Compilation and Program Analysis (#10) : Hoare triples and shape analysis

Laure Gonnord

http://laure.gonnord.org/pro/teaching/capM1.html Laure.Gonnord@ens-lyon.fr

Master 1, ENS de Lyon

nov 2016

Inspiration D. Hirschkoff for CAP 2015-16

- 2 Separation Logic
- 3 Recursive Data Structures

Hoare triples

- $\{A\} p \{B\}$ a Hoare triple
 - partial correctness :

if the initial state satisfies assertion A, and *if the execution of* program p terminates, then the final state satisfies assertion B

- inference rules
- expressive properties

functional correctness rather than absence of runtime errors

Hoare logic | main ingredients

programmers

X := Y+3(Hoare) logicians $X \ge Y+3$

 $\wedge \ge 1+3$

ingredients in Hoare logic :

a language for programs *p* IMP a language for assertions *A* inference rules important aspects :

- invariants in loops
- Iogical deduction rule
- backward reasoning (in the rule for assignment)

Hoare Logic - rules

$$\frac{\{A[a/X]\} X := a \{A\}}{\{A\} \operatorname{skip} \{A\}} \qquad \frac{\{A_1\} p_1 \{A_2\} \dots \{A_2\} p_2 \{A_3\}}{\{A_1\} p_1; p_2 \{A_3\}}$$
$$\frac{\{A \land a \ge 0\} p_1 \{B\}}{\{A\} \operatorname{if} a \ge 0 \operatorname{then} p_1 \operatorname{else} p_2 \{B\}}$$
$$\frac{\{A \land a \ge 0\} p \{A_1\}}{\{A_1\} \operatorname{while} a \ge 0 \operatorname{do} p \{A_1\}}$$
$$\frac{\{A_1 \Rightarrow A_2 \dots \{A_2\} p \{B_2\} \dots B_2 \Rightarrow B_1}{\{A_1\} p \{B_1\}}$$

Hoare logic : metatheoretical properties 1/2

operational semantics and validity

- big step operational semantics for IMP : $(\sigma,p)
 ightarrow \sigma'$
 - σ is an *environment*
 - σ: V → Z a map from variables to integers given some program p, σ is a partial mapping from a *finite* set of variables to Z
- the triple $\{A\} p \{B\}$ is valid : for all σ , if σ satisfies A and $(\sigma, p) \rightarrow \sigma'$, then σ' satisfies B

Hoare logic : metatheoretical properties 2/2

- correctness If the triple $\{A\} p \{B\}$ can be derived using the inference rules of Hoare logic, then it is valid.
 - NB : we could also rely on *denotational semantics* associate to each program p some function F_p from environments to environments
- (relative) completeness any valid triple can be constructed in Hoare logic, *provided* we can decide validity of the assertions (*i.e.*, *decide whether A always holds*)
- logic rules capture the properties we want to express

Correct rules and completeness

- the 6 rules of Hoare logic are not the only correct rules
- for instance, the rule of constancy is correct too

 $\frac{\{A\}\,p\,\{B\}}{\{A\wedge C\}\,p\,\{B\wedge C\}}$ no variable in C is modified by p

- completeness : no new Hoare triple can be established if we add the rule of constancy
 - the 6 rules "tell everything"
 - using the rule of constancy makes proofs easier/more natural/more readable

somehow, completeness is not only a theoretical question

The axiom for assignment

the axiom for assignment goes backwards

$$\{A[a/X]\}X := a\{A\}$$

(consider X := X + 3 to convince yourself)

