

Partial Exam Compilation and Program Analysis (CAP) October, 24th, 2016 Duration: 2 Hours

Only one a4 sheet (10pt, recto/verso) is autorized.

Instructions :

- 1. We give some typing/operational/code generation rules as examples inside the exercises.
- 2. Explain your results!
- 3. We give indicative timing.
- 4. Vous avez le droit de répondre en Français.

EXERCISE $\#1 \triangleright$ Attributes (10min)

Let us consider the following grammar for lists : $L \to \mathbf{num}L|\{L\}L|\varepsilon$

Question #1.1

Draw the derivation tree for the string : {{12{17}}.

Question #1.2

Write a syntax-directed attribution (pseudo-code) that computes the product of all numeric elements of a given list.

EXERCISE $#2 \triangleright$ Hand Assembling (10 min)

To answer the following questions, you will need the simplified LC3 instruction set depicted in Table 1.

Question #2.1

Assemble by hand the following instruction in LC3 assembly code (with intermediate steps) :

1 **AND** r0 r3 #2;

Question #2.2

Disassemble by hand the following instruction, given in binary :

0000110000000111 ;

syntaxe	action	NZP		co	dage	
			opcode		argum	ents
			F E D C	B A 9	8 7 6	$5 \ 4 \ 3 \ 2 \ 1 \ 0$
NOT DR,SR	$DR \leftarrow not SR$	*	1001	DR	SR	111111
ADD DR,SR1,SR2	$\mathrm{DR} \leftarrow \mathrm{SR1} + \mathrm{SR2}$	*	0001	DR	SR1	0 0 0 SR2
ADD DR,SR1,Imm5	$DR \leftarrow SR1 + SEXT(Imm5)$	*	0001	DR	SR1	1 Imm5
AND DR,SR1,SR2	$DR \leftarrow SR1 and SR2$	*	0 1 0 1	DR	SR1	0 0 0 SR2
AND DR,SR1,Imm5	$DR \leftarrow SR1 \text{ and } SEXT(Imm5)$	*	0 1 0 1	DR	SR1	1 Imm5
LEA DR,label	$DR \leftarrow PC + SEXT(PCoffset9)$	*	1110	DR	P	Coffset9
LD DR,label	$DR \leftarrow mem[PC + SEXT(PCoffset9)]$	*	0010	DR	P	Coffset9
ST SR,label	$mem[PC + SEXT(PCoffset9)] \leftarrow SR$		0011	SR	P	Coffset9
LDR DR,BaseR,Offset6	$DR \leftarrow mem[BaseR + SEXT(Offset 6)]$	*	0110	DR	BaseR	Offset6
STR SR,BaseR,Offset6	$mem[BaseR + SEXT(Offset6)] \leftarrow SR$		0 1 1 1	\mathbf{SR}	BaseR	Offset6
BR[n][z][p] label	Si (cond) $PC \leftarrow PC + SEXT(PCoffset9)$		0 0 0 0	n z p	P	Coffset9
NOP	No Operation		0000	0 0 0	000	0000000
RET (JMP R7)	$PC \leftarrow R7$		1100	000	111	000000
JSR label	$R7 \leftarrow PC; PC \leftarrow PC + SEXT(PC offset 11)$		0100	1	PCof	fset11

EXERCISE $\#3 \triangleright A$ new case instruction for Mini-While (30min)

The abstract grammar for statements of Mini-While is augmented with a new construction :

S(Smt)	::=	x := e	assign
		skip	$do \ nothing$
		$S_1; S_2$	sequence
		if e then S_1 else S_2	test
		while $e \; { m do} \; S \; { m done}$	loop
		case e of LS endcase	case !

with the following definition for LS :

$$\begin{array}{rrr} LS & ::= & n:S \\ & \mid & n:S, LS & \text{ with n integer} \end{array}$$

LS is a list of commands labeled by integers $(n \in \mathbb{N})$, separated by colons (', ').

Here is the informal semantics of this new construction : the expression e is evaluated in an integer value v. If v is equal to one label n of the case, then the associated command is executed; else the case behaves like a **skip**. Hence, in the following program :

x := 3 ; y := 2 ; case x-y of 1 : x := x+y, 0 : x := 2, 3 : y := 0 endcase

the command which will be executed is the one labeled by the integer 1 (as the current value of x-y is 1 when the execution flow gets into the case). The memory after the execution of the program will be : $\sigma = [x \mapsto 5, y \mapsto 2]$.

