
Compilation and Program Analysis (#11) :
Functional languages

Laure Gonnord
http://laure.gonnord.org/pro/teaching/capM1.html

Laure.Gonnord@ens-lyon.fr

Master 1, ENS de Lyon

Janv 2017

Inspiration D. Hirschkoff for CAP 2015-16

http://laure.gonnord.org/pro/teaching/capM1.html
Laure.Gonnord@ens-lyon.fr

A bit on functional languages

1 A bit on functional languages

2 Compiling to an Abstract Machine

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#11): Fun 2017 � 2 / 19 �

A bit on functional languages

Arithmetic expressions and functions

32*(51+1)

⊗
32 ⊕

51 1

let f x = (3*x)

let f = fun x -> (3*x)

f(12)+2

⊕
@ 2

f 12

let g x y = 3*x+y

let g = fun x -> (fun y -> 3*x+y)

8 + (g 33 5)

⊕
8 @

@ 5

g 33

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#11): Fun 2017 � 3 / 19 �

A bit on functional languages

Arithmetic expressions and functions

32*(51+1)

⊗
32 ⊕

51 1

let f x = (3*x)

let f = fun x -> (3*x)

f(12)+2

⊕
@ 2

f 12

let g x y = 3*x+y

let g = fun x -> (fun y -> 3*x+y)

8 + (g 33 5)

⊕
8 @

@ 5

g 33

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#11): Fun 2017 � 3 / 19 �

A bit on functional languages

Arithmetic expressions and functions

32*(51+1)

⊗
32 ⊕

51 1

let f x = (3*x)

let f = fun x -> (3*x)

f(12)+2

⊕
@ 2

f 12

let g x y = 3*x+y

let g = fun x -> (fun y -> 3*x+y)

8 + (g 33 5)

⊕
8 @

@ 5

g 33

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#11): Fun 2017 � 3 / 19 �

A bit on functional languages

Arithmetic expressions and functions

32*(51+1)

⊗
32 ⊕

51 1

let f x = (3*x)

let f = fun x -> (3*x)

f(12)+2

⊕
@ 2

f 12

let g x y = 3*x+y

let g = fun x -> (fun y -> 3*x+y)

8 + (g 33 5)

⊕
8 @

@ 5

g 33

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#11): Fun 2017 � 3 / 19 �

A bit on functional languages

Arithmetic expressions and functions

32*(51+1)

⊗
32 ⊕

51 1

let f x = (3*x)

let f = fun x -> (3*x)

f(12)+2

⊕
@ 2

f 12

let g x y = 3*x+y

let g = fun x -> (fun y -> 3*x+y)

8 + (g 33 5)

⊕
8 @

@ 5

g 33

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#11): Fun 2017 � 3 / 19 �

A bit on functional languages

Functions on the right (functions as arguments)

let g = fun f -> f 3

let h = fun x -> x+5

g h @

g h

@

fun f fun x

@ ⊕
f 3 x 5

let p = fun x y -> x+y

let q = fun z -> z+2

g p 8

p 7 (q 3)

@

@ 8

g p

@

@ @

p 7 q 3

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#11): Fun 2017 � 4 / 19 �

A bit on functional languages

Functions on the right (functions as arguments)

let g = fun f -> f 3

let h = fun x -> x+5

g h @

g h

@

fun f fun x

@ ⊕
f 3 x 5

let p = fun x y -> x+y

let q = fun z -> z+2

g p 8

p 7 (q 3)

@

@ 8

g p

@

@ @

p 7 q 3

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#11): Fun 2017 � 4 / 19 �

A bit on functional languages

Functions on the right (functions as arguments)

let g = fun f -> f 3

let h = fun x -> x+5

g h @

g h

@

fun f fun x

@ ⊕
f 3 x 5

let p = fun x y -> x+y

let q = fun z -> z+2

g p 8

p 7 (q 3)

@

@ 8

g p

@

@ @

p 7 q 3

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#11): Fun 2017 � 4 / 19 �

A bit on functional languages

Syntax 1/2

notation for applications : g 3

in maths : g(3)
sometimes g@3 to stress that application is a binary
operator

using the let construct
a program is a sequence of lets,
possibly followed by an expression (the “main”)

let x = 3 in let y = 4 in let z = 5 in (x+y*z)

will also be written

let x = 3

let y = 4

let z = 5

(x+y*z)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#11): Fun 2017 � 5 / 19 �

A bit on functional languages

Syntax 2/2

a nested let..in

let f = fun x →
let y = g (x*x) in

if y>0 then y else x ←− here is f's return (y or x)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#11): Fun 2017 � 6 / 19 �

