
Lab 5
Syntax-Directed Code Generation

Objective

• Generate 3-address code for the Mu language.
• Generate executable “dummy” LEIA from programs in Mu via 2 simple allocation algorithms.

Student files are in the GIT repository. Start by installing the networkx and graphviz modules if necessary:

pip3 install networkx graphviz --user

During the previous lab, you have written your own evaluator of the Mu language. In this lab the objective
is to generate valid LEIA codes from Mu programs. You will have 2 sessions for that.
Your work is due on Thursday the 2nd of November at noon.
Rename your TP05 directory into NameSurnameTP05 and send it as an archive (after make clean). Your
code must compile and sucessfully pass your own tests. Please also provide a Readme that explains: what is
working or not, what kind of tests you made, any comments on your implementation that can help under-
standing your code.

Important remark From now on, we add some restrictions to our language:
• Variables are of type (signed) int or bool only (no float, no string, no char). Thus all values can be stored

in regular registers or in one cell in memory. You can let you program crash if an other type of variable is
provided.

• The only use of strings are inside log instructions:

– log(“this is a message”) is valid but not u="mymessage".

– log(x) is also valid whevener x has a value (int or bool).

This feature will not be cost you much if it is not implemented

Structure of the code

• In APICodeLEIA.py we provide you with utility functions to encode 3-address LEIA instructions. An
Instruction is either a Comment, a Label, or a Instru3A; it has arguments which can be immediate
numbers (of type Immediate), temporaries (of type VirtualRegister), regular registers (Register),
offsets in memory (Offset). In Section 5.1, you will have use an instance of the LEIAProg in order to
construct a list of such instructions via calls to addInstructionXXX methods. A call to the printCode
method will dump this code into a text file.

• File Allocation.py is responsible of the allocation part. From a LEIAProg with temporaries (instruc-
tions formed with virtual registers), producing an actual LEIA program (instructions with regular regis-
ters or memory acesses) is done by:

– First, compute an allocation for each temporary (in the current LEIAProg instance). In Section 5.2,
we provide you with LEIAProg.naive_alloc() which computes such a (naive) allocation, you
will have to design your own allocation function in Section 5.3.

– For each instruction of the program, if the instruction contains a read or write access to a tempo-
rary, replace operands with the corresponding actual registers/memory location (and possibly add
some instructions before and after). This is done by the use of the LEIAProg.iter_instructions
iterator on instructions and Allocations.replace_reg methods. In Section 5.3 you will have to
write such a “replacement” function.

• The file Main.py launches the chain: production of 3-address code with temporaries, allocation, re-
placement, print.

Aurore Alcolei, Laure Gonnord, Valentin Lorentz. 1/10

ENS de Lyon, Département Informatique, M1 CAP Lab #5 – Automne 2017

• The script test_codegen.py will help you to test your code. We will use it in Section 5.2

5.1 Three-address code

In this section you have to implement the course rules (Figures 5.1 and 5.2) in order to produce LEIA code with
temporaries. The LEIA documentation can be found in Appendix A.

EXERCISE #1 Ï Manual translation
Give a (LEIA) three-address code for the following Mu program:

var a,n:int;
n=1;
a=7;
while (n<a) {
n= n+1;
}
log(n);

EXERCISE #2 Ï 3-address code generation
In the archive, we provide you a main and an incomplete MyMuCodeGenVisitor.py. To test it, type

make FOO=../tests/test01.mu

and observe the generated code in ../tests/test01.s1. You now have to implement the 3-address code
generation rules seen in the course. Code and test incrementally 2:

• the printing instruction log (we recall that there is a print native instruction in the LEIA assembly).
• numerical expressions without variables (constants are expected to hold on 16 bits).
• then (numerical) assignements and expressions with variables; PowExpr and MultiplicativeExpr are bonus,

implement them only if after everything else is working.
• then boolean expressions: compute 1 (true) or 0 (false) in the destination register;
• while;
• if then else. Be careful with nested ifs and their labels! To help you, you can use the classCodeGenContext

provided in the APICodeLEIA. It allows you to remember where you are inside imbricated ifs. Your code
will then look like:

def visitIfStat(...):
if_ctx = CodeGenContext() # Create context
self.ctx_stack.append(if_ctx) # and push it on stack
if_ctx.end_label = ... # fill-in the context with

what you want
... self.visit(...) ...
self.ctx_stack.pop() # Remove the context from stack

About tests For tests (and boolean expressions), make sure you generate “conditional jumps” with:

self._prog.addInstructionCondJUMP(label, op1, cond, op2)

where op1 (resp op2) is the left operand (resp right operand), ie a register or a value of the boolean condition
(Condition(’eq’) for equality, for instance), and label is a label to jump to if the condition evaluates to true.
Later on (while printing), this instruction will expand itself to a regular snif.

