
http://laure.gonnord.org/pro/ CAP, ENSL, 2016/2017

Partial Exam

Compilation and Program Analysis (CAP)

October, 24th, 2016

Duration: 2 Hours

Only one a4 sheet (10pt, recto/verso) is autorized.

Instructions :

1. We give some typing/operational/code generation rules as examples inside the exercises.

2. Explain your results !

3. We give indicative timing.

4. Vous avez le droit de répondre en Français.

Page 1 on 7

http://laure.gonnord.org/pro/

Partial Exam CAP - 2016

Exercise #1 I Attributes (10min)

Let us consider the following grammar for lists : L→ numL|{ L}L|ε
Question #1.1

Draw the derivation tree for the string : {{12{17}}.

Question #1.2
Write a syntax-directed attribution (pseudo-code) that computes the product of all numeric
elements of a given list.

Exercise #2 I Hand Assembling (10 min)
To answer the following questions, you will need the simpli�ed LC3 instruction set depicted in
Table 1.

Question #2.1
Assemble by hand the following instruction in LC3 assembly code (with intermediate steps) :

1 AND r0 r3 #2 ;

Question #2.2
Disassemble by hand the following instruction, given in binary :

0000110000000111 ;

syntaxe action NZP codage

opcode arguments

F E D C B A 9 8 7 6 5 4 3 2 1 0

NOT DR,SR DR ← not SR * 1 0 0 1 DR SR 1 1 1 1 1 1

ADD DR,SR1,SR2 DR ← SR1 + SR2 * 0 0 0 1 DR SR1 0 0 0 SR2

ADD DR,SR1,Imm5 DR ← SR1 + SEXT(Imm5) * 0 0 0 1 DR SR1 1 Imm5

AND DR,SR1,SR2 DR ← SR1 and SR2 * 0 1 0 1 DR SR1 0 0 0 SR2

AND DR,SR1,Imm5 DR ← SR1 and SEXT(Imm5) * 0 1 0 1 DR SR1 1 Imm5

LEA DR,label DR ← PC + SEXT(PCo�set9) * 1 1 1 0 DR PCo�set9

LD DR,label DR ← mem[PC + SEXT(PCo�set9)] * 0 0 1 0 DR PCo�set9

ST SR,label mem[PC + SEXT(PCo�set9)] ← SR 0 0 1 1 SR PCo�set9

LDR DR,BaseR,O�set6 DR ← mem[BaseR + SEXT(O�set6)] * 0 1 1 0 DR BaseR O�set6

STR SR,BaseR,O�set6 mem[BaseR + SEXT(O�set6)] ← SR 0 1 1 1 SR BaseR O�set6

BR[n][z][p] label Si (cond) PC ← PC + SEXT(PCo�set9) 0 0 0 0 n z p PCo�set9

NOP No Operation 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RET (JMP R7) PC ← R7 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0

JSR label R7 ← PC ; PC ← PC + SEXT(PCo�set11) 0 1 0 0 1 PCo�set11

Table 1 � LC3 simpli�ed instruction set

Page 2 on 7

Partial Exam CAP - 2016

Exercise #3 I A new case instruction for Mini-While (30min)

The abstract grammar for statements of Mini-While is augmented with a new construction :

S(Smt) ::= x := e assign
| skip do nothing
| S1;S2 sequence
| if e then S1 else S2 test
| while e do S done loop
| case e of LS endcase case !

with the following de�nition for LS :

LS ::= n : S
| n : S,LS with n integer

LS is a list of commands labeled by integers (n ∈ N), separated by colons (',').
Here is the informal semantics of this new construction : the expression e is evaluated in an

integer value v. If v is equal to one label n of the case, then the associated command is executed ;
else the case behaves like a skip. Hence, in the following program :

x := 3 ;

y := 2 ;

case x-y of

1 : x := x+y,

0 : x := 2,

3 : y := 0

endcase

the command which will be executed is the one labeled by the integer 1 (as the current value of x-y
is 1 when the execution �ow gets into the case). The memory after the execution of the program
will be : σ = [x 7→ 5, y 7→ 2].

Such a construction is well-formed if all labels are distinct integers.

Question #3.1
Complete the following de�nition of the BD attribution that constructs a list of labels de�ned
in the (LS) list, while verifying that all labels are distinct. Use pseudo-code for lists with the
following constructors : List.empty() constructs an empty list, List.add(el,list) adds an
element in the list (with side-e�ect), and the predicate List.mem(el,list) returns true i� the
element el is in the list. If there exists a double de�nition, return an error with an exception.

BD(n : S) = ??
BD(n : S,LS) = ??

Question #3.2
Explain in less than a paragraph how would be the implementation of such two rules inside a
ANTLR-Python visitor.

Page 3 on 7

Partial Exam CAP - 2016

Question #3.3
From now on, we suppose that LS are well-formed. Give natural semantic rules (big steps
semantics) for the case construction. To help you, we recall here some of the semantics rules for
(some) other Mini-While statements.

(x := a, σ)→ σ[x 7→ A[a]σ] (skip, σ)→ σ

if B[b]σ = true :
(S, σ)→ σ′, (while b do S, σ′)→ σ′′

(while b do S, σ)→ σ′′

Question #3.4
Apply these rules on the example.

