Compilation and Program Analysis (#6) :
Intermediate Representations: CFG, DAGs (Instruction
Selection and Scheduling), SSA

Laure Gonnord
http://laure.gonnord.org/pro/teaching/capMi.html

Laure.Gonnord@ens-lyon.fr
Master 1, ENS de Lyon

oct 2017

) Lyon1 LN | I
) LN | I

ENS DE LYON

http://laure.gonnord.org/pro/teaching/capM1.html
Laure.Gonnord@ens-lyon.fr

Big picture

source code

I

lexical+syntactic analysis + typing

l
decorated AST

I

\code production (numerous phases) \

1

assembly language

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2017 «2/31 —

In context 1/2

In the last course we saw the need for a better data structure to
propagate and infer information. We need :

@ A data structure that helps us to reason about the flow of
the program.

@ Which embeds our three address code.
» Control-Flow Graph.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2017 «3/31 -

In context 2/2

decorated AST
1

IR Construction |

l
Control-Flow Graph

I

Clever analyses/code generation

1

assembly language

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2017

«4/31 >

Control flow Graph

0 Control flow Graph
e Basic Bloc DAGs, instruction selection/scheduling

e SSA Control Flow Graph

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2017 «5/31 —

Control flow Graph

Definitions

Definition (Basic Block)

Basic block : largest (3-address LC-3) instruction sequence
without label. (except at the first instruction) and without jumps
and calls.

Definition (CFG)
It is a directed graph whose vertices are basic blocks, and edge
B1 — Bs exists if By can follow immediately B, in an execution.

v

» two optimisation levels : local (BB) and global (CFG)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2017 «6/31 —

Control flow Graph

|dentifying Basic Blocks (from 3@code)

@ The first instruction of a basic block is called a leader.
@ We can identify leaders via these three properties :

1 The first instruction in the intermediate code is a leader.

2 Any instruction that is the target of a conditional or
unconditional jump is a leader.

3 Any instruction that immediately follows a conditional or
unconditional jump is a leader.

@ Once we have found the leaders, it is straighforward to
find the basic blocks : for each leader, its basic block
consists of the leader itself, plus all the instructions until
the next leader.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2017

«7/31 —

Control flow Graph

Exercise

Generate the “high level” CFG for the given program :

p:=0;1i:=1;
while (i <= 20) do
if p>60 then
p:=0;1:=5;
endif
1:=2%i+1;
done

k:=p*3;

(inside your compiler, blocks will be a list of 3@-LC-3 code)

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2017 «8/31 —

Control flow Graph

CFG for tests

if (exprl and expr2)

...branchil...

else

...branch2...

(blocks are subgraphs)

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2017 «9/31 —

Basic Bloc DAGs, instruction selection/scheduling

@ cControl flow Graph

Q Basic Bloc DAGs, instruction selection/scheduling
@ Instruction Selection
@ Instruction Scheduling

9 SSA Control Flow Graph

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2017 «10/31 —

Basic Bloc DAGs, instruction selection/scheduling

Big picture

@ Front-end — a CFG where nodes are basic blocks.

@ Basic blocks — DAGs that explicit common computations

MULADD
u1 = c - d ﬁ MUL
u2 := b + ul /@ — Q
ud = a * u2 DD @
e <
ud := u2 * ul @ SUB Q
ub := u3 + u4d @‘/ \®

» choose instructions(selection) and order them (scheduling).

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2017 «11/31 —

Basic Bloc DAGs, instruction selection/scheduling Instruction Selection

@ Control flow Graph

e Basic Bloc DAGs, instruction selection/scheduling
@ Instruction Selection

© SSA Control Flow Graph

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2017 «12/31 —

Basic Bloc DAGs, instruction selection/scheduling Instruction Selection

Instruction Selection

The problem of selecting instructions is a DAG-partitioning
problem. But what is the objective ?

The best instructions :
@ cover bigger parts of computation.

@ cause few memory accesses.

