
http://laure.gonnord.org/pro/ CAP, ENSL, 2016/2017

Partial Exam

Compilation and Program Analysis (CAP)

October, 24th, 2016

Duration: 2 Hours

Only one a4 sheet (10pt, recto/verso) is autorized.

Instructions :

1. We give some typing/operational/code generation rules as examples inside the exercises.

2. Explain your results !

3. We give indicative timing.

4. Vous avez le droit de répondre en Français.

Page 1 on 11

http://laure.gonnord.org/pro/

Partial Exam CAP - 2016

Exercise #1 I Attributes (10min)

Let us consider the following grammar for lists : L→ numL|{ L}L|ε
Question #1.1

Draw the derivation tree for the string : {{12{17}}}.

Question #1.2
Write a syntax-directed attribution (pseudo-code) that computes the product of all numeric
elements of a given list.

Solution:
The derivation tree (or Parse Tree) is :

Be careful a parse tree is not an AST, each internal node denotes a rule application where the
node is a non terminal and each of its son is either a terminal or a non terminal. Leaves are non
terminal

There is no real choice for the attribution, let us invent an attribute val, of type int. In the
epsilon rule, L.val<-1. In the concat rule L.val<-L_1.val*L_2.val (rename properly before). In
the num rule L.val<-L_1.val*int(num).

For attributions, I expect a type for the attribute as well as the (recursive) rules to compute
this attribution.

Exercise #2 I Hand Assembling (10 min)

Page 2 on 11

Partial Exam CAP - 2016

To answer the following questions, you will need the simpli�ed LC3 instruction set depicted in
Table 1.

Question #2.1
Assemble by hand the following instruction in LC3 assembly code (with intermediate steps) :

1 AND r0 r3 #2 ;

Solution: We want the corresponding code for ADD DR ← SR1 + SEXT(Imm5), AND =
0101. r0 = 000, r3 = 011. 2 = 00010. We get : 0101 000 011 1 00010.

Question #2.2
Disassemble by hand the following instruction, given in binary :

0000110000000111 ;

Solution: BRP nz label=+7 Nothing di�cult here.

syntaxe action NZP codage

opcode arguments

F E D C B A 9 8 7 6 5 4 3 2 1 0

NOT DR,SR DR ← not SR * 1 0 0 1 DR SR 1 1 1 1 1 1

ADD DR,SR1,SR2 DR ← SR1 + SR2 * 0 0 0 1 DR SR1 0 0 0 SR2

ADD DR,SR1,Imm5 DR ← SR1 + SEXT(Imm5) * 0 0 0 1 DR SR1 1 Imm5

AND DR,SR1,SR2 DR ← SR1 and SR2 * 0 1 0 1 DR SR1 0 0 0 SR2

AND DR,SR1,Imm5 DR ← SR1 and SEXT(Imm5) * 0 1 0 1 DR SR1 1 Imm5

LEA DR,label DR ← PC + SEXT(PCo�set9) * 1 1 1 0 DR PCo�set9

LD DR,label DR ← mem[PC + SEXT(PCo�set9)] * 0 0 1 0 DR PCo�set9

ST SR,label mem[PC + SEXT(PCo�set9)] ← SR 0 0 1 1 SR PCo�set9

LDR DR,BaseR,O�set6 DR ← mem[BaseR + SEXT(O�set6)] * 0 1 1 0 DR BaseR O�set6

STR SR,BaseR,O�set6 mem[BaseR + SEXT(O�set6)] ← SR 0 1 1 1 SR BaseR O�set6

BR[n][z][p] label Si (cond) PC ← PC + SEXT(PCo�set9) 0 0 0 0 n z p PCo�set9

NOP No Operation 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RET (JMP R7) PC ← R7 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0

JSR label R7 ← PC ; PC ← PC + SEXT(PCo�set11) 0 1 0 0 1 PCo�set11

Table 1 � LC3 simpli�ed instruction set

Exercise #3 I A new case instruction for Mini-While (30min)

The abstract grammar for statements of Mini-While is augmented with a new construction :

S(Smt) ::= x := e assign
| skip do nothing
| S1;S2 sequence
| if e then S1 else S2 test
| while e do S done loop
| case e of LS endcase case !