Be also careful to avoid “jump to next line” because the LEIA machine doesn’t allow this instruction. You
might have to add dummy instruction like this to ensure to jump at least two instructions below:

self._prog.addInstructionJUMP(lend_if)
self._prog.addInstructionSUB(R0, R0, 0)) # dummy instruction
self._prog.addLabel(lend_if)

1We generated LEIA comments with Mu statements for debug.
2Using files in the TP04/ex/ and TP04/ex/stud-ok/ directories. All the test files you use will have to be in your archive.

Aurore Alcolei, Laure Gonnord, Valentin Lorentz. 2/10

ENS de Lyon, Département Informatique, M1 CAP Lab #5 – Automne 2017

5.2 Testing with the trivial allocator

The former code is not executable since it uses temporaries. We provide you with an allocation method which
allocates temporaries in registers as long as possible, and fails if there is no available registers. The process
takes as input the former 3-address code and transforms each instruction according to the allocation function.

EXERCISE #3 Ï Testing the trivial allocator
Open, read, understand the alloc_naive(src_prog) implementation in Allocations.py and how it is
used to perform the actual LEIA code generation. Then, intensively test your former code generation with
this allocator 3:

1. Uncomment the following lines in Main.py:

if naive_alloc:
alloc_naive(prog)

2. Test with:

python3 test_codegen.py

This script tests all files in the test/ directory:

• if the pragma #EXPECTED is present in the file, it compares the actual output after assembling and
simulating with the list of expected values. For instance:

log 1 < 2;
log 1 < 1;
log 1 > 2;
log 1 > 1;
EXPECTED
1
0
0
0

is a great test case for the comparison operator.

• In any cases, it compares the actual output after assembling and simulating to the output given by
your evaluator of the Mu Language (Lab 4). If your evaluator is buggy, you can decide either to
correct your bugs or to comment appropriate lines in the python scripts.

5.3 LEIA code with “all-stack” allocation of temporaries

As the number of registers is only 16, we have to find a way to store the results elsewhere. In this particular lab,
we will use the following solution:

• for a given expression/instruction rule, the generated code can use r2 to r5 registers instead of tempo-
raries;

• but all values that are propagated from one rule to another (subexpressions, . . .) must be stored in the
stack, which address will be stored in r6 (as defined in LEIAProg.printCode).

• r0 will be used to compute the actual addresses from the base register r6.
• r1 will be used to compute the value to store or as a destination register for the value to read.

Following the convention that r6 always stores the “begining of stack address”, pushing4 the content of r1

in the stack will be done following the steps:

• compute a new offset (call to the new_offset method of the class LEIAProg).

3Be careful, this allocator crashes if there is more than 8 temporaries !
4Please do not use the assembly macros push and pop that do not follow our conventions!

Aurore Alcolei, Laure Gonnord, Valentin Lorentz. 3/10

ENS de Lyon, Département Informatique, M1 CAP Lab #5 – Automne 2017

• generate the following instructions:

SUB r0 r6 <valueofoffset>
WMEM r1 [r0]

Be careful with the size of the offsetvalue!

EXERCISE #4 Ï Manual translation
Complete the expected output for the following two statements (15 lines of LEIA code):

var x,y:int;
x=4;
y=12+x

Listing 5.1: ’all in mem alloc for test00b.mu’

;;Automatically generated LEIA code, 2017
;; "All-in-memory allocation" version

3 ;stack management
.set r6 stack

;; (stat (assignment x = (expr (atom 4)) ;))
;; .let temp_2 4

8 .LET r1 4
SUB r0 r6 2
WMEM r1 [r0]
;; end .let temp_2 4
;; copy temp_1 temp_2

13 SUB r0 r6 2
RMEM r1 [r0]
COPY r1 r1
SUB r0 r6 3
WMEM r1 [r0]

18 ;; end copy temp_1 temp_2
;; (stat (assignment y = (expr (expr (atom 12)) + (expr (atom x))) ;))

;; <complete here>

23 ;; ...

;;postlude
jump 0

28 .align16
stackend:
.reserve 42
stack:

EXERCISE #5 Ï Implement
Now you are on your own to implement this code generation. Here are the main steps (less than 50 locs of
PYTHON):

1. Implement a alloc_to_mem(self) method in APICodeLEIA.py. This method only maps each tempo-
rary (“virtual register”) to a new offset in memory.

