Digression : common points

@ Computing growing sets from () via fixpoint iterations. (or
the dual)

@ Sets of equations of the form (collecting semantics) :

0= 1J ry
(¢ 0)eE

where f is computed w.r.t. the program statements

> is an abstract interpretation of the program (see the
course on Abstract Interpretation, later)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 « 27 /41 —

Back on register allocation

o Register allocation - Intro
9 A tour on data-flow Analyses

o Back on register allocation

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 «28/41 —

Back on register allocation

Interference

The liveness analysis gives us for a + (b+¢) :
‘ tmp, tmpa tmps tmpa tmps tmpe

1d tmpi,la
1d tmp2,1b
1d tmp3,1lc
ADD tmp4, tmp2, tmp3
ADD tmp5, tmp4,0
ADD tmp6, tmpl, tmpb

» tmp1l is in conflit with tmp2 (because of instruction 3) denoted
by tmp1 b tmps.

Important remark : technically, ADD tmp5, tmp4,0 iS a move
instruction

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 «29/41 —

Back on register allocation

Interference graph

A denotes tmp1, ... defines a graph :

We want a correct allocation with respect to < :
tmpy X tmpe = Alloc(tmpy) # Alloc(tmpa).

» Graph coloring.

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 «30/41 —

Back on register allocation

Running example

r3
rl
r2

[o3 oM o VRN o]

Lg: |d=d+ b
e=e-1
(e > 0)?goto L,

Ly: |rl =d
r3 =c¢
return

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 «31/41 —

Back on register allocation

Kempe’s simplification algorithm 1/2

On the interference graph (without coalesce edges) :

Proposition (Kempe 1879)

Suppose the graph contains a node m with fewer than K
neighbours. Then if G’ = G \ {m} can be colored, then G can
be colored as well.

» Pick a low degree node, and remove it, and continue until
remove all (the graph is K-colorable) or ...

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 «32/41 —

Kempe’s simplification algorithm 2/2

e s
!‘Ao ﬂe‘o

Back on register allocation

Let’s color!

@ We assign colors to the nodes greedily, in the reverse
order in which nodes are removed from the graph.

@ The color of the next node is the first color that is available,
i.e. not used by any neighbour.

¢ d
a
2 . .]: I:,
rl < I:I
2
o
3 a d 3 I:I

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 «34/41 —

Back on register allocation

Greedy coloring example 1/2

o
e
&

®

=)
o
=)

-
o
e
@
o

r2
rl

|

FEEE

&
&
o
IE
)
|='7|

(=)
-
)

-

o
o

|5
=
Je|e

r3

&

&
LH"l

o

¢ Q.

°4A\
i z ‘A! :

o

o

=

3

o
L-..II
)

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 «35/41 —

Back on register allocation

Greedy coloring example 2/2

 E B E

:
Laure Gonnort d (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 «36/41 —

Back on register allocation

If the graph is not colorable

Non-colored variables are named spilled pseudo-registers.
Idea : Modify the code to lower the number of simultaneously
alive registers. Plenty of solutions, the simplier is to reserve a
dedicated place for a given spilled variable, and store and load
from memory :

ADD tempb, temp4, temp3

ADD temp6, tempb, #5

becomes :

ADDINMEMORY [placefortempb], temp4, temp3

ADDxx temp6, [placefortemp5], #5
But we do not have this kind of instruction in our machine !

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 «37/41 —

Back on register allocation

One solution for spilled variables

We invent 2 versions of the same variable (live-range
splitting), and modify the code into :

ADD tempbl, temp4, temp3
ST tempb51 [placeinmemory]
LD temp52 [placeinmemory]

ADD temp6, tempb2, #5

» But now we have to allocate these two new variables !

We relaunch the coloring algorithm. This is called iterative
register coloring. (see Exercise Sheet 6b).

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 «38/41 —

Back on register allocation

Physical Memory Allocation

We will invent physical memory places from the stack pointer
(see later).

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 «39/41 —

Back on register allocation

Other Algorithms

@ Linear scan : greedy coloring of interval graphs. (see
Fernando Pereira’s slides on register allocation : 18 to 35)

@ lterative Register Coalescing (George/Appel, TOPLAS,
1996) (same, from slides 44), which uses “coalesce edges”
(variables are related by move instructions).

@ Plenty of other heuristics for splilling.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 «40/41 —

Back on register allocation

A nice result

Chordal graphs are P-colorable

For certain classes of graphs, graph coloring is P. This is the
case for cordal graphs where every cycle with 4 or more
edges has a chord (connects 2 vertices in the cycle but not part
of the cycle).

Important result (Sebastian Hack) : Programs in strict SSA form
have this property.
» Pereira Palsberg Register allocation (APLAS 2005).

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#7): Register Alloc 2016 “— 41 /41 —

	Register allocation - Intro
	A tour on data-flow Analyses
	Back on register allocation

