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Big picture

source code
↓

lexical+syntactic analysis + typing
↓

decorated AST
↓

code production (numerous phases)
↓

assembly language
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In context 1/2

In the last course we saw the need for a better data structure to
propagate and infer information. We need :

A data structure that helps us to reason about the flow of
the program.

Which embeds our three address code.

I Control-Flow Graph.
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In context 2/2

decorated AST
↓

IR Construction
↓

Control-Flow Graph
↓

Clever analyses/code generation
↓

assembly language
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Control flow Graph

1 Control flow Graph

2 Basic Bloc DAGs, instruction selection/scheduling

3 SSA Control Flow Graph
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Control flow Graph

Definitions

Definition (Basic Block)
Basic block : largest (3-address LC-3) instruction sequence
without label. (except at the first instruction) and without jumps
and calls.

Definition (CFG)
It is a directed graph whose vertices are basic blocks, and edge
B1 → B2 exists if B2 can follow immediately B1 in an execution.

I two optimisation levels : local (BB) and global (CFG)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2017 � 6 / 31 �



Control flow Graph

Identifying Basic Blocks (from 3@code)

The first instruction of a basic block is called a leader.

We can identify leaders via these three properties :

1 The first instruction in the intermediate code is a leader.
2 Any instruction that is the target of a conditional or

unconditional jump is a leader.
3 Any instruction that immediately follows a conditional or

unconditional jump is a leader.

Once we have found the leaders, it is straighforward to
find the basic blocks : for each leader, its basic block
consists of the leader itself, plus all the instructions until
the next leader.
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Control flow Graph

Exercise

Generate the “high level” CFG for the given program :

p:=0;i:=1;

while (i <= 20) do

if p>60 then

p:=0;i:=5;

endif

i:=2*i+1;

done

k:=p*3;

(inside your compiler, blocks will be a list of 3@-LC-3 code)
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Control flow Graph

CFG for tests

if (expr1 and expr2)

...branch1...

else

...branch2...

expr1?

expr2?

branch2branch1

end of if

(blocks are subgraphs)
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Basic Bloc DAGs, instruction selection/scheduling

1 Control flow Graph

2 Basic Bloc DAGs, instruction selection/scheduling
Instruction Selection
Instruction Scheduling

3 SSA Control Flow Graph
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Basic Bloc DAGs, instruction selection/scheduling

Big picture

Front-end→ a CFG where nodes are basic blocks.

Basic blocks→ DAGs that explicit common computations

u1 := c - d

u2 := b + u1

u3 := a * u2

u4 := u2 * u1

u5 := u3 + u4

+

* *

a +

b -

c d

MULADD

MUL

ADD

SUB

I choose instructions(selection) and order them (scheduling).
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Basic Bloc DAGs, instruction selection/scheduling Instruction Selection

1 Control flow Graph

2 Basic Bloc DAGs, instruction selection/scheduling
Instruction Selection
Instruction Scheduling

3 SSA Control Flow Graph
SSA Construction
Example
Out of SSA !
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Basic Bloc DAGs, instruction selection/scheduling Instruction Selection

Instruction Selection

The problem of selecting instructions is a DAG-partitioning
problem. But what is the objective ?

The best instructions :

cover bigger parts of computation.

cause few memory accesses.

I Assign a cost to each instruction, depending on their
addressing mode.
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Basic Bloc DAGs, instruction selection/scheduling Instruction Selection

Instruction Selection : an example

+

ADD(c=2)

+

cte

ADD(c=1)

*

MUL(c=2)

*

cte

MUL(c=1)

+

*

MULADD(c=3)

What is the optimal
instruction selection for :

+

+ 42

* b

1515 a

I Finding a tiling of minimal cost : it is NP-complete (SAT
reduction).
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Basic Bloc DAGs, instruction selection/scheduling Instruction Selection

Tiling trees / DAGs, in practise

For tiling :

There is an optimal algorithm for trees based on dynamic
programing.