» Assign a cost to each instruction, depending on their
addressing mode.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2017 «13/31 —

Basic Bloc DAGs, instruction selection/scheduling Instruction Selection

Instruction Selection : an example

ADD(c=2)

2

N

[UL(c=2)

)

N

O

O

MULADD(c=3)

e
[

\

M

O

O

ADD(c=1)

)

Ve

M

™ What is the optimal
P

[UL(e=1) instruction selection for :

D,

7

AN

cte

ﬁ)\

CDEENC

)

» Finding a tiling of minimal cost : it is NP-complete (SAT
reduction).

Laure Gonnord (M1/DI-ENSL)

Compilation and Program Analysis (#6): IRs

2017

«14/31 -

Basic Bloc DAGs, instruction selection/scheduling Instruction Selection

Tiling trees / DAGs, in practise

For tiling :
@ There is an optimal algorithm for trees based on dynamic
programing.
@ For DAGs we use heuristics (decomposition into a forest of
trees, ...)
» The litterature is pletoric on the subject.

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2017 «15/31 —

Basic Bloc DAGs, instruction selection/scheduling Instruction Scheduling

@ Control flow Graph

e Basic Bloc DAGs, instruction selection/scheduling

@ Instruction Scheduling

© SSA Control Flow Graph

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2017 «16/31 —

Basic Bloc DAGs, instruction selection/scheduling Instruction Scheduling

Instruction Scheduling, what for ?

We want an evaluation order for the instructions that we choose
with Instruction Scheduling.

A scheduling is a function 6 that associates a logical date to
each instruction. To be correct, it must respect data
dependancies :

(S1) ul :
(S2) u2 :

c-d
b + ul

implies 6(S1) < 6(S2).
» How to choose among many correct schedulings ? depends
on the target architecture.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2017 «17/31 —

Basic Bloc DAGs, instruction selection/scheduling Instruction Scheduling

Architecture-dependant choices

The idea is to exploit the different ressources of the machine at
their best :

@ instruction parallelism : some machine have parallel units
(subinstructions of a given instruction).

@ prefetch : some machines have non-blocking load/stores,
we can run some instructions between a load and its use
(hide latency)

@ pipeline.
@ registers : see next slide.

(sometimes these criteria are incompatible)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2017 «18/31 —

Basic Bloc DAGs, instruction selection/scheduling

Instruction Scheduling

Register use

Some schedules induce less register pressure :

(a) t1:=Id(x);

t1

(b) t2:=t1 +4;

(c) t3:=11*8;

t3

(d) t4:=1t1-4;

I..

t4

(e) t5:=t1/2;
(f) t6:=12*t3;

(g) t7 :=t4-15;

(h) t8:=16*17;

i
|

(1) st(y,t8);

(a) tl:=1d(x); ¢4

(d) t4:=t1-4;

() t5:=t1/2;

i47

(g) t7 :=t4 -t5;

(© B:=ti*g f

(b) t2:=t1 + 4; t3u

(f t6:=2*t3; | aa
(h) t8:=1t6*t7; | @
() _st(y,t8);]'F

» How to find a schedule with less register pressure ?

Laure Gonnord (M1/DI-ENSL)

Compilation and Program Analysis (#6): IRs

2017

«19/31 -

Basic Bloc DAGs, instruction selection/scheduling Instruction Scheduling

Scheduling wrt register pressure

Result : this is a linear problem on trees, but NP-complete on
DAGs (Sethi, 1975).

» Sethi-Ullman algorithm on trees, heuristics on DAGs

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2017 «20/31 —

Basic Bloc DAGs, instruction selection/scheduling Instruction Scheduling

Sethi-Ullman algorithm on trees

p(node) denoting the number of (pseudo)-registers necessary
to compute a node :

@ p(leaf) =1

maz{p(er). pea} i pler) # plea)
pler) +1 else

(the idea for non “balanced” subtrees is to execute the one with
the biggest p first, then the other branch, then the op. If the tree
is balanced, then we need an extra register)

» then the code is produced with postfix tree traversal, the
biggest register consumers first.

