Compilation and Program Analysis (#10) :
Hoare triples and shape analysis

Laure Gonnord
http://laure.gonnord.org/pro/teaching/capMl.html

Laure.Gonnord@ens-lyon.fr
Master 1, ENS de Lyon

nov 2016

N\ I . T
kLyon1 LN | I
) LN | I

—" ENS DE LYON

Inspiration D. Hirschkoff for CAP 2015-16

http://laure.gonnord.org/pro/teaching/capM1.html
Laure.Gonnord@ens-lyon.fr

Floyd-Hoare Logic

@ Floyd-Hoare Logic
@ Separation Logic

© Recursive Data Structures

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 «2/30 —

Floyd-Hoare Logic

Hoare triples

e {A}p{B} a Hoare triple
partial correctness :
if the initial state satisfies assertion A, and if the execution of

program p terminates, then the final state satisfies assertion

B
@ inference rules

@ expressive properties

functional correctness rather than absence of runtime
errors

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 «3/30 —

Floyd-Hoare Logic

Hoare logic | main ingredients

programmers
X:=Y+3
(Hoare) logicians X>Y+3

ingredients in Hoare logic :
a language for programs p IMP
a language for assertions A
inference rules

important aspects :
@ invariants in loops

@ logical deduction rule

@ backward reasoning (in
the rule for assignment)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016

«4/30 —

Floyd-Hoare Logic

Hoare Logic - rules

{A1} p1 {A2} {A2} p2 {As}
{Ala/X]} X := a{A} {A} skip {A} {Ai} p1; p2 {As}

tAnaz0tp{B} {Ar—(az0)}p{B}
{A} if a > 0 then p; else p; {B}

{A1 Na>0}p{Ar}
{A1}while a>0do p {A; A—(a>0)}

Al = As {Ax} p{B:} By = By
{A1} p{Bi1}

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 «5/30 —

Floyd-Hoare Logic

Hoare logic : metatheoretical properties 1/2

@ operational semantics and validity
e big step operational semantics for IMP : (o, p) — o’

@ o is an environment

@ 0:V —Z amap from variables to integers
given some program p, o is a partial mapping from a finite
set of variables to Z

o the triple {A} p{B} is valid :
for all o, if o satisfies A and (o, p) — o/, then ¢’ satisfies
B

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 «6/30 —

Floyd-Hoare Logic

Hoare logic : metatheoretical properties 2/2

@ correctness |If the triple { A} p { B} can be derived using
the inference rules of Hoare logic, then it is valid.

e NB : we could also rely on denotational semantics

associate to each program p some function £, from
environments to environments

@ (relative) completeness any valid triple can be
constructed in Hoare logic, provided we can decide validity
of the assertions (i.e., decide whether A always holds)

@ logic rules capture the properties we want to express

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 «7/30 —

Floyd-Hoare Logic

Correct rules and completeness

@ the 6 rules of Hoare logic are not the only correct rules
@ for instance, the rule of constancy is correct too

{A}p{B}
{ANC}p{BAC)

no variable in C'is modified by p

@ completeness : no new Hoare triple can be established if
we add the rule of constancy
o the 6 rules “tell everything”
@ using the rule of constancy makes proofs easier/more
natural/more readable

somehow, completeness is not only a theoretical question

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 «8/30 —

Floyd-Hoare Logic

The axiom for assignment

the axiom for assignment goes backwards

{Ala/X]} X = a{A}

(consider X := X + 3 to convince yourself)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 «-9/30 —

Floyd-Hoare Logic

One example

u = 0;

While z > 1 Do
if pair(x) thenz:= §; y:=yx2elsex = - Lu:=u+y
fi
od;

yi=y+u;

Show :

{z=x0Ny=yoNzo>0}S{y =z0*1y0}

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 «10/30 —

Separation Logic

Q Floyd-Hoare Logic
9 Separation Logic

© Recursive Data Structures

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 «11/30 —

Separation Logic

Programs manipulating pointers 1/2

@ Hoare logic deals essentially with control
if @ > 0 then p; elseps p1;p2 whilea >0dop

@ move to a richer language :
add (some kind of) pointers and handling of memory

e allocation
@ modification (move pointers around)
e liberation/deallocation

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 «12/30 —

Separation Logic

Programs manipulating pointers 2/2

@ different kinds of properties
e typical runtime errors we want to detect :
memory leaks, invalid disposal, invalid accesses

typically, other approaches either assume memory safety,
or forbid dynamic memory allocation

e describe what programs manipulating pointers do
@ adopt the same methodological framework

Separation Logic is an enrichment of Floyd-Hoare logic

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 «13/30 —

Separation Logic

Extending Mu

@ structure of memory at runtime
@ in (traditional) Hoare-Floyd logic, programs manipulate
variables

the environment just records the (integer) value of each
variable

that is all we know about the memory

e dynamically allocated memory : add a heap component.

