
Lab 1
Warm-up : discovering the target machine, LEIA

Objective

• Be familiar with the LEIA 1 instruction set.
• Understand how it executes on the LEIA processor with the help of a simulator.
• Write simple programs, assemble, execute.

EXERCISE #1 Ï Lab preparation
Clone the github repository for this year’s labs:

git clone https://github.com/lauregonnord/cap-labs.git

Then:

• Follow the instructions of leia/README.md to install the LEIA assembler and simulator. Some more
documentation can be found in Appendix A.

• The files you need for this lab are in TP01.

1.1 The LEIA processor and instruction set

In the architecture course, you already saw a version of the target machine LEIA. The instruction set is depicted
in Appendix A.

EXERCISE #2 Ï TD
On paper, write (in LEIA assembly language) a program which initializes the r0 register to 1 and increments it
until it becomes equal to 8; using only one register.

Then, write a similar program that increments it until it becomes equal to 4242, using only two registers.

EXERCISE #3 Ï TD : sum
Write a program in LEIA assembly that computes the sum of the 10 first positive integers.

1.2 Assembling, disasembling

EXERCISE #4 Ï Hand assembling
Assemble by hand the instructions :

1 begin:
and r0 r0 0
snif r0 gt 2
jump begin

You will need the set of instructions depicted in Appendix A and their associated opcode.

EXERCISE #5 Ï Hand disassembling
In Figure 1.1 we depicted a toy example with its corresponding assembly code.

Fill the first two rows of the table, read the rest of the solution, and answer the following questions:
• Which instruction is used to load data from memory?
• How is the pointer jumping done to create the loop?
• What happens to the labels in the disassembled program?
• In your own words describe what this program does.

1LEIA stands for “Literally Everything Is Awful”

Aurore Alcolei, Laure Gonnord, Valentin Lorentz. 1/8

ENS de Lyon, Département Informatique, M1 CAP Lab #1 – Automne 2017

Address Content Binary Instructions pseudo-code

0000 4800

0001 1901

0002 c209 1011 0010 0000 1001 letl r2 9 R2 ← 0009 (label data)

0003 f302 1111 0011 0000 0010 rmem r3 [r2]
R3 ← mem[R2]

(content at label data)

loop:0004 1912 0001 1 001 0001 0010 add r1 r1 2 R1 ← R1 +2

0005 2b31 0010 1 011 0011 0001 sub r3, r3 1 R3 ← R3 −1

0006 3f30 0011 1 111 0011 0000 snif r3 le 0 if R3 ≤ 0 skip next statement

0007 bffd 1101 1111 1111 1101 jump -3 jump to loop label

0008 b000 1101 0000 0000 0000 jump 0 HALT

data:0009 0006 data -

Figure 1.1: A binary/hexadecimal program (tp1-1.obj)

1.3 LEIA Simulator

EXERCISE #6 Ï Run the simulator with the hex code

Run the simulation step-by-step on the file tp1-1.obj :

$</path/to/simucode/>LEIA -s tp1-1.obj

Carefully follow each step of the execution.

Until now, we have written programs by putting the encoded instructions directly into the memory. From
now on, we are going to write programs using an easier approach. We are going to write instructions using the
LEIA assembly.

EXERCISE #7 Ï Execution and modification

1. First test assembling and “terminal simulation step by step with” on the file tp1-simple.s
$python3 <path/to/assemblycode/>asm.py tp1-simple.s
assembling tp1-simple.s
$</path/to/simucode/>LEIA s tp1-simple.obj

Listing 1.1: tp1-simple.s

1 .set r2 data
rmem r1 [r2]
jump 0

data:
.word 7

2. Guess the purpose of the following files: tp1-3a.s et tp1-3b.s. Check with the simulator. What is the
difference between the primitives putchar and printstr, that are provided by the operating system?