Page 3 on 11

Partial Exam CAP - 2016

with the following de�nition for LS :

LS ::= n : S
| n : S,LS with n integer

LS is a list of commands labeled by integers (n ∈ N), separated by colons (',').
Here is the informal semantics of this new construction : the expression e is evaluated in an

integer value v. If v is equal to one label n of the case, then the associated command is executed ;
else the case behaves like a skip. Hence, in the following program :

x := 3 ;

y := 2 ;

case x-y of

1 : x := x+y,

0 : x := 2,

3 : y := 0

endcase

the command which will be executed is the one labeled by the integer 1 (as the current value of x-y
is 1 when the execution �ow gets into the case). The memory after the execution of the program
will be : σ = [x 7→ 5, y 7→ 2].

Such a construction is well-formed if all labels are distinct integers.

Question #3.1
Complete the following de�nition of the BD attribution that constructs a list of labels de�ned
in the (LS) list, while verifying that all labels are distinct. Use pseudo-code for lists with the
following constructors : List.empty() constructs an empty list, List.add(el,list) adds an
element in the list (with side-e�ect), and the predicate List.mem(el,list) returns true i� the
element el is in the list. If there exists a double de�nition, return an error with an exception.

BD(n : S) = ??
BD(n : S,LS) = ??

Solution: No real di�culty, for the base case the list [n] is constructed, then for the concat
case we search for existance, . . .

Be careful to use names, and if you invent data structures, to specify if they are global or an
attribute to be returned

Question #3.2
Explain in less than a paragraph how would be the implementation of such two rules inside a
ANTLR-Python visitor.

Solution:

To use visitors, we have to instrument the names of the two rules in the .g4 �le (say #baseBD

and #concatBD here). In a class that inherits from the grammar's generic visitor, we would
have to implement :

visitbaseBD(self,ctx)

Page 4 on 11

Partial Exam CAP - 2016

and

visitconcatBD(self,ctx)

These two visit methods could return the list de�ned in the previous question. For the second,
we have to make a recursive call to the sublist LS, which can be done by something like

visitconcatBD(self,ctx.LS())

I gave some points to people explaining about datastructures. I was however expecting an
explanation of the recursive calls' mechanism.

Question #3.3
From now on, we suppose that LS are well-formed. Give natural semantic rules (big steps
semantics) for the case construction. To help you, we recall here some of the semantics rules for
(some) other Mini-While statements.

(x := a, σ)→ σ[x 7→ A[a]σ] (skip, σ)→ σ

if B[b]σ = true :
(S, σ)→ σ′, (while b do S, σ′)→ σ′′

(while b do S, σ)→ σ′′

Solution: For instance (needs more explanation) :

if A[e]σ 6= n : (case e of n : S endcase, σ)→ σ

if A[e]σ = n :
(S, σ)→ σ′

(case e of n : S endcase, σ)→ σ′

if A[e]σ = n :
(S, σ)→ σ′

(case e of n : S,LS endcase, σ)→ σ′

if A[e]σ 6= n :
(case e of n : LS endcase, σ)→ σ′

(case e of n : S,LS endcase, σ)→ σ′

Question #3.4
Apply these rules on the example.

Solution: No di�culty.

Exercise #4 I Mini-While : typing + code generation (30 min)

Here is a program in the Mini-While language seen in the course :

x := 8;

y := -1;

if (x<(19+y)) then

x := 42;

z := x;

Page 5 on 11

Partial Exam CAP - 2016

Question #4.1
Show that this program is well-typed, under the following entry typing context : Γ(x) = Γ(y) =
Γ(z) = int. To help you, we recall here some of the typing rules for expressions and statements :

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

Γ(x) = t t ∈ {int, bool}
Γ ` x : t

Γ ` e : t Γ ` x : t t ∈ {int, bool}
Γ ` x := e : void

Γ ` b : bool Γ ` S : void

Γ ` while b do S done : void

Solution: Here it is :

Question #4.2
Generate the LC3 3-address code (LC3 + temporaries/virtual registers) for the given program.
Recursive calls, auxiliary temporaries, code, must be separated and clearly described. To help
you we provide some generation rules in Figure 1 and 2.