One example

$$\begin{array}{l} u:=0;\\ \mbox{While }x>1\ \mbox{Do}\\ & \mbox{if }pair(x)\ \mbox{then }x:=\frac{x}{2};\ y:=y*2\ \mbox{else }x:=x-1;u:=u+y\\ & \mbox{fi}\\ & \mbox{od};\\ & y:=y+u;\\ \mbox{Show }: \end{array}$$

$$\{x = x_0 \land y = y_0 \land x_0 > 0\}S\{y = x_0 * y_0\}$$

Programs manipulating pointers 1/2

• Hoare logic deals essentially with control

 $\text{if } a \geqslant 0 \text{ then } p_1 \text{ else } p_2 \quad p_1; p_2 \quad \text{ while } a \geqslant 0 \text{ do } p \\ \end{array}$

• move to a richer language :

add (some kind of) pointers and handling of memory

- allocation
- modification (move pointers around)
- liberation/deallocation

Programs manipulating pointers 2/2

- different kinds of properties
 - typical runtime errors we want to detect : memory leaks, invalid disposal, invalid accesses

typically, other approaches either *assume* memory safety, or forbid dynamic memory allocation

- describe what programs manipulating pointers do
- adopt the same methodological framework

Separation Logic is an enrichment of Floyd-Hoare logic

Extending Mu

structure of memory at runtime

• in (traditional) Hoare-Floyd logic, programs manipulate variables

the **environment** just records the (integer) value of each variable

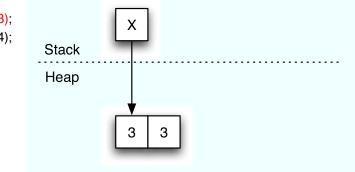
that is all we know about the memory

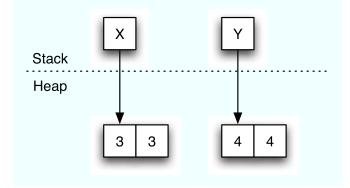
• dynamically allocated memory : add a heap component.

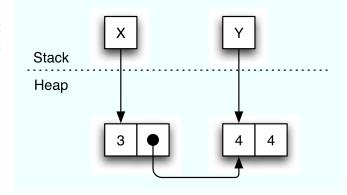
Extending the Mu language

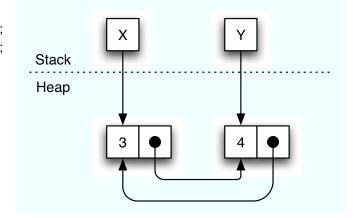
Extanding the programming language with new constructions : nil, cons, [x]. (slides from M. Parkinson)

```
x = cons(3,3);
y = cons(4,4);
[x+1] = y;
[y+1] = x;
y = x+1;
dispose x;
y = [y];
```

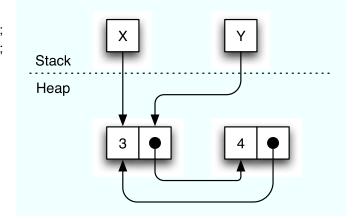



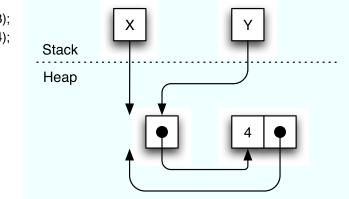


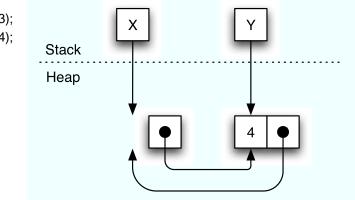




 $\begin{aligned} x &= \cos(3,3); \\ y &= \cos(4,4); \\ [x+1] &= y; \\ [y+1] &= x; \\ y &= x+1; \\ dispose x; \\ y &= [y]; \end{aligned}$








```
Extending Mu - example
```

```
what does this program do?
```

```
J := <u>nil</u>;
while I != <u>nil</u> do
   K := [I + 1];
   [I + 1] := J;
   J := I;
   I := K
```

Extending the semantics 1/2

- a memory state is (σ, h) where
 - σ is a store : Variables \rightarrow Values (adresses OR constants).
 - *h* is a heap : Adresses → Values. We denote by *dom(h)* the set of adresses on which *h* is defined.
- Hoare logic assertions state properties about the environment