Listing 1.2: tp1-3a.s

call clearscr
.let r4 1
.let r0 0x0000

Aurore Alcolei, Laure Gonnord, Valentin Lorentz. 2/8

ENS de Lyon, Département Informatique, M1 CAP Lab #1 – Automne 2017

.let r1 10
5 .let r2 95

.set r3 HELLO
call putstr ; putstr code is in lib.s
refresh
.let r1 10

10 .let r2 85
.set r3 COURSE
call putstr ; putstr code is in lib.s
refresh

15 jump 0

HELLO:
.string "Hello"

COURSE:
20 .string "CAP ENSL 2017-18!"

#include lib.s

Listing 1.3: tp1-3b.s

;; graphical "reserved" registers: r1,2,3,4
2 ;; r12 for the star

call clearscr
.let r4 1
.let r0 0x0000
.let r2 95

7 .let r1 10
.set r10 star ; takes the @ - not affected
.set r14 N
rmem r6 [r14] ; loop counter init=N

loopi:
12 rmem r3 [r10]

copy r13 r6
copy r12 r2
copy r11 r1
call putchar ; store the context before call

17 refresh
copy r1 r11
copy r2 r12
copy r6 r13
add r1 r1 15

22 sub r6 r6 1
snif r6 eq 0
jump loopi
jump 0

27 star:
.word 42 ; ascii for '*'

N:
.word 4

32

#include lib.s

Aurore Alcolei, Laure Gonnord, Valentin Lorentz. 3/8

ENS de Lyon, Département Informatique, M1 CAP Lab # – Automne 2017

Listing 1.4: tp1-3c.s

1 print "Compiling is fun!"
.let r1 42
print r1
.let r1 666
print r1

6 jump 0

3. Write a program in LEIA assembly that computes the min and max of two integers, and stores the result
in a precise location of the memory that has the label min. Try with different values.

1.4 More advanced assembly code!

EXERCISE #8 Ï Algo in LEIA assembly
Write and execute the following programs in assembly :

• Draw squares and triangles of stars (character ’*’) of size n, n being given by the user.
• Count the number of non-nul bits of a given integer.

Aurore Alcolei, Laure Gonnord, Valentin Lorentz. 4/8

Appendix A
LEIA Assembly Documentation (ISA)

Source:

• ISA: Florent de Dinechin, Nicolas Louvet, Antoine Plet, for ASR1, ENSL, 2016.

• Simulator: Pierre Oechsel and Guillaume Duboc, L3 students at ENSL, 2016.

A.1 Installing the simulator and getting started

To get the LEIA assembler and simulator, follow instructions of the first Lab (git pull on the course lab reposi-
tory).

A.2 The LEIA architecture

Here is an example of LEIA assembly code for 2017:

letl r0 17 ; initialisation of a register
loop:
wmem r13 [r0] ; write in memory

4 rmem r13 [r2] ; read in memory
add r0 r10 r11 ; add
snif r0 eq 3 ; test : if r0 = 3 skip next instruction
jump loop ; equivalent to jump -3, and this is a comment
xor r0 r0 -1

Memory, Registers The memory is shared into words of 16 bits, with address of size 16 bits (from (0000)H to
(FFFF)H).

The LEIA has 16 generalistic registers. Only R151 is reserved for the routine return address. They are also
specific 16 bits registers: PC (Program Counter), IR (Instruction Register).

Constants: leth and letl These expressions provide ways to initialize registers. The constant is encoded in
the bits 0 to 7. For the letl instruction, bit 7 (sign bit) of the constant is replicated into the bits 8 to 15 of the
destination register. Thus:

letl r0 xx

stores the constant xx in register r0, provided xx between -128 and 127. The leth instruction stores the 8 bit
constant in the bits 8 to 15 of the destination register, the other bits being unchanged. Thus:

letl r0 2
leth r0 3

stores in r0 the constant 2+3∗28 = 770. The LEIA assembler tool provides a macro:

.let r0 770

to generate these two instructions automatically.

1registers are indifferently in capital letters or in lower case.

