
Compilation and Program Analysis (#8) :
Functions: syntax, semantics, code

generation

Laure Gonnord
http://laure.gonnord.org/pro/teaching/capM1.html

Laure.Gonnord@ens-lyon.fr

Master 1, ENS de Lyon

nov 2016

http://laure.gonnord.org/pro/teaching/capM1.html
Laure.Gonnord@ens-lyon.fr

Big picture

So far :

All variables were global.

No function call.

Inspiration : Y. Lakhnesh, UGA (first part), N. Louvet, Lyon1
(archi part), C. Alias (code gen part).

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 2 / 41 �

Front-end

1 Front-end

2 Operational Semantics for procedures

3 Syntax-Directed Code Generation

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 3 / 41 �

Front-end

Concrete syntax 1/2
we add variable declaration (with the var keyword) :
vardecl

: VAR ID ASSIGN expr

;

blocks are like before :
block

: stat* #statList

;

stat_block

: OBRACE block CBRACE

| stat

;

procedures declaration :
declproc:

: PROC ID IS stat

;

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 4 / 41 �

Front-end

Concrete syntax 2/2

And now there will two new kinds of statements :

stat

: assignment

| if_stat

| while_stat

| log

| CALL ID

| BEGIN declvar* declproc* block_stat END

;

I We can declare local procedures inside local procedures.

On board : add new concrete syntax for functions.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 5 / 41 �

Front-end

Abstract syntax

WLOG, we will only consider programs with procedures :

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 6 / 41 �

Operational Semantics for procedures

1 Front-end

2 Operational Semantics for procedures

3 Syntax-Directed Code Generation

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 7 / 41 �

Operational Semantics for procedures

Operational semantics for local variables

Variable declaration : we invent→D a semantic for
declarations, and the following definitions :

DV (DV) is the set of variables declared in DV

σ′[X 7→ σ] = λx. if x ∈ X then σ(x) else σ′(x).

Rules :

(DV , σ[x 7→ A[a]σ])→D σ′

(var x := a;DV , σ)→D σ′

(ε, σ)→D σ

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 8 / 41 �

Operational Semantics for procedures

Rules for blocs + Example

Be careful to restore everything after the local bloc :

(DV , σ)→D σ′ (S, σ′)→ σ”

(begin DV ;S end, σ)→D σ”[DV (DV) 7→ σ]

Seq is unchanged :

(S1, σ)→ σ′ (S2, σ
′)→ σ′′(

(S1;S2), σ
)
→ σ′′

Execute the semantics :

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 9 / 41 �

Operational Semantics for procedures

Dynamic versus Static binding, an example
What will be the behavior of call q ?

It depends !

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 10 / 41 �

Operational Semantics for procedures

Dynamic versus Static binding, ex 3/4

Dynamic binding for variables and static for procedures :

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 11 / 41 �

Operational Semantics for procedures

Dynamic versus Static binding, ex 4/4

Static for variables and procedures :

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 12 / 41 �

Operational Semantics for procedures

Semantics : dynamic links 1/2

How ?

States : variable→ int.

Environment : procedure name→ Stm.

Configuration : (EnvP × Stm× State) ∪ State

The dynamic link for procedures is made by calling the current
value at the call :

(env, env(p), σ)→ σ′

(env, call p, σ)→ σ′

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 13 / 41 �

Operational Semantics for procedures

Semantics : dynamic links 2/2

Thus, environments are kept for the sequence :

(env, S1, σ)→ σ′ (env, S2, σ
′)→ σ”

(env, (S1;S2), σ)→ σ′

but they are updated with a local declaration :

(DV , σ)→D σ′ (upd(env,DP), S, σ
′)→ σ”

(env, begin DVDP ;S end , σ)→ σ”[DV(DV) 7→ σ]

with

upd(env, ε) = env

upd(env, proc p is S;DP) = upd(env[p 7→ S], DP)

I Ex : test on the example !

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 14 / 41 �

Operational Semantics for procedures

Static links for procedures
We need to store an environnement while defining a
procedure :

Environment : procedure name→ Stm× EnvP
Configuration : (EnvP × Stm× State) ∪ State

Now update is modified :

upd(env, ε) = env

upd(env, proc p is S;DP) = upd(env[p 7→ (S, env)], DP).