® p(nodeop(er, ez)) =

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2017 «21/31 —

Basic Bloc DAGs, instruction selection/scheduling Instruction Scheduling

Sethi-Ullman algorithm on trees - an example

3

Py
@Q@ @@\

\tmm tmpa tmp3 tmpy

mul tmpl, b b

mul tmp2, a c
1di tmp3, 4
mul tmp4, tmp2, tmp3

mul tmp5, tmpl ,temp4

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2017

«22/31 —»

Basic Bloc DAGs, instruction selection/scheduling Instruction Scheduling

Conclusion (instruction selection/scheduling)

Plenty of other algorithms in the literature :
@ Scheduling DAGs with heuristics, ...
@ Scheduling loops (M2 course on advanced compilation)

Practical session :

@ we have (nearly) no choice for the instructions in the LEIA
ISA.

@ evaluating the impact of scheduling is a bit hard.

We won’t implement any of the previous algorithms.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2017 «23/31 —

SSA Control Flow Graph

0 Control flow Graph
9 Basic Bloc DAGs, instruction selection/scheduling

e SSA Control Flow Graph
@ SSA Construction
@ Example
@ Out of SSA!

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2017

«24/31 —

SSA Control Flow Graph

Credits

Source http://homepages.dcc.ufmg.br/ " fernando/classes/
dcc888/ementa/slides/StaticSingleAssignment . pdf

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2017 «25/31 —

http://homepages.dcc.ufmg.br/~fernando/classes/dcc888/ementa/slides/StaticSingleAssignment.pdf
http://homepages.dcc.ufmg.br/~fernando/classes/dcc888/ementa/slides/StaticSingleAssignment.pdf

The Static Single Assignment Form

¢ This name comes out of the fact that each variable has
only one definition site in the program.

* In other words, the entire program contains only one
point where the variable is assigned a value.

* Were we talking about Single Dynamic Assignment, then
we would be saying that during the execution of the
program, the variable is assigned only once.

Ly:

i
1t s

0
0

—

+ o+ b fe—

w3

X
VR 4
: 1f 1 < N goto L,

L |

Variable i has two static assignment sites: at L, and
at L,; thus, this program is not in Static Single
Assignment form. Variable s, also has two static
definition sites. Variable x, on the other hand, has
only one static definition site, at L,. Nevertheless, x
may be assigned many times dynamically, i.e.,
during the execution of the program.

SSA Control Flow Graph

A first Example (Cytron 1991)

Each variable is assigned only once (Static Single Assigment
form) :

y_3 « phi(y_1,y_2)
w_2 < x_2 - y_3
z_1 < x_2 + y_3

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2017 «26/31 —

SSA Control Flow Graph

Pro/cons

- Another IR, and cost of contruction/deconstruction

+ (some) Analyses/optimisations are easier to perform (like
register allocation) :
http://homepages.dcc.ufmg.br/ fernando/classes/
dcc888/ementa/slides/SSABasedRA. pdf

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2017 « 27 /31 —

http://homepages.dcc.ufmg.br/~fernando/classes/dcc888/ementa/slides/SSABasedRA.pdf
http://homepages.dcc.ufmg.br/~fernando/classes/dcc888/ementa/slides/SSABasedRA.pdf

SSA Control Flow Graph SSA Construction

@ Control flow Graph

e Basic Bloc DAGs, instruction selection/scheduling

© SSA Control Flow Graph
@ SSA Construction

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2017 «28/31 —

PPGCC

Converting Straight-Line Code into SSA Form

* We call a program without for each variable a:

branches a piece of Count[a] =0
"straight-line code". Stack[a] = [0]

* Converting a straight-line rename_basic_block(B) =
program, e.g., a basic for each instruction S in block B:
block, into SSA is fairly for each use of a variable x in S
straightforward. i = top(Stack[x])

replace the use of x with x;
Lyt a = x +y for each variable a that S defines
1t b=a-1 count[a] = Count[a] + 1
st a =y + Db |lcan you convert i = Count[a]
e ey | pushi onto Stackla)
‘ replace definition of @ with g,