Solution: Here it is :

Page 6 on 11

Partial Exam CAP - 2016

(constant expression) c
#not valid if c is too big

dr <-newTemp()

code.add(InstructionAND(dr, dr, O))

code.add(InstructionADD(dr, dr, c))

return dr

(expression e1 < e2)
dr <-newTemp()

t1 <- GenCodeExpr (e1-e2) #last write in register

(lfalse,lend) <- newLabels()

code.add(InstructionBRzp(lfalse)) #if =0 or >0 jump!

code.add(InstructionAND(dr, dr, O))

code.add(InstructionADD(dr, dr, 1)) #dr <- true

code.add(InstructionBR(lend))

code.addLabel(lfalse)

code.add(InstructionAND(dr, dr, O)) #dr <- false

code.addLabel(lend)

return dr

Figure 1 � 3-address code generation rules 1/2

(Stm) x := e
dr <- GenCodeExpr(e)

#a code to compute e has been generated

if x has a location loc:

code.add(instructionADD(loc,dr,0))

else:

storeLocation(x,dr)

(Stm)if b then S1 else S2
dr <-GenCodeExpr(b) #dr is the last written register

lfalse,lendif=newLabels()

code.add(InstructionBRz(lfalse) #if 0 jump to execute S2

GenCodeSmt(S1) #else (execute S1

code.add(InstructionBR(lendif)) #and jump to end)

code.addLabel(lfalse)

GenCodeSmt(S2)

code.addLabel(lendif)

Figure 2 � 3-address code generation rules 2/2

Page 7 on 11

Partial Exam CAP - 2016

I was expecting �real� code generation, thus the recursive calls have to be instantiated and
produce real code. I gave very few points to code coming with no exaplanation. Be careful to
the application of the while rule, there is some code redundancy in computing the test and then
branching.

Page 8 on 11

Partial Exam CAP - 2016

Exercise #5 I A new Type System for Mini-While (40 min)

Adapted from oldies used in Grenoble a long time ago.

In this exercice, we replace the abstract grammar for the mini-while expressions by

nexp ::= p positive or nul constant
| n stricly negative constant
| x variable
| nexp+ nexp addition
| nexp− nexp substraction
| nexp× nexp multiplication
| ...

for arithmetic expressions (now there is a distinction between negative and positive constants), and
for boolean expressions :

bexp ::= true constant
| false constant
| bexp or bexp logical or
| e < e comparaison

Statements are unchanged :

S(Smt) ::= x := expr assign (bexpr or expr)
| skip do nothing
| S1;S2 sequence
| if bexp then S1 else S2 test
| while bexp do S done loop

Now we de�ne three types for numerical expressions : Pos, Neg, Int, a type for boolean ex-
pressions ok The idea is now to propagate the sign information for arithmetic expression : the type
is its sign (or Int if we cannot conclude). Γ denotes now the typing environment.

We give rules for contants, variables, addition :

(Γ, p) −→ Pos (Γ, n) −→ Neg (Γ, x) −→ Γ(x)

(Γ, a1) −→ Pos (Γ, a2) −→ Pos
(Γ, a1 + a2) −→ Pos

(Γ, a1) −→ Neg (Γ, a2) −→ Neg
(Γ, a1 + a2) −→ Neg

(Γ, a1) −→ Neg (Γ, a2) −→ Pos
(Γ, a1 + a2) −→ Int

These rules have the following meaning : adding two positive integers gives a positive integer,
but adding a positive and a negative integer gives an integer (we cannot conclude. . .).

Rules for boolean expressions always give the type ok if the expression is well typed :

(Γ, true) −→ ok
(Γ, a1) −→ τ (Γ, a2) −→ τ

(Γ, a1 = a2) −→ ok
(Γ, b1) −→ ok (Γ, b2) −→ ok

(Γ, b1 ∧ b2) −→ ok

Finally, here are rules for statements :

Page 9 on 11

Partial Exam CAP - 2016

(Γ, a) −→ τ
(Γ, x := a) −→ Γ[x 7→ τ]

(Γ, skip) −→ Γ
(Γ, S) −→ Γ′

(Γ, while b do S) −→ Γ t Γ′

Let us clarify a bit the notation t. For a given variable, for the while, we have to �merge� the
information coming from before the while and the one coming from S. If they are both Pos, or both
Neg, then the result of the merge is the very same type. If the two values do not coincide, then the
merge of the two types are Int. Then the de�nition of t is extended pointwise.