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 «14/30 —

Separation Logic

Extending the Mu language

Extanding the programming language with new constructions :
nil, cons, [x]. (slides from M. Parkinson)

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 «15/30 —

Example program

X = cons(3,3);
y = cons(4,4);
[x+1] =y;
[y+1] = x;

y = X+1,;
dispose X;

y =y

Motivation

p.4I22

+Example program i

X = cons(3,3);
y = cons(4,4);

[x+1] =y Staek
[y+1] =x; Heap

y = X+1,;

dispose X;

y =D

| Motivation—+

p.4i22

+Example program i

X = cons(3,3);
y = cons(4,4);
[x+1] =y;
[y+1] = x;

y = X+1,;
dispose X;

y =D

| Motivation—+

p.4i22

+Example program i

X = cons(3,3);
y = cons(4,4);

[x+1] = y; Stack
[y+1] =x; Heap

y = X+1,;

dispose X;

y=1yl;

| Motivation—+

p.4i22

Example program

X = cons(3,3);
y = cons(4,4);

[x+1] = y; Slack S o
[y+1] =x; Heap

y = X+1,;

dispose X;

y=1yl;

Motivation

p.4i22

Example program

X = cons(3,3);
y = cons(4,4);

[x+1] = y; Slack S o
[y+1] =x; Heap

y =x+1,

dispose X;

y=1yl;

Motivation

p.4i22

Example program

X = cons(3,3);
y = cons(4,4);

[x+1] = y; Slack S e
[y+1] =x; Heap

y = X+1,;

dispose X;

y=1yl;

Motivation

p.4i22

Example program

X = cons(3,3);
y = cons(4,4);

[x+1] = y; Slack S e
[y+1] =x; Heap

y = X+1,;

dispose X;

y=1[yl;

Motivation

p.4i22

Separation Logic

Extending Mu - example

» what does this program do ?

J 1= mnil;
while I!= nil do
K := [I + 1];
[T+ 11 := J;

J = 1;

=K

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 «16/30 —

Separation Logic

Extending the semantics 1/2

@ a memory state is (o, h) where

e o is a store : Variables — Values (adresses OR constants).
e his aheap : Adresses — Values. We denote by dom(h) the
set of adresses on which £ is defined.

@ Hoare logic assertions state properties about the
environment

X>Y*Z+Q AN T>0

@ add formulas to reason about the heap (*, —).

@ NB : X 52 usually makes more sense than 32 — 52

(both are assertions)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 «17/30 —

Separation Logic

Operational semantics of the new operators

Let us define (o, h) || (¢/, ') the semantics :
@ Lookup : (z := [a]) (o, h) | (o[k/x], h) if A(a)o =i,
i € dom(h) (else error), and h(i) = k.
@ Mutation : ([a1] := a2) (o, h) | (0, h[k/1]) if A(a1)o =
i € dom(h) (else error), and A(ag)o = k

@ Allocation : (X = cons(ay,...a,)) Allocation cannot fail :
Alaj)o = k] for all j, i is a new fresh address, then
h' = hlki/i,ko/i+1...]and o’ = o[z — i].

@ Deallocation : (free(a)) (o,h) | (o,h\ i) A(az)o =i and
i € dom(h), (else error).

[k/z] denotes “x mapped to k”

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 «18/30 —

Separation Logic

A new logic on states

@ (0,h) Ea>0iff[al, =k >
@ (0,h) = —Aliff not (o, h) }: A.
® (0,h) = AABIff (0,h) = Aand (o,h) = B.
@ (o,h) = 3z, A(z) iff there exists = € N such that
(o) = A(z)
@ (o,h) E emp iff dom(h) = 0.
@ (0,h) E a1 ag iff dom(h) = {i}, h(i) = k where [a1], =i

and [az], = k.
("] (O',h)): Al x Ay iff h = hlth and (O’,hi)): A;.