PPGCC

Converting Straight-Line Code into SSA Form

* We call a program without for each variable a:

branches a piece of Count[a] =0
"straight-line code". > Stack[a] = [0]

* Converting a straight-line rename_basic_block(B) =
program, e.g., a basic for each instruction S in block B:
block, into SSA is fairly for each use of a variable x in S
straightforward. i = top(Stack[x])

: replace the use of x with x;
Lyt a3 = X5 + v, for each variable a that S defines
10 by =a; - 1 count[a] = Count[a] + 1
2t @ = Yo * by - —Count[a]
s b, = 4 * x Notice that we could do
3 2 © | without the stack. How?!|i onto Stack[a]
4t @57 2 Dy | purwe willneed itto ce definition of a with a;

generalize this method.

Having just one static assignment site for
each variable brings some challenges,
once we stop talking about straight-line
programs, and start dealing with more

Phi-Functions

complex flow graphs.

One important question
is: once we convert this
program to SSA form,
which definition of b
should we use at Lg?

:a = read()
: b = read()
: if a > b goto L,

Ly: a, = read()

0
12 by = read()

L, if ay > by goto L

/

L,:

'

goto L,

a

/

: by = ag
: goto L,

Phi-Functions

The answer to this question is: it depends! Indeed, the
definition of b that we will use at L; will depend on which
path execution flows. If the execution flow reaches L
coming from L,, then we must use b,. Otherwise, execution
must reach Lg coming from L,, in which case we must use b,

Ly 0: @y = read()

a
o— b read () o— b, read ()
,: if a > b goto L, L, if ay > by goto L

e =>

4t goto L

= read() L

L

Phi-Functions

read()

In order to represent this kind of behavior, ¢ .| . 2’ - rcaa()

we use a special notation: the phi-
function. Phi-functions have the semantics

if a; > b, goto L,

of a multiplexer, copying the correct Ly:

definition, depending on which path they
are reached by the execution flow.

@

Ly: a, = read() L, a, = read()

@—| i b, = read() o—| = read()

1 if a, > b, goto L, a, > b, goto L,

What happens once we
have multiple phi-
functions at the
beginning of a block?

Criteria for Inserting Phi-Functions

* There should be a phi-function for
variable b at node z of the flow graph
exactly when all of the following are true:

— There is a block x containing a definition e I
of b o*— i: b = read()
— There is a block y (with y # x) containing a 2i 1f 2 > bgoto Iy

definition of b /
— There is a nonempty path P,, of edges A —

from xto z i goto L,
— There is a nonempty path P, of edges

fromytoz z\‘
i Q(—@
— Paths P,, and P, do not have any node in

common other than z, and...
— The node z does not appear within both

P,, and P, prior to the end, though it may
appear in one or the other.

Criteria for Inserting Phi-Functions

* There should be a phi-function for
variable b at node z of the flow graph
exactly when all of the following are true:

— There is a block x containing a definition N
L,: a = read()
of b @®— .: b= read()
— There is a block y (with y #) containing a 2t if 2 > b goto L,

definition of b /

— There is a nonempty path P,, of edges Vi[i:b=a
fromxtoz .+ goto Ly

— There is a nonempty path P, of edges

fromytoz z:
— Paths P,, and P, do not have any node in

common other than z, and...
— The node z does not appear within both

P,, and P, prior to the end, though it may
appear in one or the other.

Ls: ret b

Criteria for Inserting Phi-Functions

* There should be a phi-function for
variable b at node z of the flow graph
exactly when all of the following are true:

— There is a block x containing a definition P
of b @ .: b= read()

— There is a block y (with y # x) containing a 2 i@ > b gote 1,
definition of b / l

— There is a nonempty path P,, of edges Vi1 b-a
from x to z 4t goto L 1

— There is a nonempty path P, of edges l
fromytoz z:

Ls: ret b
— Paths P,, and P, do not have any node in

common other than z, and...
— The node z does not appear within both

P,, and P, prior to the end, though it may
appear in one or the other.