2. In Allocations.py, implement a replace_mem(old_i) that takes as input a “3-address with tempo-
raries” LEIA code and outputs a list of instructions as a replacement.

Aurore Alcolei, Laure Gonnord, Valentin Lorentz. 4/10

ENS de Lyon, Département Informatique, M1 CAP Lab # – Automne 2017

The files you generate have to be tested with the LEIA simulator with the same script as before.

EXERCISE #6 Ï Bonus
Implement an hybrid version that allocates temporaries (virtual registers) in actual registers as long as possible,
then in memory. You can use all r0 to r15 registers, but be careful to avoid conflicts!

EXERCISE #7 Ï Bonus
Implement the 3-address code for ParExpr and MultiplicativeExpr.

c

dr <-newTemp()
code.add(InstructionLETL(dr, c))
return dr

x

#get the place associated to x.
regval<-getTemp(x)
return regval

e1+e2

t1 <- GenCodeExpr(e_1)
t2 <- GenCodeExpr(e_2)
dr <- newTemp()
code.add(InstructionADD(dr, t1, t2))
return dr

e1-e2

t1 <- GenCodeExpr(e_1)
t2 <- GenCodeExpr(e_2)
dr <- newTemp()
code.add(InstructionSUB(dr, t1, t2))
return dr

true

dr <-newTemp()
code.add(InstructionLETL(dr, 1))
return dr

e1 < e2

dr <- newTemp()
t1 <- GenCodeExpr(e1)
t2 <- GenCodeExpr(e2)
endrel <- newLabel()
code.add(InstructionLET(dr, 0))
#if t1>=t2 jump to endrel
code.add(InstructionCondJUMP(endrel, t1, ">=" , t2)
code.add(InstructionLET(dr, 1))
code.addLabel(endrel)
return dr

Figure 5.1: 3@ Code generation for numerical or Boolean expressions (t1 and t2 are already defined)

Aurore Alcolei, Laure Gonnord, Valentin Lorentz. 5/10

ENS de Lyon, Département Informatique, M1 CAP Lab # – Automne 2017

x = e

dr <- GenCodeExpr(e)
#a code to compute e has been generated
if x has a location loc:

code.add(instructionCOPY(loc,dr))
else:

storeLocation(x,dr)

S1; S2

#concat codes
GenCodeSmt(S1)
GenCodeSmt(S2)

if b then S1 else S2

lelse,lendif <-newLabels()
t1 <- GenCodeExpr(b)
#if the condition is false, jump to else
code.add(InstructionCondJUMP(lelse, t1, "=", 0))
GenCodeSmt(S1) #then
code.add(InstructionJUMP(lendif))
code.addLabel(lelse)
GenCodeSmt(S2) #else
code.addLabel(lendif)

while b do S done

ltest,lendwhile <-newLabels()
code.addLabel(ltest)
t1 <- GenCodeExpr(b)
code.add(InstructionCondJUMP(lendwhile, t1, "=", 0))
GenCodeSmt(S) #execute S
code.add(InstructionJUMP(ltest)) #and jump to the test
code.addLabel(lendwhile) #else it is done.

Figure 5.2: 3@ Code generation for Statements

Aurore Alcolei, Laure Gonnord, Valentin Lorentz. 6/10

Appendix A
LEIA Assembly Documentation (ISA)

Source:

• ISA: Florent de Dinechin, Nicolas Louvet, Antoine Plet, for ASR1, ENSL, 2016.

• Simulator: Pierre Oechsel and Guillaume Duboc, L3 students at ENSL, 2016.

A.1 Installing the simulator and getting started

To get the LEIA assembler and simulator, follow instructions of the first Lab (git pull on the course lab reposi-
tory).

A.2 The LEIA architecture

Here is an example of LEIA assembly code for 2017:

letl r0 17 ; initialisation of a register
loop:
wmem r13 [r0] ; write in memory

4 rmem r13 [r2] ; read in memory
add r0 r10 r11 ; add
snif r0 eq 3 ; test : if r0 = 3 skip next instruction
jump loop ; equivalent to jump -3, and this is a comment
xor r0 r0 -1

Memory, Registers The memory is shared into words of 16 bits, with address of size 16 bits (from (0000)H to
(FFFF)H).

The LEIA has 16 generalistic registers. Only R151 is reserved for the routine return address. They are also
specific 16 bits registers: PC (Program Counter), IR (Instruction Register).

