
Compilation and Program Analysis (#10) :
Hoare triples and shape analysis

Laure Gonnord
http://laure.gonnord.org/pro/teaching/capM1.html

Laure.Gonnord@ens-lyon.fr

Master 1, ENS de Lyon

nov 2016

Inspiration D. Hirschkoff for CAP 2015-16

http://laure.gonnord.org/pro/teaching/capM1.html
Laure.Gonnord@ens-lyon.fr

Floyd-Hoare Logic

1 Floyd-Hoare Logic

2 Separation Logic

3 Recursive Data Structures

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 2 / 30 �

Floyd-Hoare Logic

Hoare triples

{A} p {B} a Hoare triple

partial correctness :

if the initial state satisfies assertionA, and if the execution of
program p terminates, then the final state satisfies assertion
B

inference rules

expressive properties

functional correctness rather than absence of runtime
errors

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 3 / 30 �

Floyd-Hoare Logic

Hoare logic | main ingredients

programmers
X := Y+3

(Hoare) logicians X >>> Y+3

ingredients in Hoare logic :

a language for programs p IMP

a language for assertions A

inference rules

important aspects :

invariants in loops

logical deduction rule

backward reasoning (in
the rule for assignment)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 4 / 30 �

Floyd-Hoare Logic

Hoare Logic - rules

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 5 / 30 �

Floyd-Hoare Logic

Hoare logic : metatheoretical properties 1/2

operational semantics and validity

big step operational semantics for IMP : (σ, p)→ σ′

σ is an environment
σ : V → Z a map from variables to integers
given some program p, σ is a partial mapping from a finite
set of variables to Z

the triple {A} p {B} is valid :
for all σ, if σ satisfies A and (σ, p)→ σ′, then σ′ satisfies

B

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 6 / 30 �

Floyd-Hoare Logic

Hoare logic : metatheoretical properties 2/2

correctness If the triple {A} p {B} can be derived using
the inference rules of Hoare logic, then it is valid.

NB : we could also rely on denotational semantics
associate to each program p some function Fp from
environments to environments

(relative) completeness any valid triple can be
constructed in Hoare logic, provided we can decide validity
of the assertions (i.e., decide whether A always holds)

logic rules capture the properties we want to express

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 7 / 30 �

Floyd-Hoare Logic

Correct rules and completeness

the 6 rules of Hoare logic are not the only correct rules

for instance, the rule of constancy is correct too

{A} p {B}

{A ∧ C} p {B ∧ C}
no variable in C is modified by p

completeness : no new Hoare triple can be established if
we add the rule of constancy

the 6 rules “tell everything”
using the rule of constancy makes proofs easier/more
natural/more readable

somehow, completeness is not only a theoretical question

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 8 / 30 �

Floyd-Hoare Logic

The axiom for assignment

the axiom for assignment goes backwards

{A[a/X]}X := a {A}

(consider X := X + 3 to convince yourself)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 9 / 30 �

Floyd-Hoare Logic

One example

u := 0;

While x > 1 Do
if pair(x) then x := x

2 ; y := y ∗ 2 else x := x− 1;u := u+ y

fi
od;

y := y + u;

Show :

{x = x0 ∧ y = y0 ∧ x0 > 0}S{y = x0 ∗ y0}

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 10 / 30 �

Separation Logic

1 Floyd-Hoare Logic

2 Separation Logic

3 Recursive Data Structures

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 11 / 30 �

Separation Logic

Programs manipulating pointers 1/2

Hoare logic deals essentially with control

if a > 0 then p1 else p2 p1; p2 while a > 0 do p

move to a richer language :

add (some kind of) pointers and handling of memory
allocation
modification (move pointers around)

liberation/deallocation

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 12 / 30 �

Separation Logic

Programs manipulating pointers 2/2

different kinds of properties
typical runtime errors we want to detect :

memory leaks, invalid disposal, invalid accesses

typically, other approaches either assume memory safety,
or forbid dynamic memory allocation

describe what programs manipulating pointers do

adopt the same methodological framework

Separation Logic is an enrichment of Floyd-Hoare logic

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 13 / 30 �

Separation Logic

Extending Mu

structure of memory at runtime
in (traditional) Hoare-Floyd logic, programs manipulate
variables

the environment just records the (integer) value of each
variable

that is all we know about the memory

dynamically allocated memory : add a heap component.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 14 / 30 �

Separation Logic

Extending the Mu language

Extanding the programming language with new constructions :
nil, cons, [x]. (slides from M. Parkinson)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 15 / 30 �

Example program

Motivation

x = cons(3,3);
y = cons(4,4);
[x+1] = y;
[y+1] = x;
y = x+1;
dispose x;
y = [y];

. – p.4/22

Example program

Motivation

x = cons(3,3);
y = cons(4,4);
[x+1] = y;
[y+1] = x;
y = x+1;
dispose x;
y = [y];

. – p.4/22

Example program

Motivation

x = cons(3,3);
y = cons(4,4);
[x+1] = y;
[y+1] = x;
y = x+1;
dispose x;
y = [y];

. – p.4/22

Example program

Motivation

x = cons(3,3);
y = cons(4,4);
[x+1] = y;
[y+1] = x;
y = x+1;
dispose x;
y = [y];

. – p.4/22

Example program

Motivation

x = cons(3,3);
y = cons(4,4);
[x+1] = y;
[y+1] = x;
y = x+1;
dispose x;
y = [y];

. – p.4/22

Example program

Motivation

x = cons(3,3);
y = cons(4,4);
[x+1] = y;
[y+1] = x;
y = x+1;
dispose x;
y = [y];

. – p.4/22

Example program

Motivation

x = cons(3,3);
y = cons(4,4);
[x+1] = y;
[y+1] = x;
y = x+1;
dispose x;
y = [y];

. – p.4/22

Example program

Motivation

x = cons(3,3);
y = cons(4,4);
[x+1] = y;
[y+1] = x;
y = x+1;
dispose x;
y = [y];

. – p.4/22

Separation Logic

Extending Mu - example

I what does this program do ?
J := nil ;

while I != nil do

K := [I + 1];

[I + 1] := J;

J := I;

I := K

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 16 / 30 �

Separation Logic

Extending the semantics 1/2

a memory state is (σ, h) where
σ is a store : Variables→ Values (adresses OR constants).
h is a heap : Adresses→ Values. We denote by dom(h) the
set of adresses on which h is defined.

Hoare logic assertions state properties about the
environment

X > Y ∗ Z +Q ∧ T > 0

add formulas to reason about the heap (*, 7→).

NB : X 7→ 52 usually makes more sense than 32 7→ 52

(both are assertions)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 17 / 30 �

Separation Logic

Operational semantics of the new operators

Let us define (σ, h) ⇓ (σ′, h′) the semantics :

Lookup : (x := [a]) (σ, h) ⇓ (σ[k/x], h) if A(a)σ = i,
i ∈ dom(h) (else error), and h(i) = k.

Mutation : ([a1] := a2) (σ, h) ⇓ (σ, h[k/i]) if A(a1)σ = i,
i ∈ dom(h) (else error), and A(a2)σ = k

Allocation : (X = cons(a1, . . . an)) Allocation cannot fail :
A(aj)σ = kj for all j, i is a new fresh address, then
h′ = h[k1/i, k2/i+ 1 . . .] and σ′ = σ[x 7→ i].

Deallocation : (free(a)) (σ, h) ⇓ (σ, h \ i) A(a2)σ = i and
i ∈ dom(h), (else error).

[k/x] denotes “x mapped to k”

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 18 / 30 �

Separation Logic

A new logic on states

(σ, h) |= a > 0 iff JaKσ = k > 0.

(σ, h) |= ¬A iff not (σ, h) |= A.

(σ, h) |= A ∧B iff (σ, h) |= A and (σ, h) |= B.

(σ, h) |= ∃x,A(x) iff there exists x ∈ N such that
(σ, h) |= A(x)

(σ, h) |= emp iff dom(h) = ∅.

(σ, h) |= a1 7→ a2 iff dom(h) = {i}, h(i) = k where Ja1Kσ = i

and Ja2Kσ = k.

(σ, h) |= A1 ∗A2 iff h = h1
⊎
h2 and (σ, hi) |= Ai.

Here 7→ is a new (logic) symbol

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 19 / 30 �

Separation Logic

Example of heaps

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 20 / 30 �

Separation Logic

Hoare triples in Separation logic | interpretation

{A} p {B} holds iff

like in traditional Hoare logic, but :

the state has a heap component

absence of forbidden access to the memory

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 21 / 30 �

Separation Logic

Small axioms (Hoare Triples)

Lookup : {a 7→ i ∧X = j}X := [a]{X = i ∧ a[j/X] 7→ i}.
If X is not in vars(a), this rule becomes
{a 7→ i}X := [a]{X = i ∧ a 7→ i}.