Criteria for Inserting Phi-Functions

* There should be a phi-function for
variable b at node z of the flow graph
exactly when all of the following are true:

— There is a block x containing a definition
of b

— There is a block y (with y # x) containing a
definition of b

— There is a nonempty path P,, of edges
from xto z

— There is a nonempty path P, of edges
fromytoz

— Paths P,, and P, do not have any node in
common other than z, and...

— The node z does not appear within both

P,, and P, prior to the end, though it may
appear in one or the other.

y:

read ()
read/()
if a > b goto L,

'

W

I.:

3t

¢ goto Ly

4

b =a

AN

z:.
L;: ret b

Criteria for Inserting Phi-Functions

* There should be a phi-function for
variable b at node z of the flow graph
exactly when all of the following are true:

— There is a block x containing a definition
of b

— There is a block y (with y # x) containing a
definition of b

— There is a nonempty path P,, of edges
from xto z

— There is a nonempty path P, of edges
fromytoz

— Paths P,, and P, do not have any node in
common other than z, and...

— The node z does not appear within both

P,, and P, prior to the end, though it may
appear in one or the other.

y:

Ly: a = read()
o— b = read()
,: if a > b goto L,
Lyt b = a
4t goto L, l
z:
L;: ret b

* There should be a phi-function for
variable b at node z of the flow graph
exactly when all of the following are true:

— There is a block x containing a definition
of b

— There is a block y (with y # x) containing a
definition of b

— There is a nonempty path P,, of edges
from xto z

— There is a nonempty path P, of edges
fromytoz

— Paths P,, and P, do not have any node in
common other than z, and...

— The node z does not appear within both

P,, and P, prior to the end, though it may
appear in one or the other.

y:

Criteria for Inserting Phi-Functions

X: Lyt
@*o— i

'

a = read()
b = read()
if a > b goto L,

Z |l

I.:

3t

¢ goto Ly

4

b =a

|

z:.
L;: ret b

.l

Iterative Creation of Phi-Functions

* When we insert a new phi-function in the program, we
are creating a new definition of a variable.

* This new definition may raise the necessity of new phi-
functions in the code.

. . What is the
* Thus, the path convergence criteria must be complexity of
used iteratively, until we reach a fixed point: il Sles

while there are nodes x, y, and z satisfying the path-
convergence criteria and z does not contain a phi-functio
for variable a do:
insert a = ¢(a, g, ..., a) at node z, with as many
parameters as z has predecessors.

Dominance Property of SSA Form

The previous algorithm is a bit too expensive. Let's see a faster
one. But, to do it, we will need the notion of dominance frontier.

A node d of a rooted, directed graph dominates another

node n if every path from the root node to n goes
through d.

In Strict® SSA form programs, definitions of variables
dominate their uses:

— If x is the i-t argument of a phi-function in block n, then
the definition of x dominates the i-t" predecessor of n.

— If x is used in a non-phi statement in block n, then the
definition of x dominates node n.

Where have we

heard of
®: A program is strict if every variable dominance before?
is initialized before it is used.

Dominance Property of SSA Form

* In Strict SSA form programs,
definitions of variables
dominate their uses:

— If xis the i-th argument of a
phi-function in block n, then
the definition of x dominates

the i-th predecessor of n.
— If x is used in a non-phi

L,: = read ()

.t if a; > 0 goto Lg

V4

L,: : a, +1
51 goto Ly

statement in block n, then
the definition of x dominates

node n.