For DAGs we use heuristics (decomposition into a forest of
trees, . . . )

I The litterature is pletoric on the subject.
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Basic Bloc DAGs, instruction selection/scheduling Instruction Scheduling

1 Control flow Graph

2 Basic Bloc DAGs, instruction selection/scheduling
Instruction Selection
Instruction Scheduling

3 SSA Control Flow Graph
SSA Construction
Example
Out of SSA !
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Basic Bloc DAGs, instruction selection/scheduling Instruction Scheduling

Instruction Scheduling, what for ?

We want an evaluation order for the instructions that we choose
with Instruction Scheduling.

A scheduling is a function θ that associates a logical date to
each instruction. To be correct, it must respect data
dependancies :

(S1) u1 := c - d

(S2) u2 := b + u1

implies θ(S1) < θ(S2).
I How to choose among many correct schedulings ? depends
on the target architecture.
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Basic Bloc DAGs, instruction selection/scheduling Instruction Scheduling

Architecture-dependant choices

The idea is to exploit the different ressources of the machine at
their best :

instruction parallelism : some machine have parallel units
(subinstructions of a given instruction).

prefetch : some machines have non-blocking load/stores,
we can run some instructions between a load and its use
(hide latency !)

pipeline.

registers : see next slide.

(sometimes these criteria are incompatible)
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Basic Bloc DAGs, instruction selection/scheduling Instruction Scheduling

Register use

Some schedules induce less register pressure :

I How to find a schedule with less register pressure ?
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Basic Bloc DAGs, instruction selection/scheduling Instruction Scheduling

Scheduling wrt register pressure

Result : this is a linear problem on trees, but NP-complete on
DAGs (Sethi, 1975).

I Sethi-Ullman algorithm on trees, heuristics on DAGs
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Basic Bloc DAGs, instruction selection/scheduling Instruction Scheduling

Sethi-Ullman algorithm on trees

ρ(node) denoting the number of (pseudo)-registers necessary
to compute a node :

ρ(leaf) = 1

ρ(nodeop(e1, e2)) =

max{ρ(e1), ρe2} if ρ(e1) 6= ρ(e2)

ρ(e1) + 1 else

(the idea for non “balanced” subtrees is to execute the one with
the biggest ρ first, then the other branch, then the op. If the tree
is balanced, then we need an extra register)
I then the code is produced with postfix tree traversal, the
biggest register consumers first.
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Basic Bloc DAGs, instruction selection/scheduling Instruction Scheduling

Sethi-Ullman algorithm on trees - an example

+

3

*

2

*

2

b

1

b

1

4

1

*

2

a

1

c

1

tmp1 tmp2 tmp3 tmp4

mul tmp1, b b

mul tmp2, a c

ldi tmp3, 4

mul tmp4, tmp2, tmp3

mul tmp5, tmp1 ,temp4
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Basic Bloc DAGs, instruction selection/scheduling Instruction Scheduling

Conclusion (instruction selection/scheduling)

Plenty of other algorithms in the literature :

Scheduling DAGs with heuristics, . . .

Scheduling loops (M2 course on advanced compilation)

Practical session :

we have (nearly) no choice for the instructions in the LEIA
ISA.

evaluating the impact of scheduling is a bit hard.

We won’t implement any of the previous algorithms.
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SSA Control Flow Graph

1 Control flow Graph

2 Basic Bloc DAGs, instruction selection/scheduling

3 SSA Control Flow Graph
SSA Construction
Example
Out of SSA !
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SSA Control Flow Graph

Credits

Source http://homepages.dcc.ufmg.br/~fernando/classes/

dcc888/ementa/slides/StaticSingleAssignment.pdf
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The	StaAc	Single	Assignment	Form	

•  This	name	comes	out	of	the	fact	that	each	variable	has	
only	one	definiAon	site	in	the	program.	

•  In	other	words,	the	enAre	program	contains	only	one	
point	where	the	variable	is	assigned	a	value.	