Mutation : {∃i, a1 7→ i}[a1] := a2{a1 7→ a2}.

Allocation : {X = i ∧ emp}X := cons(a1, . . . an){X 7→
a1[i/X] ∗X + 1 7→ a2[i/X] ∗ . . . ∗X + n− 1 7→ an[i/X]}

Desallocation : {a 7→ −}free(a){emp}

I axioms for heap-accessing operations are tight, i.e. they only
refer to the part of the heap they need to access.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 22 / 30 �

Separation Logic

About thightness

Being tight tells us the following :

suppose we can prove {10 7→ 32} p {10 7→ 52} whatever p is

then we know that

if we run p in a state where cell 11 is allocated, then p will
not change the value of 11

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 23 / 30 �

Separation Logic

The frame rule

the rules of Hoare logic remain sound

the rule of consistency {A} p {B}

{A ∧ C} p {B ∧ C}
no variable in C
is modified by p

becomes unsound

{x 7→ _} [x] := 4 {x 7→ 4}

{x 7→ _ ∧ y 7→ 3} [x] := 4 {x 7→ 4 ∧ y 7→ 3}
what if x = y ?

the Frame Rule
{A} p {B}

{A ∗ C} p {B ∗ C}
no variable in C
is modified by p

separation logic is inherently modular

as opposed to whole program verification

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 24 / 30 �

Separation Logic

The frame rule

the rules of Hoare logic remain sound

the rule of consistency {A} p {B}

{A ∧ C} p {B ∧ C}
no variable in C
is modified by p

becomes unsound

{x 7→ _} [x] := 4 {x 7→ 4}

{x 7→ _ ∧ y 7→ 3} [x] := 4 {x 7→ 4 ∧ y 7→ 3}
what if x = y ?

the Frame Rule
{A} p {B}

{A ∗ C} p {B ∗ C}
no variable in C
is modified by p

separation logic is inherently modular

as opposed to whole program verification

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 24 / 30 �

Separation Logic

Separation logic : sum up

inference rules
those of Hoare logic control
those for the new programming constructs memory

important things :
invariants in while loops, backward rule for assignment,
consequence rule
(tight) small axioms, footprint, frame rule

metatheoretical properties
correctness
completeness

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 25 / 30 �

Recursive Data Structures

1 Floyd-Hoare Logic

2 Separation Logic

3 Recursive Data Structures

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 26 / 30 �

Recursive Data Structures

Reasoning about lists 1/2

943 2712

a linked list in memory is something like

(X1 7→ k1, X2) ∗ (X2 7→ k2, X3) ∗ · · · ∗ (Xn 7→ kn, nil)

(X 7→ a, b) stands for X 7→ a ∗ (X + 1) 7→ b

describe the structure using assertions :

add the possibility to write (recursive) equations

list(i) = (i = nil ∧ emp) ∨ (∃j, k. (i 7→ k, j) ∗ list(j))

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 27 / 30 �

Recursive Data Structures

Linked lists

The preceeding formula just specifies that we have a list in
memory
We can rely on “mathematical lists” ([], k::ks) to provide a
more informative definition

list([], i) = emp ∧ i = nil

list(k::ks, i) = ∃j. (i 7→ k, j) ∗ list(ks, j)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 28 / 30 �

Recursive Data Structures

Recursive data structures

we can specify similarly various kinds of data structures

we can give a meaning to such recursive definitions using
Tarski’s theorem

an exercise

list(i) = (i = nil ∧ emp) ∨ (∃j, k. (i 7→ k, j) ∗ list(j))

write the code for a while loop that deallocates a linked list,
and prove {list(X)} p {emp}, where p is your program

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 29 / 30 �

Recursive Data Structures

Recursive data structures

we can specify similarly various kinds of data structures

we can give a meaning to such recursive definitions using
Tarski’s theorem

an exercise

list(i) = (i = nil ∧ emp) ∨ (∃j, k. (i 7→ k, j) ∗ list(j))

write the code for a while loop that deallocates a linked list,
and prove {list(X)} p {emp}, where p is your program

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 29 / 30 �

Recursive Data Structures

More : Reasoning about concurrent programs

concurrent separation logic

shared memory, several threads

permissions, locks, critical sections

ownership

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 � 30 / 30 �

	Floyd-Hoare Logic
	Separation Logic
	Recursive Data Structures