How does this
observation helps us
to build SSA form?

as|=a, -
goto Lg

Dominance Property of SSA Form

Ly: a = read() Lyt [ay]= read()
o ;0 if a < 2 goto Lg ® ;2 if a; < 2 goto Lg
L,: a = read() Ly: read()

;t if a > 0 goto L

ta=a+1 Lita=a-1
st goto Lg ,t goto Ly

Let[a5]= ap - 1

: goto Ly

NN

:tb(az, 2 a)

Lg: ret a,

For one, we can distribute phi-functions here and there, and then we only
have to worry about one thing: we must ensure that every use of a variable v
has the same name as the instance of v that dominates that use.

The Dominance Frontier

* There is an algorithm more efficient than the iterative
application of the path-convergence criteria, which is
almost linear time on the size of the program.

— This algorithm relies on the notion of dominance frontier

* A node x strictly dominates w if x dominates w and x # w.

* The dominance frontier of
a node x is the set of all
nodes w such that x
dominates a predecessor
of w, but does not strictly
dominate w.

What are the
nodes that "e"
dominates?

The Dominance Frontier

* There is an algorithm more efficient than the iterative
application of the path-convergence criteria, which is
almost linear time on the size of the program.

— This algorithm relies on the notion of dominance frontier

* A node x strictly dominates w if x dominates w and x # w.

* The dominance frontier of
a node x is the set of all
nodes w such that x
dominates a predecessor
of w, but does not strictly
dominate w.

What are the nodes
in the dominance
frontier of e?

The Dominance Frontier

* There is an algorithm more efficient than the iterative
application of the path-convergence criteria, which is
almost linear time on the size of the program.

— This algorithm relies on the notion of dominance frontier

* A node x strictly dominates w if x dominates w and x # w.

* The dominance frontier of
a node x is the set of all
nodes w such that x
dominates a predecessor
of w, but does not strictly
dominate w.

Why is e included
in its dominance
frontier?

The Dominance Frontier Criterion

Dominance-Frontier Criterion: Whenever node x
contains a definition of some variable a, then any node z
in the dominance frontier of x needs a phi-function for a.

Iterated dominance frontier: since a phi-function itself is
a kind of definition, we must iterate the dominance-
frontier criterion until there are no nodes that need phi-
functions.

Theorem: the iterated dominance frontier criterion and
the iterated path-convergence criteria specify exactly
the same set of nodes at which to put phi-functions.

Where should we
place phi-functions
due to the definition
of x at block f?

Dominance-Frontier Criterion: Whenever node x contains a
definition of some variable a, then any node z in the dominance
frontier of x needs a phi-function for a.

Iterated dominance frontier: since a phi-function itself is a kind of
definition, we must iterate the dominance-frontier criterion until
there are no nodes that need phi-functions.

The Dominance Frontier Criterion

Is there any other
place that should
receive phi-
functions?

The Dominance Frontier Criterion

Computing the Dominance Frontier

We compute the dominance frontier of the nodes of a graph by
iterating the following equations:

DF[n] = DF,,,[n] U {DFup[c] | ¢ € children[n] }

Where: .

* DFy[n]: the successors of n that are not strictly dominated
by n H

* DF,[c]: nodes in the dominance frontler of c that are not

strlctly dominated by n.
* children[n]: the set of children of node n in the dominator
tree

2) But,‘::why do we
have this second
part of the
equation?

1) It should be clear
why we need
DF ,ca[n], right?

Computing the Dominance Frontier

We compute the dominance
frontier of the nodes of a graph by
iterating the following equations:

DF[n] = DF,,[n] U {DFc] | c €

children[n] }

Where:

DF ,caln]: the successors of n
that are not strictly dominated
by n

DF,[c]: nodes in the dominance

frontier of c that are not strictly
dominated by n.

children[c]: the set of children of

node c in the dominator tree

The algorithm below computes the
dominance frontier of every node in
the CFG. It must be called from the
root node:

computeDF|n]:
S={}
for each node y in succ[n]
if idom(y) #n
S=S U {y}
for each child ¢ of n in the dom-tree
computeDFTc)
for each w € DF|c]
if n does not dom w, orn=w
S=S U {w}
DF[n]=S

