
Lab 7
Abstract Interpretation:

Numerical Abstract Domains

Objective

• Write an abstract interpreter for the Mu language in Python.
• Implement classical finite abstract domains, and some infinite ones.
This lab is adapted from a lab by Pierre Roux, in the particular setting of Mu and PYTHON/ANTLR4.

No code is provided in the git. Pull for some examples.

Milestones for the 3 sessions

• Session 1: Operational code infrastructure, obtained by adapting code from previous lab, Makefile, and
basic command line. Exercise 1 and 2 (augmenting the grammar and concrete evaluator with random
and assert expressions). Adequating test files for the sign abstract domain. Starting the implementation
of the sign abstract domain, in parallel with the abstract evaluator (Exercise 3).

• Session 2: Finishing the abstract evaluator and the sign abstract (Exercise 3), implementing the constant
abstract domain (Exercise 4). Basic tests. Adapt the command line.

• Session 3: Interval lattice (Exercise 5 and 6), and automatic test infrastructure. Bonuses if everything else
is working.

Your work is due on Thursday the 14th of December before midnight. We expect your archive name to
be of the form SurnameName.tgz and the archive to extract itself in a new directory SurnameName/.
Your folder must contain your code, tests, and a Readme that explains what is implemented, the usage, your
tests, what are the known bugs, how to solve them if you know, or any other interesting factual points that may
help understanding you work.

7.1 Abstract Analyser for Mu for constant propagation

You are on your own. Based on what we did before, you have to implement an abstract interpreter for the Mu
language.
Minimal printing for your evaluators are logs (concrete value or abstract domain), assert (a given property).
You can also choose to print the invariant before every while loop and at the end of the program, similarly to
what is done here : http://pagai.forge.imag.fr/

EXERCISE #1 Ï Language extension
Extend the grammar with random and assert expressions, extend your mu concrete evaluator from Lab3 and
test.

expr := ... | rand(e1,e2)
stmt := ... | assert(b)

EXERCISE #2 Ï Generic Static Analyser
Implement a static analyser, test infrastructure for the constant abstract domain (see later for a lattice descrip-
tion). You may choose to do it using visitor or CFG. Try to be as generic as you can in your analyser since you
will have to change abstract domains from the command line.

You will have to implement the following abstract domains: signs, constants, intervals (in bonus, poly-
hedra or the congruence abstract domain - see exercise sheet). For assert, the analyser should print True or
I do not know if it is not capable of proving the assertion.

Aurore Alcolei, Laure Gonnord, Valentin Lorentz. 1/3

http://pagai.forge.imag.fr/

ENS de Lyon, Département Informatique, M1 CAP Lab #7 – Automne 2017

7.2 Finite height Abstract Domains

A cheat sheet about abstract domains can be found at the address:

http://perso.ens-lyon.fr/pierre.roux/vas_2013_2014/rappels_domaines_abstraits.pdf

(talk to your TA if you need help in reading the french there).

7.2.1 Signs

This domain makes it possible to find variables which are strictly positive or strictly negative, or zero, hence
allowing to guarantee the correctness of more divisions.

>

- 0 +

⊥

γ(>) = Z

γ(+) = {n ∈Z | n > 0}
γ(−) = {n ∈Z | n < 0}
γ(0) = {0}
γ(⊥) = ;

EXERCISE #3 Ï Signs
Implement this domain and see what happens on well-chosen examples.

7.2.2 Kildall

This domain makes it possible to find variables which are constants at a certain point in the program. It can
also be used to simplify programs in a compiler.

>

·· · −2 −1 0 1 2 · · · 42 · · ·

⊥

γ(>) = Z

γ(n) = {n }
γ(⊥) = ;

EXERCISE #4 Ï Kildall
Implement this domain and see what happens for the example ex/ex08.mu.

7.3 Infinite Height: intervals

In this section, we wish to implement a domain of intervals, where variables are interpreted by the range of
values they can take.
The lattice is (D],v]) with D] =⊥ ∪ {(n1,n2) ∈ (Z∪ {−∞ })× (Z∪ {+∞ }) | n1 ≤ n2}.

(−∞,+∞)

...

· · · (−1,1) · · ·

· · · (−1,0) (0,1) · · ·

· · · (−1,−1) (0,0) (1,1) · · ·

⊥

γ(−∞,+∞) = �−∞,+∞�
γ(−∞,n) = �−∞,n�
γ(n,+∞) = �n,+∞�
γ(n1,n2) = �n1,n2�
γ(⊥) = ;

Aurore Alcolei, Laure Gonnord, Valentin Lorentz. 2/3

http://perso.ens-lyon.fr/pierre.roux/vas_2013_2014/rappels_domaines_abstraits.pdf

ENS de Lyon, Département Informatique, M1 CAP Lab # – Automne 2017

Reminder: a widening operator can be used to accelerate the convergence of the fixpoint calculation. The idea
is to extrapolate in the computation, so that we reach a result without going upwards ad infinitum in a lattice
of unbounded height:

x]Oy] =

�a,b� if x] = �a,b� , y] = �c,d� ,c ≥ a,d ≤ b
�a,+∞� if x] = �a,b� , y] = �c,d� ,c ≥ a,d > b
�−∞,b� if x] = �a,b� , y] = �c,d� ,c < a,d ≤ b
�−∞,+∞� if x] = �a,b� , y] = �c,d� ,c < a,d > b
y] if x] =⊥
x] if y] =⊥

EXERCISE #5 Ï Intervals
Implement this domain. Firstly, implement without widening, then test, then implement widening. You will
have to change your generic analyser to apply widening at loop heads. Test on well-chosen examples.

EXERCISE #6 Ï Descending sequence, widening delay
On the following program:

i = 0; j = 0;
while (i < 10) {
if (i <= 0) {
j = 1;
++i;
} else {
++i; } }

What interval does one get for variable j? First try to improve by using a descending sequence, then by a
widening delay. Augment the command line of your tool.

7.4 Applications

EXERCISE #7 Ï Printing
For every print statement, make the analyzer print the abstract value of the expression given to the print state-
ment.

EXERCISE #8 Ï Division by zero
Make your analyzer find divisions by zero.

There are two possible modes:

• either make it detect all cases when there is a risk of a division by zero (eg. 5 / random(-5, 5)), or

• only cases when you are sure there is a division by zero.

7.5 Optional extensions

Only do this section if you have time. Exercises below are in ascending order of difficulty.

EXERCISE #9 Ï Arrays
Add arrays to the Mu language. Describe their semantics and operations on the arrays on paper.

Add support for checking out of bound access to arrays (negative and overflow).
Add basic support for abstract values in the arrays. The easiest way to do it is to join (ie. make the union)

abstract values of all variables in the array to a single value.

EXERCISE #10 Ï More types
Add support for booleans, to refine what your analyzer infers when a condition is run.

Add support for floats, in addition to integers.

EXERCISE #11 Ï Polyhedra
Add a new abstract domain, that uses a convex polyhedron as the type of an abstract value. You may use a
third-party library if its license allows it.

Aurore Alcolei, Laure Gonnord, Valentin Lorentz. 3/3

	Abstract Interpretation: Numerical Abstract Domains
	Abstract Analyser for Mu for constant propagation
	Finite height Abstract Domains
	Signs
	Kildall

	Infinite Height: intervals
	Applications
	Optional extensions