 $X \geqslant Y \ast Z + Q \ \land \ T > 0$

- add formulas to reason about the heap $(*, \mapsto)$.
- NB : $X \mapsto 52$ usually makes more sense than $32 \mapsto 52$ (both are assertions)

Operational semantics of the new operators

Let us define $(\sigma,h) \Downarrow (\sigma',h')$ the semantics :

- Lookup : $(x := [a]) (\sigma, h) \Downarrow (\sigma[k/x], h)$ if $\mathcal{A}(a)\sigma = i$, $i \in dom(h)$ (else error), and h(i) = k.
- Mutation : $([a_1] := a_2) (\sigma, h) \Downarrow (\sigma, h[k/i])$ if $\mathcal{A}(a_1)\sigma = i$, $i \in dom(h)$ (else error), and $\mathcal{A}(a_2)\sigma = k$
- Allocation : $(X = cons(a_1, ..., a_n))$ Allocation cannot fail : $\mathcal{A}(a_j)\sigma = k_j$ for all j, i is a new fresh address, then $h' = h[k_1/i, k_2/i + 1...]$ and $\sigma' = \sigma[x \mapsto i]$.
- Deallocation : $(free(a)) (\sigma, h) \Downarrow (\sigma, h \setminus i) \mathcal{A}(a_2)\sigma = i$ and $i \in dom(h)$, (else error).

$\left[k/x\right]$ denotes "x mapped to k"

A new logic on states

•
$$(\sigma, h) \models a \ge 0$$
 iff $\llbracket a \rrbracket_{\sigma} = k \ge 0$.

•
$$(\sigma, h) \models \neg A \text{ iff not } (\sigma, h) \models A.$$

- $(\sigma, h) \models A \land B$ iff $(\sigma, h) \models A$ and $(\sigma, h) \models B$.
- $(\sigma, h) \models \exists x, A(x)$ iff there exists $x \in \mathbb{N}$ such that $(\sigma, h) \models A(x)$

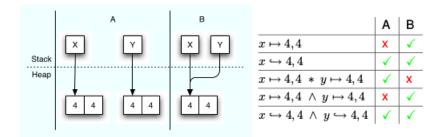
•
$$(\sigma, h) \models emp \text{ iff } dom(h) = \emptyset.$$

• $(\sigma, h) \models a_1 \mapsto a_2$ iff $dom(h) = \{i\}$, h(i) = k where $\llbracket a_1 \rrbracket_{\sigma} = i$ and $\llbracket a_2 \rrbracket_{\sigma} = k$.

•
$$(\sigma, h) \models A_1 * A_2$$
 iff $h = h_1 \biguplus h_2$ and $(\sigma, h_i) \models A_i$.

Here \mapsto is a new (logic) symbol

Example of heaps



where $E \mapsto E_0, \ldots, E_n \stackrel{\text{def}}{=} E \mapsto E_0 * E + 1 \mapsto E_1 * \ldots E + n \mapsto E_n$ and $E \hookrightarrow E' \stackrel{\text{def}}{=} E \mapsto E' * \text{true}$

Hoare triples in Separation logic | interpretation

 $\{A\} p \{B\}$ holds iff

 $\forall \sigma, h., \text{ if } (\sigma, h) \models A, \quad ((\sigma, h) \text{ satisfies } A)$ then

- $(\sigma, h), p \not\Downarrow \underline{error}$, and
- if $(\sigma, h), p \Downarrow (\sigma', h')$, then $(\sigma', h') \models B$

like in traditional Hoare logic, but :

- the state has a heap component
- absence of forbidden access to the memory

Small axioms (Hoare Triples)

- Lookup : $\{a \mapsto i \land X = j\}X := [a]\{X = i \land a[j/X] \mapsto i\}.$ If X is not in vars(a), this rule becomes $\{a \mapsto i\}X := [a]\{X = i \land a \mapsto i\}.$
- Mutation : $\{\exists i, a_1 \mapsto i\}[a_1] := a_2\{a_1 \mapsto a_2\}.$
- Allocation : $\{X = i \land emp\}X := cons(a_1, \dots a_n)\{X \mapsto a_1[i/X] * X + 1 \mapsto a_2[i/X] * \dots * X + n 1 \mapsto a_n[i/X]\}$
- Desallocation : $\{a \mapsto -\} free(a) \{emp\}$
- ► axioms for heap-accessing operations are **tight**, i.e. they only refer to the part of the heap they need to access.