•  Were	we	talking	about	Single	Dynamic	Assignment,	then	
we	would	be	saying	that	during	the	execuAon	of	the	
program,	the	variable	is	assigned	only	once.	

Variable	i	has	two	staAc	assignment	sites:	at	L0	and	
at	L4;	thus,	this	program	is	not	in	StaAc	Single	
Assignment	form.	Variable	s,	also	has	two	staAc	
definiAon	sites.	Variable	x,	on	the	other	hand,	has	
only	one	staAc	definiAon	site,	at	L2.	Nevertheless,	x	
may	be	assigned	many	Ames	dynamically,	i.e.,	
during	the	execuAon	of	the	program.	



SSA Control Flow Graph

A first Example (Cytron 1991)

Each variable is assigned only once (Static Single Assigment
form) :

x ← 5

x ← x - 3

x < 3 ?

y ← x - 3
y ← 2 * x

w ← y

w ← x - y

z ← x + y

x_1 ← 5

x_2 ← x_1 - 3

x_2 < 3 ?

y_2 ← x_2 - 3
y_1 ← 2 * x_2

w_1 ← y_1

y_3 ← phi(y_1 ,y_2)

w_2 ← x_2 - y_3

z_1 ← x_2 + y_3
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SSA Control Flow Graph

Pro/cons

- Another IR, and cost of contruction/deconstruction

+ (some) Analyses/optimisations are easier to perform (like
register allocation) :
http://homepages.dcc.ufmg.br/~fernando/classes/

dcc888/ementa/slides/SSABasedRA.pdf
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SSA Control Flow Graph SSA Construction

1 Control flow Graph

2 Basic Bloc DAGs, instruction selection/scheduling
Instruction Selection
Instruction Scheduling

3 SSA Control Flow Graph
SSA Construction
Example
Out of SSA !
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ConverAng	Straight-Line	Code	into	SSA	Form	

•  We	call	a	program	without	
branches	a	piece	of	
"straight-line	code".	

•  ConverAng	a	straight-line	
program,	e.g.,	a	basic	
block,	into	SSA	is	fairly	
straighiorward.	

for each variable a: 
    Count[a] = 0 
    Stack[a] = [0] 
rename_basic_block(B) = 
    for each instruction S in block B: 
        for each use of a variable x in S: 
            i = top(Stack[x]) 
            replace the use of x with xi 

        for each variable a that S defines 
            count[a] = Count[a] + 1 
            i = Count[a] 
            push i onto Stack[a] 
            replace definition of a with ai 

Can	you	convert	
this	program	
into	SSA	form?	



ConverAng	Straight-Line	Code	into	SSA	Form	

•  We	call	a	program	without	
branches	a	piece	of	
"straight-line	code".	

•  ConverAng	a	straight-line	
program,	e.g.,	a	basic	
block,	into	SSA	is	fairly	
straighiorward.	

for each variable a: 
    Count[a] = 0 
    Stack[a] = [0] 
rename_basic_block(B) = 
    for each instruction S in block B: 
        for each use of a variable x in S: 
            i = top(Stack[x]) 
            replace the use of x with xi 

        for each variable a that S defines 
            count[a] = Count[a] + 1 
            i = Count[a] 
            push i onto Stack[a] 
            replace definition of a with ai 

NoAce	that	we	could	do	
without	the	stack.	How?	
But	we	will	need	it	to	
generalize	this	method.	



Phi-FuncAons	

Having	just	one	staAc	assignment	site	for	
each	variable	brings	some	challenges,	
once	we	stop	talking	about	straight-line	
programs,	and	start	dealing	with	more	
complex	flow	graphs.	

One	important	quesAon	
is:	once	we	convert	this	
program	to	SSA	form,	
which	definiAon	of	b	
should	we	use	at	L5?	