Such a construction is well-formed if all labels are distinct integers.

Question #3.1

Complete the following definition of the B_D attribution that constructs a list of labels defined in the (LS) list, while verifying that all labels are distinct. Use pseudo-code for lists with the following constructors : List.empty() constructs an empty list, List.add(el,list) adds an element in the list (with side-effect), and the predicate List.mem(el,list) returns true iff the element el is in the list. If there exists a double definition, return an error with an exception.

$$B_D(n:S) = ??$$

 $B_D(n:S,LS) = ??$

Question #3.2

Explain in less than a paragraph how would be the implementation of such two rules inside a ANTLR-Python visitor.

Question #3.3

From now on, we suppose that LS are well-formed. Give natural semantic rules (big steps semantics) for the case construction. To help you, we recall here some of the semantics rules for (some) other Mini-While statements.

$(x := a, \sigma) \to \sigma[x]$	$x \mapsto \mathcal{A}[a]\sigma]$	$(\mathtt{skip},\sigma)\to\sigma$
if $\mathcal{B}[b]\sigma = trave$.	$(S,\sigma)\to\sigma', (\texttt{whill}$	Le b do $S, \sigma') \to \sigma''$
$\prod D[0]0 = true .$	(while b d	lo $S,\sigma) \to \sigma''$

Question #3.4

Apply these rules on the example.

EXERCISE $#4 \triangleright$ Mini-While : typing + code generation (30 min)

Here is a program in the Mini-While language seen in the course :

x := 8; y := -1; if (x<(19+y)) then x := 42; z := x;

Question #4.1

Show that this program is well-typed, under the following entry typing context : $\Gamma(x) = \Gamma(y) = \Gamma(z) =$ int. To help you, we recall here some of the typing rules for expressions and statements :

$\boxed{\begin{array}{c} \Gamma \vdash e_1: \texttt{int} \Gamma \vdash e_2: \texttt{int} \\ \hline \Gamma \vdash e_1 + e_2: \texttt{int} \end{array}}$	$\frac{\Gamma(x) = t t \in \{\texttt{int},\texttt{bool}\}}{\Gamma \vdash x: t}$
$\left \begin{array}{ccc} \Gamma \vdash e:t & \Gamma \vdash x:t & t \in \{\texttt{int} \\ \hline \Gamma \vdash x:=e:\texttt{void} \end{array} \right $	$\frac{\Gamma \vdash b : \texttt{bool} \Gamma \vdash S : \texttt{void}}{\Gamma \vdash \texttt{while } b \texttt{ do } S \texttt{ done : void}}$

Question #4.2

Generate the LC3 3-address code (LC3 + temporaries/virtual registers) for the given program. Recursive calls, auxiliary temporaries, code, must be separated and clearly described. To help you we provide some generation rules in Figure 1 and 2.

(constant expression) c	<pre>#not valid if c is too big dr <-newTemp() code.add(InstructionAND(dr, dr, 0)) code.add(InstructionADD(dr, dr, c)) return dr</pre>
(expression e1 < e2)	<pre>dr <-newTemp() t1 <- GenCodeExpr (e1-e2) #last write in register (lfalse,lend) <- newLabels() code.add(InstructionBRzp(lfalse)) #if =0 or >0 jump! code.add(InstructionAND(dr, dr, 0)) code.add(InstructionADD(dr, dr, 1)) #dr <- true code.add(InstructionBR(lend)) code.addLabel(lfalse) code.add(InstructionAND(dr, dr, 0)) #dr <- false code.addLabel(lend) return dr</pre>

Figure 1 – 3-address code generation rules $1/2\,$

(Stm) x := e		
	dr <- GenCodeExpr(e)	
	#a code to compute e has been generated	
	if x has a location loc:	
	<pre>code.add(instructionADD(loc,dr,0))</pre>	
	else:	
	<pre>storeLocation(x,dr)</pre>	
(Stm)if b then $S1$ else $S2$	<pre>dr <-GenCodeExpr(b) #dr is the last written register lfalse,lendif=newLabels() code.add(InstructionBRz(lfalse) #if 0 jump to execute S2 GenCodeSmt(S1)</pre>	

FIGURE 2 – 3-address code generation rules 2/2

EXERCISE $\#5 \triangleright A$ new Type System for Mini-While (40 min)

Adapted from oldies used in Grenoble a long time ago.