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 15 / 41 �

Operational Semantics for procedures

Static links for procedures 2/2

Two possibilities for the call, let env(p) = (S, env′) in :

(env′, S, σ)→ σ′

(env, call p, σ)→ σ′

or

(env′[p 7→ [(S, env′)], S, σ)→ σ′

(env, call p, σ)→ σ′

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 16 / 41 �

Operational Semantics for procedures

Static link for variables and procedures 1/3

Config = (envV , envP , S, sto) or (envV , sto) with :

envV : x 7→ address “symbol table”.

envP : p 7→ (envV , envP , S) to store values during
variable/proc declaration

sto : address 7→ Z (old σ(x) = sto(envV (x))).

new(sto) gives a new address.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 17 / 41 �

Operational Semantics for procedures

Static link for variables and procedures 2/3

Variable declaration :

(ε, envV , sto)→D (envV , sto)

(DV , envV [x 7→ nc], sto[nc 7→ v])→D (env′V , sto
′)

((var x := a;DV), envV , sto)→D (env′V , sto
′)

with v = A[a](sto ◦ envV), nc = new(sto) such that
x→ nc→ v

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 18 / 41 �

Operational Semantics for procedures

Static link for variables and procedures 3/3

(envV , envP , x := a, sto)→ (envV , sto[nc 7→ v])

with v = A[a](sto ◦ envV) and nc = envV (x)

(env′V , env
′
P , S, sto)→ (env′V , sto

′)

(envV , envP , call p, sto)→ (envV , sto′)

or

(env′V , env
′
P [p 7→ (env′V , env

′
P , S)], S, sto)→ (env′V , sto

′)

(envV , envP , call p, sto)→ (envV , sto′)

where envP (p) = (env′V , env
′
P , S).

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 19 / 41 �

Syntax-Directed Code Generation

1 Front-end

2 Operational Semantics for procedures

3 Syntax-Directed Code Generation
Procedure call in LC-3
Code Generation for functions

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 20 / 41 �

Syntax-Directed Code Generation

A bit about Typing

Two important remarks :

Now that variables are local, the typing environnement
should also be updated each time we enter a procedure.

Type checking for functions : construct the type from
definitions, check when a call is performed (see the course
on typing ML).

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 21 / 41 �

Syntax-Directed Code Generation Procedure call in LC-3

1 Front-end

2 Operational Semantics for procedures

3 Syntax-Directed Code Generation
Procedure call in LC-3
Code Generation for functions

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 22 / 41 �

Syntax-Directed Code Generation Procedure call in LC-3

Routines

A procedure/routine in assembly is just a piece of code

its first instruction’s address is known and tagged with a
label.

the JSR instruction jumps to this piece of code (routine
call).

at the end of the routine, a RET instruction is executed for
the PC to get the address of the instruction after the
routine call.

Slides coming from the architecture course, N. Louvet

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 23 / 41 �

Syntax-Directed Code Generation Procedure call in LC-3

Routines in LC-3, how ? JSR

When a routine is called, we have to store the address where to
come back :

syntax : JSR label

action : R7 <- PC ; PC <- PC + SEXT(PCoffset11)
-10246Sext(Offset11)61023.
if adI is the JSR instruction’s address, the branching
address is :

adM = adI+1+Sext(PCOffset11), with
adI− 1023 6 adM 6 adI + 1024.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 24 / 41 �

Syntax-Directed Code Generation Procedure call in LC-3

Routines in LC-3, how RET

Inside the routine code, the RET instruction enables to come
back :

syntax : RET

action : PC <- R7

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 25 / 41 �

Syntax-Directed Code Generation Procedure call in LC-3

Writing routines

Call to the sub routine :

...

JSR sub ; R7 <- next line address

...

The last instruction of the routine is RET :

; sub routine

sub: ...

...

RET ; back to main

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 26 / 41 �

Syntax-Directed Code Generation Procedure call in LC-3

An example - strlen, without routine

.ORIG x3000

LEA R0,string ;

AND R1,R1,0 ;

loop: LDR R2,R0,0 ;

BRz end ;

ADD R0,R0,1 ;

ADD R1,R1,1 ;

BR loop

end: ST R1,res

HALT

; Constant chain

string: .STRINGZ "Hello World"

res: .BLKW #1

.END

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 27 / 41 �

Syntax-Directed Code Generation Procedure call in LC-3

String length routine 1/2

strlen call (the result will be stored in R0).

.ORIG x3000

; Main program

LEA R0,string ; R0 <- @(string)

JSR strlen ; routine call

ST R0,lg1

HALT

; Data

string: .STRINGZ "Hello World"

lg1: .BLKW #1

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 28 / 41 �

Syntax-Directed Code Generation Procedure call in LC-3

String length routine 2/2

strlen: AND R1,R1,0 ;

loop: LDR R2,R0,0 ;

BRz end ;

ADD R0,R0,1 ;

ADD R1,R1,1 ;

BR loop

end: ADD R0,R1,0 ; R0 <- R1

RET ; back to main (JMP R7)

.END ; END of complete prog

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 29 / 41 �

Syntax-Directed Code Generation Procedure call in LC-3

Routines in LC-3 : chaining routines

If a routine needs to call another one :

Some temporary registers may have to be stored
somewhere

Its return address (in R7 !) needs also to be stored.

