Compilation and Program Analysis (#11) : Functional languages

Laure Gonnord

http://laure.gonnord.org/pro/teaching/capM1.html

Laure.Gonnord@ens-lyon.fr

Master 1, ENS de Lyon

Janv 2017

Inspiration D. Hirschkoff for CAP 2015-16

A bit on functional languages

2 Compiling to an Abstract Machine

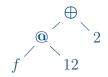
Arithmetic expressions and functions

32*(51+1)

Arithmetic expressions and functions

32*(51+1)

let f x = (3*x)



 \otimes

51

32

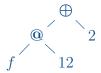
f(12)+2

Arithmetic expressions and functions

let f x = (3*x)

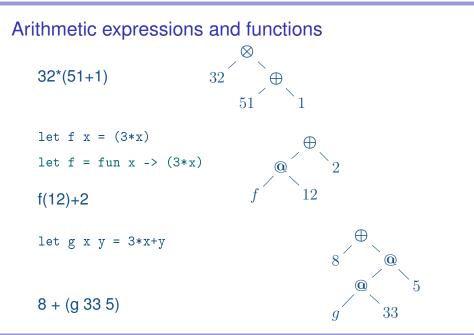
let
$$f = fun x \rightarrow (3*x)$$

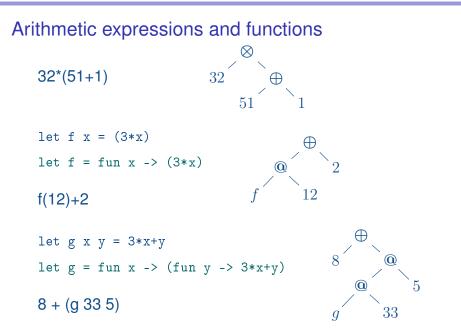
f(12)+2



 \otimes

51





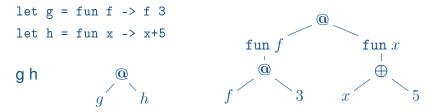
Functions on the right (functions as arguments)

h

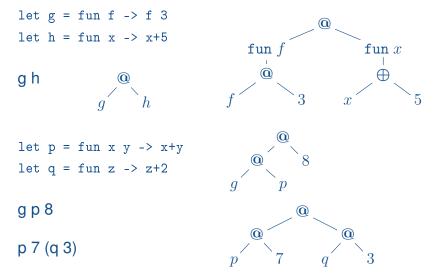
let $g = fun f \rightarrow f 3$ let $h = fun x \rightarrow x+5$

g h

Functions on the right (functions as arguments)



Functions on the right (functions as arguments)



Syntax 1/2

- notation for applications : g 3
 - in maths : g(3)
 - sometimes g@3 to stress that application is a binary operator
- using the let construct
 - a program is a sequence of lets, possibly followed by an expression (the "main")
 - let x = 3 in let y = 4 in let z = 5 in (x+y*z)

(x+y*z)

```
will also be written 
let x = 3
let y = 4
let z = 5
```

Syntax 2/2

```
    a nested let..in
    let f = fun x →
    let y = g (x*x) in
    if y>0 then y else x ← here is f's return (y or x)
```

μ ML, a small functional programming language

syntax

$$e ::= \operatorname{fun} x \to e \mid e_1 \mid e_2 \mid x \qquad \text{core functional} \\ \mid \operatorname{let} x = e_1 \text{ in } e_2 \qquad \qquad \operatorname{language} \\ \mid e_1 + e_2 \mid 1, 2, 3, \dots \qquad \text{if you insist} \end{cases}$$

 $x, y, z, \ldots \in Vars$ variable identifiers

- operational semantics (see in course 03)
 - first version : $e \rightarrow^{v} v$ no environment
 - second version : $\sigma, e \rightarrow^v v$

"reduction semantics"

$$\overline{c \xrightarrow{v} c} \quad \overline{op \xrightarrow{v} op} \quad \overline{(\operatorname{fun} x \to e) \xrightarrow{v} (\operatorname{fun} x \to e)}$$

$$\frac{e_1 \xrightarrow{v} v_1 \quad e_2 \xrightarrow{v} v_2}{(e_1, e_2) \xrightarrow{v} (v_1, v_2)} \quad \frac{e_1 \xrightarrow{v} v_1 \quad e_2[x \leftarrow v_1] \xrightarrow{v} v}{\operatorname{let} x = e_1 \operatorname{in} e_2 \xrightarrow{v} v}$$

$$\frac{e_1 \xrightarrow{v} (\operatorname{fun} x \to e) \quad e_2 \xrightarrow{v} v_2 \quad e[x \leftarrow v_2] \xrightarrow{v} v}{e_1 e_2 \xrightarrow{v} v}$$

But substitution costs.