In this exercice, we replace the abstract grammar for the mini-while expressions by

nexp	::=	p	positive or nul constant
		n	stricly negative constant
		x	variable
		nexp + nexp	addition
	Ì	nexp - nexp	substraction
	İ	nexp imes nexp	multiplication

for arithmetic expressions (now there is a distinction between negative and positive constants), and for boolean expressions :

bexp	::=	true	constant
		false	constant
		bexp or $bexp$	$logical \ or$
		e < e	compara is on

Statements are unchanged :

S(Smt)	::=	x := expr	assign (bexpr or expr)
		skip	do nothing
		$S_1; S_2$	sequence
		if $bexp$ then S_1 else S_2	test
		while $bexp \; {\rm do} \; S \; {\rm done}$	loop

Now we define three types for numerical expressions : Pos, Neg, Int, a type for boolean expressions ok The idea is now to propagate the sign information for arithmetic expression : the type is its sign (or Int if we cannot conclude). Γ denotes now the typing environment.

We give rules for contants, variables, addition :

$(\Gamma,p) \longrightarrow \operatorname{Pos}$	$(\Gamma,n) \longrightarrow \operatorname{Neg}$	$(\Gamma, x) \longrightarrow \Gamma(x)$
$\frac{(\Gamma, a_1) \longrightarrow \operatorname{Pos}}{(\Gamma, a_1 + a_2)} \xrightarrow{(1)}$		$\begin{array}{c} \underline{a_1}) \longrightarrow \operatorname{Neg} & (\Gamma, a_2) \longrightarrow \operatorname{Neg} \\ (\Gamma, a_1 + a_2) \longrightarrow \operatorname{Neg} \end{array}$
$\left \begin{array}{c} (\Gamma, a_1) \longrightarrow \operatorname{Neg} (\Gamma, a_1 + a_2) \\ \end{array}\right $		

These rules have the following meaning : adding two positive integers gives a positive integer, but adding a positive and a negative integer gives an integer (we cannot conclude...).

Rules for boolean expressions always give the type ok if the expression is well typed :

$$(\Gamma, \texttt{true}) \longrightarrow ok \qquad \frac{(\Gamma, a_1) \longrightarrow \tau \quad (\Gamma, a_2) \longrightarrow \tau}{(\Gamma, a_1 = a_2) \longrightarrow ok} \qquad \frac{(\Gamma, b_1) \longrightarrow ok \quad (\Gamma, b_2) \longrightarrow ok}{(\Gamma, b_1 \land b_2) \longrightarrow ok}$$

Finally, here are rules for statements :

$$\frac{(\Gamma, a) \longrightarrow \tau}{(\Gamma, x := a) \longrightarrow \Gamma[x \mapsto \tau]} \qquad (\Gamma, skip) \longrightarrow \Gamma \qquad \frac{(\Gamma, S) \longrightarrow \Gamma'}{(\Gamma, \texttt{while} \ b \ \texttt{do} \ S) \longrightarrow \Gamma \sqcup \Gamma'}$$

Question #5.1

Type the expression : (-2 + x) + 8 under the context $\Gamma(x) = Neg$.

Question #5.2

Give rules for substraction and multiplication.

Question #5.3

Give rules for the sequence and test (if).

Given a type environment Γ and a memory σ (like in the SOS rules of the course, the memory assigns values to variables), we define the following relation :

 $(\Gamma, \sigma) \in \mathcal{R} \text{ iff } \forall x \cdot [(\Gamma(x) = \operatorname{Pos} \land \sigma(x) \ge 0) \lor (\Gamma(x) = \operatorname{Neg} \land \sigma(x) < 0) \lor \Gamma(x) = \operatorname{Int}]$

Question #5.4

Show that for all $(\Gamma, \sigma) \in \mathcal{R}$, if $(\Gamma, a) \longrightarrow \text{Pos then } \mathcal{A}[a]\sigma \geq 0$ and if $(\Gamma, a) \longrightarrow \text{Neg}$, then $\mathcal{A}[a]\sigma < 0$.

Question #5.5

By induction, show that if $(\Gamma, \sigma) \in \mathcal{R}$ and $(S, \sigma) \longrightarrow \sigma'$, then there exists Γ' such that $(\Gamma, S) \longrightarrow \Gamma'$ and $(\Gamma', \sigma') \in \mathcal{R}$.

Question #5.6

What does that mean for our typing system?