Constants: leth and letl These expressions provide ways to initialize registers. The constant is encoded in
the bits 0 to 7. For the letl instruction, bit 7 (sign bit) of the constant is replicated into the bits 8 to 15 of the
destination register. Thus:

letl r0 xx

stores the constant xx in register r0, provided xx between -128 and 127. The leth instruction stores the 8 bit
constant in the bits 8 to 15 of the destination register, the other bits being unchanged. Thus:

letl r0 2
leth r0 3

stores in r0 the constant 2+3∗28 = 770. The LEIA assembler tool provides a macro:

.let r0 770

to generate these two instructions automatically.

1registers are indifferently in capital letters or in lower case.

Aurore Alcolei, Laure Gonnord, Valentin Lorentz. 7/10

ENS de Lyon, Département Informatique, M1 CAP Lab #A – Automne 2017

Table A.1: All LEIA instructions

15 14 13 12 mnemonic class description ext(i)

0 0 0 0 wmem wmem write to memory
0 0 0 1 add ALU addition z(i)
0 0 1 0 sub ALU subtraction z(i)
0 0 1 1 snif snif skip next if s(i)
0 1 0 0 and ALU logical bitwise and s(i)
0 1 0 1 or ALU logical bitwise or s(i)
0 1 1 0 xor ALU logical bitwise xor s(i)
0 1 1 1 lsl ALU logical shift left z(i)
1 0 0 0 lsr ALU logical shift right z(i)
1 0 0 1 asr ALU arithmetic shift right z(i)
1 0 1 0 call call sub-routine call
1 0 1 1 jump jump relative jump if offset 6= 1

return return from call if offset= 1
1 1 0 0 letl letl 8-bit constant to Rd, sign-extended
1 1 0 1 leth leth 8-bit constant to high half of Rd
1 1 1 0 print print print or refresh
1 1 1 1 rmem rmem read from memory if i=0

copy register-to-register copy if i=1

notation meaning

d a 3 or 4 bit number that specifies the destination register
i a 4-bit number (bits 4 to 7 of the instruction word), the number of the first operand register
j a 4-bit number

Table A.2: Notations

Arithmetical and logical instructions Arithmetical and logical instructions have 3 operands:

add r1 r0 3 ; add immediate
add r1 r2 r1 ; add registers

The first operand is the destination register, and the two remaining operands are sources: either two registers
(if the bit 11 is 0) or a register and an immediate constant j of 4 bits (if the bit 11 is 1). Because of the restricted
number of bits to describe the first operand, the destination register can only be one of the first eight registers
(from r0 to r7). If a constant is used then it is extended into a 16 bit constant before the operation. This is
documented in the last column of table A.1:

• z(j) means that j is extended with zeros. In other words j is interpreted as a positive integer.

• s(j) means that the bit 3 (sign bit) of j is replicated into bits 4 to 15: j is interpreted as a signed integer
and is transformed into a 16 bits integer of the same value.

Thus the result of the instruction:

add r1 r0 -1

is not really what is expected. The constant j =−1 is encoded as 1111, extended as z(j) =0000000000001111,
thus the sum should be done with the 31 constant. The assembler tool throws an error in that case:

instruction add: Number, Not in bound: [0, 15]

Branching Let a be the instruction’s address, and c the integer encoded in the bits 0 to 11 of the instruction’s
word. The call instruction makes a copy of a+1 into r15 then executes pc← c×16. Thus procedures should
have addresses that are multiple of 16.

The jump instruction considers the constant c as a signed integer (thus between -2048 and 2047) and ex-
ecutes pc← a+c except if c = 1, in which case it executes pc← r15. In this case we can use the mnemonic
return.

Aurore Alcolei, Laure Gonnord, Valentin Lorentz. 8/10

ENS de Lyon, Département Informatique, M1 CAP Lab #A – Automne 2017

Table A.3: Encoding per instruction class

class action 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ALU reg rd ← ri op r j opcode 0 d i j
ALU imm4 rd ← ri op ext(j) opcode 1 d i j

snif skip next if 0 0 1 1 c/r condition i j

letl rd ← s(b) 1 1 0 0 d b
leth rd [15..8] ← b 1 1 0 1 d b

call jump to the routine 1 0 1 0 c
jump jump 1 0 1 1 c
return return to calling routine 1 0 1 1 0 1

wmem mem[r j] ← ri 0 0 0 0 0 0 0 0 i j
rmem rd ← mem[r j] 1 1 1 1 d 0 0 0 0 j
copy rd ← r j 1 1 1 1 d 0 0 0 1 j

print reg print (the numerical content of) ri 1 1 1 0 0 1 0 0 0 i
print char print c 1 1 1 0 1 0 0 0 asci i (c)
refresh wait 1 1 1 0 0