PPGCC

place-phi-functions:
for each node n:
for each variable a € A ;,[n]:
defsites[a] =
for each variable a:
W = defsites[a]
while W # empty list

defsites[a] U [n]

remove some node n from W

for each y in DF[n]:
ifadAply]
insert-phi(y, a)
Apuly] = Apuly] U {a}
ifadA [yl e
W=wW U {y}

Inserting Phi-Functions

insert-phi(y, a):

insert the statement a = ¢(a, a, ..., a)
at the top of block y, where the
phi-function has as many arguments

as y has predecessors

Where'
[n]: the set of variables defined

orlg
at node

Anilyl: the set of variables that
have phi-functions at node "y"

Notice that W can grow,
due to this union. How

algorithm terminates?

Renaming Variables

* We already have a
procedure that renames
variables in straight-line
segments of code

* We must now extend this
procedure to handle
general control flow
graphs.

How should we
extend this
algorithm to handle
general CFGs?

for each variable a:
Count[a] =0
Stack[a] = [0]
rename-basic-block(B):
for each instruction S in block B:
for each use of a variable x in S:
i = top(Stack[x])
replace the use of x with x;
for each variable a that S defines
count[a] = Count[a] + 1
i = Count[a]
push i onto Stack[a]

replace definition of @ with g;

Renaming Variables

Does this algorithm rename(n):
ensure that the rename-basic-block(n)
definition of a .
variable dominates for each successor Y of n, where n is the
all its uses? j- predecessor of Y:

for each phi-function fin Y, where the

operand of f'is ‘a’

of n in the dominatar i= top(Stack[a])
tree. Why we cannot*

use the successors of |
nin the CFG? for eack child X of n:

replace j-™ operand with a

rename(X)
for each instruction S € n:
for each variable v that S defines:

pop Stack[v]

SSA Control Flow Graph Example

@ Control flow Graph

e Basic Bloc DAGs, instruction selection/scheduling

© SSA Control Flow Graph

@ Example

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2017 «-29/31 —

Putting it All Together

* Lets convert the following program to SSA form:

i=1 Lyt 1= 1
. @—— 1 7 =1
=1 ,i k=0
k=0 |
Whllek< 100 —_,‘ Ly: if k < 100 goto L,
ifj <20 / \
J=1 ‘LA: if § < 20 goto L, ‘Lm: retj‘
k=k+1 / \
else
. Lg: j =1 Lt J =k
i=k ck=k+1 gt k= k o+ 2
=k+
k=k+2 What is the
return j dominator tree

of this CFG?

Putting it All Together

The solid edges are

5] already present in

the program's CFG.
The dashed edge
only exist in the
dominator tree.

Can you compute
the dominance
frontier of each

node?

The Dominator Tree:

Lyt

[N

i
j =
kx =

I

‘ Ly: if k < 100 goto Ly,

VAN

L4: if j < 20 goto L, ‘ ‘Lw: retj‘
T
I
I
/ | \
Lg: J =1 L j =k
tk=k+1 Ly: goto L, tk=k+2

Computing the Dominance Frontier

The dominance frontier of

Lyt i -1 each node is listed below:
e— > -1
oo Lot
l Can you insert phi-
—_,‘ L,: if k < 100 goto Ly, L3: {L3} functions in the CFG on

the left, given these

/ \ L4: {Lg} dominance frontiers?

L

.t if 3 < 20 goto I, L, ret 3 ‘ Ls: {Lg}

/ \ L: {Lo}

i v 2 Lg: {L3}
Lo {}

~ .
o

Inserting Phi-Functions

0t
P

o -

3= ¢,
k= ¢(k,

L,: if k < 100 goto Ly,

/

‘ L,: if j < 20 goto

N\

o o

Which succession of
events has forced us to

add phi functions onto L,?

=63, 3)
= ok, k)

gt goto Lj

le— =~ < k-

L, ‘ ‘Lm: ret j ‘

Iterated Dominance Frontier

* Node L; does not dominate L, although L, is a successor of L.
Therefore, Ly is in the dominance frontier of L. Ly should have
a phi-function for every variable defined inside Ls.