Aurore Alcolei, Laure Gonnord, Valentin Lorentz. 5/8

ENS de Lyon, Département Informatique, M1 CAP Lab #A – Automne 2017

Table A.1: All LEIA instructions

15 14 13 12 mnemonic class description ext(i)

0 0 0 0 wmem wmem write to memory
0 0 0 1 add ALU addition z(i)
0 0 1 0 sub ALU subtraction z(i)
0 0 1 1 snif snif skip next if s(i)
0 1 0 0 and ALU logical bitwise and s(i)
0 1 0 1 or ALU logical bitwise or s(i)
0 1 1 0 xor ALU logical bitwise xor s(i)
0 1 1 1 lsl ALU logical shift left z(i)
1 0 0 0 lsr ALU logical shift right z(i)
1 0 0 1 asr ALU arithmetic shift right z(i)
1 0 1 0 call call sub-routine call
1 0 1 1 jump jump relative jump if offset 6= 1

return return from call if offset= 1
1 1 0 0 letl letl 8-bit constant to Rd, sign-extended
1 1 0 1 leth leth 8-bit constant to high half of Rd
1 1 1 0 print print print or refresh
1 1 1 1 rmem rmem read from memory if i=0

copy register-to-register copy if i=1

notation meaning

d a 3 or 4 bit number that specifies the destination register
i a 4-bit number (bits 4 to 7 of the instruction word), the number of the first operand register
j a 4-bit number

Table A.2: Notations

Arithmetical and logical instructions Arithmetical and logical instructions have 3 operands:

add r1 r0 3 ; add immediate
add r1 r2 r1 ; add registers

The first operand is the destination register, and the two remaining operands are sources: either two registers
(if the bit 11 is 0) or a register and an immediate constant j of 4 bits (if the bit 11 is 1). Because of the restricted
number of bits to describe the first operand, the destination register can only be one of the first eight registers
(from r0 to r7). If a constant is used then it is extended into a 16 bit constant before the operation. This is
documented in the last column of table A.1:

• z(j) means that j is extended with zeros. In other words j is interpreted as a positive integer.

• s(j) means that the bit 3 (sign bit) of j is replicated into bits 4 to 15: j is interpreted as a signed integer
and is transformed into a 16 bits integer of the same value.

Thus the result of the instruction:

add r1 r0 -1

is not really what is expected. The constant j =−1 is encoded as 1111, extended as z(j) =0000000000001111,
thus the sum should be done with the 31 constant. The assembler tool throws an error in that case:

instruction add: Number, Not in bound: [0, 15]

Branching Let a be the instruction’s address, and c the integer encoded in the bits 0 to 11 of the instruction’s
word. The call instruction makes a copy of a+1 into r15 then executes pc← c×16. Thus procedures should
have addresses that are multiple of 16.

The jump instruction considers the constant c as a signed integer (thus between -2048 and 2047) and ex-
ecutes pc← a+c except if c = 1, in which case it executes pc← r15. In this case we can use the mnemonic
return.

Aurore Alcolei, Laure Gonnord, Valentin Lorentz. 6/8

ENS de Lyon, Département Informatique, M1 CAP Lab #A – Automne 2017

Table A.3: Encoding per instruction class

class action 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ALU reg rd ← ri op r j opcode 0 d i j
ALU imm4 rd ← ri op ext(j) opcode 1 d i j

snif skip next if 0 0 1 1 c/r condition i j

letl rd ← s(b) 1 1 0 0 d b
leth rd [15..8] ← b 1 1 0 1 d b

call jump to the routine 1 0 1 0 c
jump jump 1 0 1 1 c
return return to calling routine 1 0 1 1 0 1

wmem mem[r j] ← ri 0 0 0 0 0 0 0 0 i j
rmem rd ← mem[r j] 1 1 1 1 d 0 0 0 0 j
copy rd ← r j 1 1 1 1 d 0 0 0 1 j

print reg print (the numerical content of) ri 1 1 1 0 0 1 0 0 0 i
print char print c 1 1 1 0 1 0 0 0 asci i (c)
refresh wait 1 1 1 0 0

Tests: snif “skip next if” The snif op1 <condition> op2 instruction deactivates the next instruction if
the condition is true. Operands 1 and 2 are encoded like in the ALU instructions. In particular the second
operand can be an immediate constant, which sign will be extended. The condition is encoded thanks to the
following table:

10 9 8 mnemonic description

0 0 0 eq equal, op1 = op2
0 0 1 neq not equal, op1 6= op2
0 1 0 sgt signed greater than, op1 > op2, two’s complement
0 1 1 slt signed smaller than, op1 < op2, two’s complement
1 0 0 gt op1 > op2, unsigned
1 0 1 ge op1 ≥ op2, unsigned
1 1 0 lt op1 < op2, unsigned
1 1 1 le op1 ≤ op2, unsigned

Let us illustrate the difference between sgt et gt: if R0 contains 0, then:

snif r0 gt -1

is false, but

snif r0 sgt -1

is true. In fact, the −1 constant is extended as ffff (hexa), which is interpreted as 65535 by gt, and -1 by sgt.