About thightness

Being tight tells us the following :

- suppose we can prove $\{10 \mapsto 32\} p \{10 \mapsto 52\}$ whatever p is
- then we know that

if we run p in a state where cell 11 is allocated, then p will not change the value of 11

The frame rule

- the rules of Hoare logic remain sound
- the rule of consistency $\frac{\{A\}p\{B\}}{\{A \land C\}p\{B \land C\}}$ no variable in *C* is modified by *p* becomes <u>unsound</u>

$$\frac{\{x\mapsto_\} [x]:=4 \{x\mapsto 4\}}{\{x\mapsto_\land y\mapsto 3\} [x]:=4 \{x\mapsto 4\land y\mapsto 3\}} \quad \text{what if } x=y \, ?$$

The frame rule

- the rules of Hoare logic remain sound
- the rule of consistency $\frac{\{A\}p\{B\}}{\{A \land C\}p\{B \land C\}}$ no variable in *C* is modified by *p* becomes <u>unsound</u>

$$\frac{\{x\mapsto_\} [x] := 4 \{x\mapsto 4\}}{\{x\mapsto_\land y\mapsto 3\} [x] := 4 \{x\mapsto 4\land y\mapsto 3\}} \quad \text{what if } x = y ?$$

- the Frame Rule $\frac{\{A\} p \{B\}}{\{A * C\} p \{B * C\}}$ no variable in *C* is modified by *p*
- separation logic is inherently modular

as opposed to whole program verification

Separation logic : sum up

- inference rules
 - those of Hoare logic

control

- those for the new programming constructs memory
- important things :
 - invariants in while loops, backward rule for assignment, consequence rule
 - (tight) small axioms, footprint, frame rule
- metatheoretical properties
 - correctness
 - completeness

2 Separation Logic

Reasoning about lists 1/2

a linked list in memory is something like

$$(X_1 \mapsto k_1, X_2) * (X_2 \mapsto k_2, X_3) * \dots * (X_n \mapsto k_n, \underline{nil})$$

 $(X \mapsto a, b)$ stands for $X \mapsto a * (X + 1) \mapsto b$

describe the structure using assertions : add the possibility to write (recursive) equations

$$list(i) \hspace{.1in} = \hspace{.1in} (i = \underline{nil} \wedge emp) \lor (\exists j,k. \, (i \mapsto k,j) * list(j))$$

Linked lists

The preceeding formula just specifies that we have a list in memory We can rely on "mathematical lists" ([], k::ks) to provide a more informative definition

$$list([],i) = emp \land i = \underline{nil}$$

$$list(k::ks,i) = \exists j. (i \mapsto k, j) * list(ks, j)$$

Recursive data structures

- we can specify similarly various kinds of data structures
- we can give a meaning to such recursive definitions using Tarski's theorem

Recursive data structures

- we can specify similarly various kinds of data structures
- we can give a meaning to such recursive definitions using Tarski's theorem

• an exercise

$$list(i) \hspace{.1in} = \hspace{.1in} (i = \underline{nil} \wedge emp) \lor (\exists j,k. \, (i \mapsto k,j) * list(j))$$

write the code for a while loop that deallocates a linked list,
and prove {list(X)} p {emp}, where p is your program

More : Reasoning about concurrent programs

concurrent separation logic

- shared memory, several threads
- permissions, locks, critical sections
- ownership