The while rule itself needs a little bit more explanation. This rule uses the fact that, in this
particular type system, you cannot infer any more information by applying more than one loop :
this should have been proven before, and comes from the fact that a given variable cannot changes
its type more that twice. This is not the case in general typing systems, in the more general case
we should have to test that Γ′ is stable by S.

Question #5.1
Type the expression : (−2 + x) + 8 under the context Γ(x) = Neg.

Solution: Type tree like in the course. Do not forget to close the leaves properly.

Question #5.2
Give rules for substraction and multiplication.

Solution: For sub, two cases propagate information : Neg - Plus and Plus - Neg :

(Γ, a1)→ Neg (Γ, a2)→ Pos

(Γ, a1 − a2)→ Neg

(Γ, a1)→ Pos (Γ, a2)→ Neg

(Γ, a1 − a2)→ Pos

(Γ, a1)→ Neg (Γ, a2)→ Neg

(Γ, a1 − a2)→ Int

(Γ, a1)→ Pos (Γ, a2)→ Pos

(Γ, a1 − a2)→ Int

For multiplication the result is more precise :

(Γ, a1)→ Neg (Γ, a2)→ Neg

(Γ, a1 ∗ a2)→ Pos

(Γ, a1)→ Pos (Γ, a2)→ Pos

(Γ, a1 ∗ a2)→ Pos

(Γ, a1)→ Neg (Γ, a2)→ Pos

(Γ, a1 ∗ a2)→ Neg

(Γ, a1)→ Pos (Γ, a2)→ Neg

(Γ, a1 ∗ a2)→ Neg

there is a slight problem for multiplication with Pos, as the operand might be 0, Neg*Pos!
should give Int. I gave the whole number of points for both solutions.

Question #5.3
Give rules for the sequence and test (if).

Solution: For seq, the typing informations are transmitted from the �rst to the second part :

(Γ, S1)→ Γ1 (Γ1, S2)→ Γ2

(Γ, S1;S2)→ Γ2

For if then else, we have to merge the information from the two branches :

(Γ, b)→ ok (Γ, S1)→ Γ1 (Γ, S2)→ Γ2

(Γ, if b then S1 else S2)→ Γ1 t Γ2

Page 10 on 11

Partial Exam CAP - 2016

Since I had not de�ned the meaning of t properly, this question was not very interesting.
However, even with an informal notion of �merge information�, the environnement before the
if should not be copied at the bottom right hand side.

Given a type environment Γ and a memory σ (like in the SOS rules of the course, the memory
assigns values to variables), we de�ne the following relation :

(Γ, σ) ∈ R i� ∀x · [(Γ(x) = Pos ∧ σ(x) ≥ 0) ∨ (Γ(x) = Neg ∧ σ(x) < 0) ∨ Γ(x) = Int]

Question #5.4
Show that for all (Γ, σ) ∈ R, if (Γ, a) −→ Pos then A[a]σ ≥ 0 and if (Γ, a) −→ Neg, then
A[a]σ < 0.

Solution: By induction on a :
� if a is a positive constant, then (Γ, a)→ Pos) and A[a]σ = p ≥ 0.
� same for a negative constant.
� if x is a variable, either she is positive or null, either she is positive, which is given by

the value during execution : A[x]σ
� if a = a1 + a2, WLOG let us suppose that (Γ, a) → Pos. From the typing rule we

have (Γ, a1) → Pos and (Γ, a2) → Pos), thus we can imply the induction hypothesis
on both these arguments, thus A[a1]σ ≥ 0 and A[a2]σ ≥ 0. Then, as A[a1 + a2]σ =
A[a1]σ +A[a2]σ, A[a1 + a2]σ is positive.

� all the other cases are similar.

Question #5.5
By induction, show that if (Γ, σ) ∈ R and (S, σ) −→ σ′, then there exists Γ′ such that (Γ, S) −→
Γ′ and (Γ′, σ′) ∈ R.

Solution: Left to the reader. The only di�culties are tests and while. For the test, the stability
comes from the union t, and for the while, there is more work to do . . .

Question #5.6
What goes that mean for our typing system ?

Solution: This means each time we have a transition in the concrete world we have a transition
in the abstract world, this is progression. Together with question 5.4 this means that the type
system is safe.

Page 11 on 11