I Store in the stack (R6) before, restore after.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 30 / 41 �

Syntax-Directed Code Generation Code Generation for functions

1 Front-end

2 Operational Semantics for procedures

3 Syntax-Directed Code Generation
Procedure call in LC-3
Code Generation for functions

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 31 / 41 �

Syntax-Directed Code Generation Code Generation for functions

Rules of the game

We still have our LC-3 machine with registers :

general purpose registers R0 to R5.

a stack pointer (SP), here R6.

a frame pointer (FP), here R7

Simplification : no imbricated function declaration.

I when call p, there is a unique p code labeled by p :

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 32 / 41 �

Syntax-Directed Code Generation Code Generation for functions

Key notion : activation record - Vocabulary 1/2

(picture needed)

Any execution instance of a function is called an
activation.

We can represent all the activations of a given program
with an activation tree.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 33 / 41 �

Syntax-Directed Code Generation Code Generation for functions

Key notion : activation record - Vocabulary 2/2

During execution, we need to keep track of alive activations :

Control stack

An activation is pushed when activated

When its over, it is poped out.

I Notion of activation record that stores the information of
one function call at execution.

I The compiler is in charge of their management.
Slides inspired by C. Alias

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 34 / 41 �

Syntax-Directed Code Generation Code Generation for functions

Activation record of a given function

...

caller of f

arguments

return address

old ARP/FP

spilled vars

function
f

...

The frame pointer (ARP or FP) points to the current activation
record (first spilled variable).

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 35 / 41 �

Syntax-Directed Code Generation Code Generation for functions

Code generation 1/2
For functions, we have to reserve (local) place before knowing
the number of spilled variables !

int f(x1,x2) S ;
return e

code.addMacro(PUSH R7) #store @ret

code.addcopy(R6,R7) #R7<-R6

code.addCode(SUB R6 R6 xx) #xx= future nb of spilled vars

code.addCode(LDR tmp1 R7 -2) #arg1

code.addCode(LDR tmp2 R7 -1) #arg2 (in rev order)

CodeGenSmt(S) #under the context x1->tmp1...

dr<-CodeGen(e) #same!

code.addcopy(dr,R0) #convention return val in R0

code.addMacro(RET,2+xx) #desalloc args + spilled vars + return

I CodeGenSmt must be called with a modified map.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 36 / 41 �

Syntax-Directed Code Generation Code Generation for functions

Code generation 2/2

call f(e1,e2)

Gencodesaveregisters() #save current values of reg.

dr <- newtmp

dr1=Gencode(e1)

code.addMacro(PUSH dr1)

dr2=Gencode(e2)

code.addMacro(PUSH dr2)

code.add(JSR f) #return @ in R7

code.addcopy(r0,dr) # dr <- returned value

Gencoderestoreregisters() #restore curr values of reg.

return dr

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 37 / 41 �

Syntax-Directed Code Generation Code Generation for functions

A simple example 1/3

Generate code and draw the activation records during the call
execution of f :

int f(x) {return x+1;}

main:

z:=f(7);

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 38 / 41 �

Syntax-Directed Code Generation Code Generation for functions

A simple example 2/3

main:

PUSH(R0,R1....R5) #should be replaced by R6 manipulation.

AND tmp1 tmp1 0

ADD tmp1 temp1 7

PUSH(tmp1)

JSR f

AND tmp2 tmp2 0

AND tmp2 R0 0

pop(R5... ,R1,R0) #but not the register associated to temp2!

[use of temp2 here]

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 39 / 41 �

Syntax-Directed Code Generation Code Generation for functions

A simple example 3/3

f: PUSH(R7)

COPY(R6,R7)

ADD R6 R6 xx #xx=number of spilled vars

LDR tmp1 R7 #1 #first argument

ADD tmp2 tmp1 1

COPY(tmp2,R0) #store result in R0

COPY(R7,R6) #this is postlude

ADD R6 R6 xx+1 #1 argument

POP(R7)

Register allocation gives tmp1,tmp2 mapsto R1 (or R0 if we are
clever). Thus xx=0.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 40 / 41 �

Syntax-Directed Code Generation Code Generation for functions

To go further

How to implement the different calling conventions ? (here,
call by value) ?

How to implement imbricated functions (dynamic link,
static link).

How to store more complex types (arrays, structs, user
defined types) ?

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#8): functions 2016 � 41 / 41 �

	Front-end
	Operational Semantics for procedures
	Syntax-Directed Code Generation