Here — is a new (logic) symbol

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 «19/30 —

Separation Logic

Example of heaps

A B A B
4,4 X | v
T — 4,4 v oV

4,4 « y— 4.4
z—=d4d Ay—44 | X |

nojiun

s dd A y—d4| |

whereE-—pEo,...,EﬂdéfEHEo # E4+1—=FE + ...E4+n—E,
adE-E®¥EE + true

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 «20/30 —

Separation Logic

Hoare triples in Separation logic | interpretation

{AYp{B} holds iff

Yo, h., if ((T, h) ': A, ((o, h) satisfies A)
then

e (0,h),p |} exror, and
e if (o,h),pl (¢/,1), then (¢/,H) = B

like in traditional Hoare logic, but :
@ the state has a heap component
@ absence of forbidden access to the memory

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016

«=21/30 -

Separation Logic

Small axioms (Hoare Triples)

@ Lookup:{a—iNX =j}X =[a{X =iAa[j/X]— i}
If X is not in vars(a), this rule becomes
{a— i} X =[a{X =iANa— i}

@ Mutation : {Ji, a1 — i}[a1] := az{a1 — a2}.

@ Allocation : {X =i Aemp}X := cons(ay,...an){X —
ari/X]* X + 1 agi/X]*...x X +n— 1 ay[i/X]}

@ Desallocation : {a — —}free(a){emp}

» axioms for heap-accessing operations are tight, i.e. they only
refer to the part of the heap they need to access.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 «22/30 —

Separation Logic

About thightness

Being tight tells us the following :
@ suppose we can prove {10 — 32} p{10 — 52} whatever pis
@ then we know that

if we run p in a state where cell 11 is allocated, then p will
not change the value of 11

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 «23/30 —

Separation Logic

The frame rule

@ the rules of Hoare logic remain sound

{A}yp{B} no variable in C

@ the rule of consistency ————~ o
{AANCYp{BAC} ismodified by p

becomes unsound

{z— _}[z] :=4{x— 4}
{t—_Ny—3}[z] =4{z— 4Ny~ 3}

whatifz =y ?

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 «24/30 —

Separation Logic

The frame rule

@ the rules of Hoare logic remain sound

{A}yp{B} no variable in C

@ the rule of consistency ————~ o
{AANCYp{BAC} ismodified by p

becomes unsound

{z— _}[z] :=4{x— 4}

whatifz =y ?
{t—_Ny—3}[z] =4{z— 4Ny~ 3}

e the Frame Rule
{A} p {B} no variable in C
{A*C}p{B « C} is modified by p
@ separation logic is inherently modular

as opposed to whole program verification

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 «24/30 —

Separation Logic

Separation logic : sum up

@ inference rules
e those of Hoare logic control
o those for the new programming constructs memory
@ important things :
e invariants in while loops, backward rule for assignment,
consequence rule
o (tight) small axioms, footprint, frame rule
@ metatheoretical properties

e correctness
e completeness

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 «25/30 —

Recursive Data Structures

0 Floyd-Hoare Logic
@ Separation Logic

© Recursive Data Structures

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 «26/30 —

Recursive Data Structures

Reasoning about lists 1/2

L Twl T]
’121 L8 1Y] \9\

@ a linked list in memory is something like
(Xl — kl,Xg) * (X2 — kg,X3) ESCICIE 3 (Xn — kn,n_zl)

(X — a,b)stands for X — a* (X +1)— b
@ describe the structure using assertions :

add the possibility to write (recursive) equations

list(i) = (i=mnil Aemp)V (Fj,k. (i — k,j) *list(j))

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 «27/30 —

Recursive Data Structures

Linked lists

The preceeding formula just specifies that we have a list in
memory

We can rely on “mathematical lists” ([1, k:: ks) to provide a
more informative definition

list([1,i) = empAi=nil

list(k::ks,i) = 3j.(i— k,j) = list(ks,)

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 «28/30 —

Recursive Data Structures

Recursive data structures

@ we can specify similarly various kinds of data structures

@ we can give a meaning to such recursive definitions using
Tarski’s theorem

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 «29/30 —

Recursive Data Structures

Recursive data structures

@ we can specify similarly various kinds of data structures

@ we can give a meaning to such recursive definitions using
Tarski’s theorem

@ an exercise
list(i) = (i=mnilANemp)V (3j,k.(i— k,j)x*list(j))

o write the code for a while loop that deallocates a linked list,
e and prove {list(X)}p{emp}, where pis your program

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 «29/30 —

Recursive Data Structures

More : Reasoning about concurrent programs

concurrent separation logic

@ shared memory, several threads
@ permissions, locks, critical sections

@ ownership

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#10): Hoare/Shape 2016 «30/30 —

	Floyd-Hoare Logic
	Separation Logic
	Recursive Data Structures