Exercise #4 I Mini-While : typing + code generation (30 min)

Here is a program in the Mini-While language seen in the course :

x := 8;

y := -1;

if (x<(19+y)) then

x := 42;

z := x;

Question #4.1
Show that this program is well-typed, under the following entry typing context : Γ(x) = Γ(y) =
Γ(z) = int. To help you, we recall here some of the typing rules for expressions and statements :

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

Γ(x) = t t ∈ {int, bool}
Γ ` x : t

Γ ` e : t Γ ` x : t t ∈ {int, bool}
Γ ` x := e : void

Γ ` b : bool Γ ` S : void

Γ ` while b do S done : void

Question #4.2
Generate the LC3 3-address code (LC3 + temporaries/virtual registers) for the given program.
Recursive calls, auxiliary temporaries, code, must be separated and clearly described. To help
you we provide some generation rules in Figure 1 and 2.

Page 4 on 7

Partial Exam CAP - 2016

(constant expression) c
#not valid if c is too big

dr <-newTemp()

code.add(InstructionAND(dr, dr, O))

code.add(InstructionADD(dr, dr, c))

return dr

(expression e1 < e2)
dr <-newTemp()

t1 <- GenCodeExpr (e1-e2) #last write in register

(lfalse,lend) <- newLabels()

code.add(InstructionBRzp(lfalse)) #if =0 or >0 jump!

code.add(InstructionAND(dr, dr, O))

code.add(InstructionADD(dr, dr, 1)) #dr <- true

code.add(InstructionBR(lend))

code.addLabel(lfalse)

code.add(InstructionAND(dr, dr, O)) #dr <- false

code.addLabel(lend)

return dr

Figure 1 � 3-address code generation rules 1/2

(Stm) x := e
dr <- GenCodeExpr(e)

#a code to compute e has been generated

if x has a location loc:

code.add(instructionADD(loc,dr,0))

else:

storeLocation(x,dr)

(Stm)if b then S1 else S2
dr <-GenCodeExpr(b) #dr is the last written register

lfalse,lendif=newLabels()

code.add(InstructionBRz(lfalse) #if 0 jump to execute S2

GenCodeSmt(S1) #else (execute S1

code.add(InstructionBR(lendif)) #and jump to end)

code.addLabel(lfalse)

GenCodeSmt(S2)

code.addLabel(lendif)

Figure 2 � 3-address code generation rules 2/2

Page 5 on 7

Partial Exam CAP - 2016

Exercise #5 I A new Type System for Mini-While (40 min)

Adapted from oldies used in Grenoble a long time ago.

In this exercice, we replace the abstract grammar for the mini-while expressions by

nexp ::= p positive or nul constant
| n stricly negative constant
| x variable
| nexp+ nexp addition
| nexp− nexp substraction
| nexp× nexp multiplication
| ...

for arithmetic expressions (now there is a distinction between negative and positive constants), and
for boolean expressions :

bexp ::= true constant
| false constant
| bexp or bexp logical or
| e < e comparaison

Statements are unchanged :

S(Smt) ::= x := expr assign (bexpr or expr)
| skip do nothing
| S1;S2 sequence
| if bexp then S1 else S2 test
| while bexp do S done loop

Now we de�ne three types for numerical expressions : Pos, Neg, Int, a type for boolean ex-
pressions ok The idea is now to propagate the sign information for arithmetic expression : the type
is its sign (or Int if we cannot conclude). Γ denotes now the typing environment.

We give rules for contants, variables, addition :

(Γ, p) −→ Pos (Γ, n) −→ Neg (Γ, x) −→ Γ(x)

(Γ, a1) −→ Pos (Γ, a2) −→ Pos
(Γ, a1 + a2) −→ Pos

(Γ, a1) −→ Neg (Γ, a2) −→ Neg
(Γ, a1 + a2) −→ Neg

(Γ, a1) −→ Neg (Γ, a2) −→ Pos
(Γ, a1 + a2) −→ Int

These rules have the following meaning : adding two positive integers gives a positive integer,
but adding a positive and a negative integer gives an integer (we cannot conclude. . .).

Rules for boolean expressions always give the type ok if the expression is well typed :

(Γ, true) −→ ok
(Γ, a1) −→ τ (Γ, a2) −→ τ

(Γ, a1 = a2) −→ ok
(Γ, b1) −→ ok (Γ, b2) −→ ok

(Γ, b1 ∧ b2) −→ ok

Finally, here are rules for statements :

Page 6 on 7

Partial Exam CAP - 2016

(Γ, a) −→ τ
(Γ, x := a) −→ Γ[x 7→ τ]

(Γ, skip) −→ Γ
(Γ, S) −→ Γ′

(Γ, while b do S) −→ Γ t Γ′

Question #5.1
Type the expression : (−2 + x) + 8 under the context Γ(x) = Neg.

Question #5.2
Give rules for substraction and multiplication.

Question #5.3
Give rules for the sequence and test (if).

Given a type environment Γ and a memory σ (like in the SOS rules of the course, the memory
assigns values to variables), we de�ne the following relation :

(Γ, σ) ∈ R i� ∀x · [(Γ(x) = Pos ∧ σ(x) ≥ 0) ∨ (Γ(x) = Neg ∧ σ(x) < 0) ∨ Γ(x) = Int]

Question #5.4
Show that for all (Γ, σ) ∈ R, if (Γ, a) −→ Pos then A[a]σ ≥ 0 and if (Γ, a) −→ Neg, then
A[a]σ < 0.

Question #5.5
By induction, show that if (Γ, σ) ∈ R and (S, σ) −→ σ′, then there exists Γ′ such that (Γ, S) −→
Γ′ and (Γ′, σ′) ∈ R.

Question #5.6
What does that mean for our typing system ?

Page 7 on 7