Memory accesses The memory address is always specified in the r j register encoded in bits 0 to 3. The
instruction rmem rd [rj] copies in the destination register (coded in bits 8 to 11) the content of the memory
at address r j . The instruction wmem ri [rj] copies the content of the register ri (coded in bits 4 to 7) in the
memory cell whose address is stored inside rj.

Register management Some registers cannot be used with arithmetic and logical instructions, yet it is possi-
ble to use them to store a result thanks to the copy instruction. This instruction is also usefull before function
calls to quickly save registers that are known to be used by the function.

Print Two examples of use of the native print instruction:

print r1 ; prints the content of r1 (numerical value)
print 'z' ; prints the character 'z'

Aurore Alcolei, Laure Gonnord, Valentin Lorentz. 7/8

ENS de Lyon, Département Informatique, M1 CAP Lab #A – Automne 2017

Assembly directives A bit more of syntax:
• The assembly begins at address 0.
• Labels can be used for jumps. Warning, for the compiler to work properly, do not type anything else

than the label on its line, followed by a colon ’:’.
• The keyword .word xxxx reserves a memory cell initialized to the 16 bit constant xxxx.
• The keyword .reserve xxxx reserves n memory cells initialized to 0.
• The keyword .string “Hello” reserves 6 memory cells and store the ascii numbers corresponding to

all the characters of the message (ending it with a Null character).
• The keyword .align16 pads memory cells in order for the next line to be at an address multiple of 16.
• The macro .let r3 585 stores the constant 585 in register 3 (see paragraph A.2)
• The macro .set r3 label loads the address corresponding to label onto r3. For instance, the following

program:

.set r0 foo
foo:

3 .word 42

is assembled into:
c002 ; letl r0 2 (because 42 is stored at line 2)
d000 ; leth r0 0
002a ; the 42 constant

From Lab 5 we will be using a stack. The address of its top will be stored in r7 and we will use the following
macros:

• The macro .push ri that pushes the content of the ri register into the memory. It is equivalent to:

sub r7 r7 1
2 wmem ri [r7] ;

• The macro .pop ri that does the converse:

rmem ri [r7]
add r7 r7 1

A.3 Help to encode constants

hex to binary
a b c d e f

1010 1011 1100 1101 1110 1111

2’s complement Let us code n = (−3)10 in 2’s complement on 6 bits, with the recipe: “code -n in base 2,
then negate bitwise, then add one”. First, 3 is encoded as 000011 on 6 bits. Its negation is 111100, thus
(−3)10 = 1111012̄.

A.4 The graphical library

Coordinates of the screen start on the bottom left corner of the screen ((0,0) ↑x
−→y)

• cleanscr: does what it is supposed to do. Uses register r1.
• putstr: puts a string on the screen at coordinates (r1, r2) ; the string address is in register r3 ; if r4 is not

1 then refresh between each letter. Uses registers 1, 2, 3, 6, 14, 15 and those of putchar. An example can
be found in Lab 1.

• putchar: puts a char on the screen at coordinates (r1, r2). Uses registers r1 to r6. An example can be
found in Lab 1.

• refresh: refreshes the screen.

Aurore Alcolei, Laure Gonnord, Valentin Lorentz. 8/8

	Warm-up : discovering the target machine, LEIA
	The LEIA processor and instruction set
	Assembling, disasembling
	LEIA Simulator
	More advanced assembly code!

	LEIA Assembly Documentation (ISA)
	Installing the simulator and getting started
	The LEIA architecture
	Help to encode constants
	The graphical library