Tests: snif “skip next if” The snif op1 <condition> op2 instruction deactivates the next instruction if
the condition is true. Operands 1 and 2 are encoded like in the ALU instructions. In particular the second
operand can be an immediate constant, which sign will be extended. The condition is encoded thanks to the
following table:

10 9 8 mnemonic description

0 0 0 eq equal, op1 = op2
0 0 1 neq not equal, op1 6= op2
0 1 0 sgt signed greater than, op1 > op2, two’s complement
0 1 1 slt signed smaller than, op1 < op2, two’s complement
1 0 0 gt op1 > op2, unsigned
1 0 1 ge op1 ≥ op2, unsigned
1 1 0 lt op1 < op2, unsigned
1 1 1 le op1 ≤ op2, unsigned

Let us illustrate the difference between sgt et gt: if R0 contains 0, then:

snif r0 gt -1

is false, but

snif r0 sgt -1

is true. In fact, the −1 constant is extended as ffff (hexa), which is interpreted as 65535 by gt, and -1 by sgt.

Memory accesses The memory address is always specified in the r j register encoded in bits 0 to 3. The
instruction rmem rd [rj] copies in the destination register (coded in bits 8 to 11) the content of the memory
at address r j . The instruction wmem ri [rj] copies the content of the register ri (coded in bits 4 to 7) in the
memory cell whose address is stored inside rj.

Register management Some registers cannot be used with arithmetic and logical instructions, yet it is possi-
ble to use them to store a result thanks to the copy instruction. This instruction is also usefull before function
calls to quickly save registers that are known to be used by the function.

Print Two examples of use of the native print instruction:

print r1 ; prints the content of r1 (numerical value)
print 'z' ; prints the character 'z'

Aurore Alcolei, Laure Gonnord, Valentin Lorentz. 9/10

ENS de Lyon, Département Informatique, M1 CAP Lab #A – Automne 2017

Assembly directives A bit more of syntax:
• The assembly begins at address 0.
• Labels can be used for jumps. Warning, for the compiler to work properly, do not type anything else

than the label on its line, followed by a colon ’:’.
• The keyword .word xxxx reserves a memory cell initialized to the 16 bit constant xxxx.
• The keyword .reserve xxxx reserves n memory cells initialized to 0.
• The keyword .string “Hello” reserves 6 memory cells and store the ascii numbers corresponding to

all the characters of the message (ending it with a Null character).
• The keyword .align16 pads memory cells in order for the next line to be at an address multiple of 16.
• The macro .let r3 585 stores the constant 585 in register 3 (see paragraph A.2)
• The macro .set r3 label loads the address corresponding to label onto r3. For instance, the following

program:

.set r0 foo
foo:

3 .word 42

is assembled into:
c002 ; letl r0 2 (because 42 is stored at line 2)
d000 ; leth r0 0
002a ; the 42 constant

From Lab 5 we will be using a stack. The address of its top will be stored in r7 and we will use the following
macros:

• The macro .push ri that pushes the content of the ri register into the memory. It is equivalent to:

sub r7 r7 1
2 wmem ri [r7] ;

• The macro .pop ri that does the converse:

rmem ri [r7]
add r7 r7 1

A.3 Help to encode constants

hex to binary
a b c d e f

1010 1011 1100 1101 1110 1111

2’s complement Let us code n = (−3)10 in 2’s complement on 6 bits, with the recipe: “code -n in base 2,
then negate bitwise, then add one”. First, 3 is encoded as 000011 on 6 bits. Its negation is 111100, thus
(−3)10 = 1111012̄.

A.4 The graphical library

Coordinates of the screen start on the bottom left corner of the screen ((0,0) ↑x
−→y)

• clearscr: does what it is supposed to do. Uses register r1.
• putstr: puts a string on the screen at coordinates (r1, r2) ; the string address is in register r3 ; if r4 is not

1 then refresh between each letter. Uses registers 1, 2, 3, 6, 14, 15 and those of putchar. An example can
be found in Lab 1.

• putchar: puts a char on the screen at coordinates (r1, r2). Uses registers r1 to r6. An example can be
found in Lab 1.

• refresh: refreshes the screen.

Aurore Alcolei, Laure Gonnord, Valentin Lorentz. 10/10

	Syntax-Directed Code Generation
	Three-address code
	Testing with the trivial allocator
	LEIA code with ``all-stack'' allocation of temporaries

	LEIA Assembly Documentation (ISA)
	Installing the simulator and getting started
	The LEIA architecture
	Help to encode constants
	The graphical library