* We repeat the process for L,, L i1
after all, we are considering R B
the iterated dominance |
frontier. |5, if k < 100 goto Ly,

* L;isin the dominance / \
frontier of Ly, and should also ‘ L,: if J < 20 goto L, ‘ ‘ L,: ret j ‘
have a phi-function for every / \\
variable defined in L;. Notice P P l
that these variables are now ck=k+1 b k= k+2

redefined at L,, due to the

phi-functions.

After Variable Renaming

Ly: i, = 1
@ — .+ 3 =1
Lyt i=1 .t kg =0
@ —| .+) =1
otk =0
I i = 06,)
=06, 9 _
K= ok, k) Ko = 0 lke ko)
L, if k < 100 goto L, Ly: if k, < 100 goto Iy,
‘L4: if § < 20 goto L, ‘Lm: ret j / \
{ ‘ L,: if j, < 20 goto L,‘ ‘Lw: ret j,
: 4 / \
Lg: J; = 1, Lyt Jg k,
giky =k 1 st ks = Kk, 42
3y = ¢35 39)

SSA Control Flow Graph Example

Demo!

cf demossa.c and Exercise sheet.

:
Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2017 «30/31 —

SSA Control Flow Graph Out of SSA!

@ Control flow Graph

e Basic Bloc DAGs, instruction selection/scheduling

© SSA Control Flow Graph

@ Out of SSA!

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2017 «-31/31 —

Phi-Functions

A set of N phi-functions with M arguments each at the beginning
of a basic block represents M parallel copies. Each copy reads N
inputs, and writes on N outputs.

Ly: iy = o Lyt i, Ly: iy =
1° Jo = @ 4t I 17 Jo T
i kg =@ 5t kg ot kg =
\ / \
i, = &1y i) J2 T
o . . k,
J2 ¢ (Jor J1)
kz = ¢(kor kl)
Lg: .
, @ = 1, How do we
gt ® = 7, implement phi-
5t ® =k, functions in

assembly?

7j2

Ly: i, = e
¢t Jp = e
5t k=@

i, =1,

i, i1

k, = kg

i,

k

2

SSA Elimination

Compilers that use the SSA form usually And where would we
contain a step, before the generation of place the copy b, = b,?
actual assembly code, in which phi- Why is this an

ctu . yc »INW IC' phi important question at
functions are replaced by ordinary all?

instructions. Normally these instructions
are simple copies.

Lyt a, = read() Lyt ag = read()
@—> . b, = read() @®— .: b, = read()
,t if a; > by goto Ly .t if a; > by goto Ly
Lyt b, = a, Ly b, = a4
i goto L i =B L
\ s: goto L I R
b, =¢(by, b;) - ‘
®- D b, =6 (b, [b,]
Ls: ret b, @1 et n,

Critical Edges

The placement of the copy b, = by is not simple, because the
edge that links L, to L. is critical. A critical edge connects a block
with multiple successors to a block with multiple predecessors.

If we were to put the copy between labels L1 and L2, then we
would be creating a partial redundancy.

Ly: a, = read()
@®—| .: b, = read()
ot if a; > b, goto L,

1) have you heard of
critical edges
before? How so?

2) How can we solve
this conundrum?

- b, =¢(by, by) b, =¢[(b,} b,
® Ls: ret b,) 2 (D v

Edge Splitting

We can solve this problem by doing critical edge Ok, but let’s go
splitting. This CFG transformation consists in back into SSA

. . construction:
adding an empty basic block (empty, except bY P e
perhaps — a goto statement) between each pair

phi-functions?
of blocks connected by a critical edge.

Ly: a, = read() Lyt a, = read()
@®@—| .: by = read() @—| i b, = read()
,t if a; > b, goto Lg ot if a; > b, goto Lg

	Control flow Graph
	Basic Bloc DAGs, instruction selection/scheduling
	SSA Control Flow Graph