A bit on functional languages

µML, a small functional programming language

syntax

e ::= fun x → e
∣∣ e1 e2 ∣∣ x core functional∣∣ let x = e1 in e2 language∣∣ e1 + e2

∣∣ 1, 2, 3, . . . if you insist

x, y, z, . . . ∈ V ars variable identifiers

operational semantics (see in course 03)

first version : e→v v no environment

second version : σ, e→v v

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#11): Fun 2017 � 7 / 19 �

A bit on functional languages

“reduction semantics”

c
v→ c op

v→ op (fun x→ e)
v→ (fun x→ e)

e1
v→ v1 e2

v→ v2

(e1, e2)
v→ (v1, v2)

e1
v→ v1 e2[x← v1]

v→ v

let x = e1 in e2
v→ v

e1
v→ (fun x→ e) e2

v→ v2 e[x← v2]
v→ v

e1 e2
v→ v

I But substitution costs.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#11): Fun 2017 � 8 / 19 �

A bit on functional languages

A new version of semantics, with environments

The following 5 slides are from X. Leroy

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#11): Fun 2017 � 9 / 19 �

A bit on functional languages

Lexical scoping : static binding

What to we want for x’s value ?

I x should be 1 (value at the definition of f)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#11): Fun 2017 � 10 / 19 �

A bit on functional languages

The notion of closure - Landin 1964

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#11): Fun 2017 � 11 / 19 �

A bit on functional languages

Natural semantics with env and closures

I How to implement ?

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#11): Fun 2017 � 12 / 19 �

Compiling to an Abstract Machine

1 A bit on functional languages

2 Compiling to an Abstract Machine

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#11): Fun 2017 � 13 / 19 �

Compiling to an Abstract Machine

What for ?

An implementation (among others) of the natural semantics
with closures, in two steps :

Compilation : Fun expression→ list of instructions of an
abstract machine

Execution : eval of the abstract machine (implem of big
step semantics of the AM).

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#11): Fun 2017 � 14 / 19 �

Compiling to an Abstract Machine

Abstract machine instructions : (ocaml type)

type instr =

(* Arithmetic fragment *)

| Cst of int

| Add

(* Let fragment *)

| Access of variable

| Let of variable

| EndLet

(* Functional fragment *)

| Closure of variable * code

| App

| Ret

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#11): Fun 2017 � 15 / 19 �

Compiling to an Abstract Machine

A bit on compilation

The machine has a stack where to push everything to
remember. To add two expressions, we have to push the two
operands in the stack, then the Add instruction.
Fun expression→ list of instructions :

42?

e1 + e2 ?

let x = 1?

x?

fun x→ 2?

(fun x→ 2)7?

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#11): Fun 2017 � 16 / 19 �

Compiling to an Abstract Machine

Execution (semantics) of the abstract machine :
expressions, local definition

Code Env. Stack Code Env. Stack Comment
Cst k ;c σ s c σ k.s push the value

in the stack
Add ;c σ k1.k2.s c σ (k1 + k2).s get operands,

then add
Access x ;c σ s c σ σ(x).s push the current

value of x
Let x ;c σ z.s c (x, z).σ s the value to

bind is on top of
stack

EndLet ;c z.σ s c σ s unbind the last
value.

Example to evaluate !

>c (let y = 40 in 2+y)

Cst 40; Let "y"; Cst 2 ; Access "y" ; Add; EndLet
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#11): Fun 2017 � 17 / 19 �

Compiling to an Abstract Machine

Execution of the abstract machine : functions

Code Env. Stack Code Env. Stack Comment
Clos(x,c') ;c σ s c σ (x, c′)[σ].s a new closure

(x, c′) on top of
stack

App ;c σ (x, c′)[σ′].v.s c’ (x, v).σ′ c.σ.s push the code
and initial env

Ret ;c σ v.c′.σ′.s′ c’ σ′ v.s stack top = re-
turned value

Example to evaluate !

c ((fun x -> x+1) 42)

Cst 42; Closure("x", Access "x"; Cst 1; Add; Ret); App

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#11): Fun 2017 � 18 / 19 �

Compiling to an Abstract Machine

Implementation of this abstract machine

See the lab :

values are V Int, V Closure. . . .

environments as lists of (var, value).

stacks as lists of values.

evaluation : (code, env, stack)→ (code′, env′, stack′) with
empty env and empty stack at initial state.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#11): Fun 2017 � 19 / 19 �

	A bit on functional languages
	Compiling to an Abstract Machine