A new version of semantics, with environments

Need: bind a variable x to a value v in a term a.

Inefficient approach: the textual substitution $a[x \leftarrow v]$.

Alternative: remember the binding $x \mapsto v$ in an auxiliary data structure called an environment. When we need the value of x during evaluation, just look it up in the environment.

The evaluation relation becomes $e \vdash a \Rightarrow v$ e is a partial mapping from names to values (CBV).

Additional evaluation rule for variables:

$$\frac{e(x) = v}{e \vdash x \Rightarrow v}$$

The following 5 slides are from X. Leroy

Lexical scoping : static binding

What to we want for x's value?

let
$$x = 1$$
 in
let $f = \lambda y \cdot x$ in
let $x = "foo"$ in
f 0

x should be 1 (value at the definition of f)

The notion of closure - Landin 1964

To implement lexical scoping, function abstractions $\lambda x.a$ must not evaluate to themselves, but to a function closure: a pair

 $(\lambda x.a)[e]$

of the function text and an environment e associating values to the free variables of the function.

let $x = 1$ in	$x \mapsto 1$
let f = λ y.x in	x \mapsto 1; f \mapsto (λ y.x)[x \mapsto 1]
<pre>let x = "foo" in</pre>	x \mapsto "foo"; f \mapsto (λ y.x)[x \mapsto 1]
f 0	evaluate x in environment x \mapsto 1; y \mapsto 0

Natural semantics with env and closures

Values: $v ::= N \mid (\lambda x.a)[e]$

Environments: $e ::= x_1 \mapsto v_1; \ldots; x_n \mapsto v_n$

$$\frac{e(x) = v}{e \vdash x \Rightarrow v} \qquad e \vdash N \Rightarrow N \qquad e \vdash \lambda x.a \Rightarrow (\lambda x.a)[e]$$
$$\frac{e \vdash a \Rightarrow (\lambda x.c)[e'] \qquad e \vdash b \Rightarrow v' \qquad e' + (x \mapsto v') \vdash c \Rightarrow v}{e \vdash a \ b \Rightarrow v}$$

▶ How to implement?

2 Compiling to an Abstract Machine

What for?

An implementation (among others) of the natural semantics with closures, in two steps :

- Compilation : Fun expression \rightarrow list of instructions of an abstract machine
- Execution : eval of the abstract machine (implem of big step semantics of the AM).

Abstract machine instructions : (ocaml type)

```
type instr =
  (* Arithmetic fragment *)
  | Cst of int
  Add
  (* Let fragment *)
  Access of variable
  Let of variable
    EndLet
  (* Functional fragment *)
  | Closure of variable * code
   App
   Ret
```

A bit on compilation

The machine has a stack where to push everything to remember. To add two expressions, we have to push the two operands in the stack, then the Add instruction.

Fun expression \rightarrow list of instructions :

- 42**?**
- $e_1 + e_2$?
- let x = 1?
- x?
- fun $x \to 2$?
- (fun $x \to 2$)7?

Execution (semantics) of the abstract machine :

expressions, local definition

Code	Env.	Stack	Code	Env.	Stack	Comment
Cst k;C	σ	s	С	σ	k.s	push the value
						in the stack
Add ;C	σ	$k_1.k_2.s$	С	σ	$(k_1 + k_2).s$	get operands,
						then add
Access X ;C	σ	S	С	σ	$\sigma(x).s$	push the current
						value of x
Let X;C	σ	z.s	С	$(x,z).\sigma$	8	the value to
						bind is on top of
						stack
EndLet ;C	$z.\sigma$	s	С	σ	8	unbind the last
						value.

Example to evaluate !

>c (let y = 40 in 2+y)
Cst 40; Let "y"; Cst 2 ; Access "y" ; Add; EndLet

Laure Gonnord (M1/DI-ENSL) Compilation and Progra

Compilation and Program Analysis (#11): Fun

Execution of the abstract machine : functions

Code	Env.	Stack	Code	Env.	Stack	Comment
Clos(x,c');C	σ	s	С	σ	$(x,c')[\sigma].s$	a new closure
						(x,c') on top of
						stack
App ;C	σ	$(x,c')[\sigma'].v.s$	C'	$(x,v).\sigma'$	$c.\sigma.s$	push the code
						and initial env
Ret;C	σ	$v.c'.\sigma'.s'$	C'	σ'	v.s	stack top = re-
						turned value

Example to evaluate !

c ((fun x -> x+1) 42)
Cst 42; Closure("x", Access "x"; Cst 1; Add; Ret); App

Implementation of this abstract machine

See the lab :

- values are *VInt*, *VClosure*....
- environments as lists of (*var*, *value*).
- stacks as lists of values.
- evaluation : (code, env, stack) → (code', env', stack') with empty env and empty stack at initial state.