Phi-FuncAons	

The	answer	to	this	quesAon	is:	it	depends!	Indeed,	the	
definiAon	of	b	that	we	will	use	at	L5	will	depend	on	which	
path	execuAon	flows.	If	the	execuAon	flow	reaches	L5	
coming	from	L4,	then	we	must	use	b1.	Otherwise,	execuAon	
must	reach	L5	coming	from	L2,	in	which	case	we	must	use	b0		



Phi-FuncAons	

In	order	to	represent	this	kind	of	behavior,	
we	use	a	special	notaAon:	the	phi-
funcAon.	Phi-funcAons	have	the	semanAcs	
of	a	mulAplexer,	copying	the	correct	
definiAon,	depending	on	which	path	they	
are	reached	by	the	execuAon	flow.	

What	happens	once	we	
have	mulAple	phi-
funcAons	at	the	
beginning	of	a	block?	



Criteria	for	InserAng	Phi-FuncAons	

•  There	should	be	a	phi-funcAon	for	
variable	b	at	node	z	of	the	flow	graph	
exactly	when	all	of	the	following	are	true:	
–  There	is	a	block	x	containing	a	definiAon	

of	b	
–  There	is	a	block	y	(with	y	≠	x)	containing	a	

definiAon	of	b	
–  There	is	a	nonempty	path	Pxz	of	edges	

from	x	to	z	
–  There	is	a	nonempty	path	Pyz	of	edges	

from	y	to	z	
–  Paths	Pxz	and	Pyz	do	not	have	any	node	in	

common	other	than	z,	and…	
–  The	node	z	does	not	appear	within	both	

Pxz	and	Pyz	prior	to	the	end,	though	it	may	
appear	in	one	or	the	other.	

x:	

z:	

y:	
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IteraAve	CreaAon	of	Phi-FuncAons	

•  When	we	insert	a	new	phi-funcAon	in	the	program,	we	
are	creaAng	a	new	definiAon	of	a	variable.	

•  This	new	definiAon	may	raise	the	necessity	of	new	phi-
funcAons	in	the	code.	

•  Thus,	the	path	convergence	criteria	must	be																
used	iteraAvely,	unAl	we	reach	a	fixed	point:	

while	there	are	nodes	x,	y,	and	z	saAsfying	the	path-
convergence	criteria	and	z	does	not	contain	a	phi-funcAon	
for	variable	a	do:	
				insert	a	=	φ(a,	a,	…,	a)	at	node	z,	with	as	many	
				parameters	as	z	has	predecessors.	

What	is	the	
complexity	of	
this	algorithm?	



Dominance	Property	of	SSA	Form	

•  A	node	d	of	a	rooted,	directed	graph	dominates	another	
node	n	if	every	path	from	the	root	node	to	n	goes	
through	d.	

•  In	Strict♤	SSA	form	programs,	definiAons	of	variables	
dominate	their	uses:	
–  If	x	is	the	i-th	argument	of	a	phi-funcAon	in	block	n,	then	
the	definiAon	of	x	dominates	the	i-th	predecessor	of	n.	

–  If	x	is	used	in	a	non-phi	statement	in	block	n,	then	the	
definiAon	of	x	dominates	node	n.	

Where	have	we	
heard	of	

dominance	before?	♤:	A	program	is	strict	if	every	variable	
is	iniAalized	before	it	is	used.	

The	previous	algorithm	is	a	bit	too	expensive.	Let's	see	a	faster	
one.	But,	to	do	it,	we	will	need	the	noAon	of	dominance	fronAer.	



Dominance	Property	of	SSA	Form	

•  In	Strict	SSA	form	programs,	
definiAons	of	variables	
dominate	their	uses:	
–  If	x	is	the	i-th	argument	of	a	
phi-funcAon	in	block	n,	then	
the	definiAon	of	x	dominates	
the	i-th	predecessor	of	n.	

–  If	x	is	used	in	a	non-phi	
statement	in	block	n,	then	
the	definiAon	of	x	dominates	
node	n.	

How	does	this	
observaAon	helps	us	
to	build	SSA	form?	



Dominance	Property	of	SSA	Form	
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1
, a

3
)

L
8
: ret a

4

L
0
: a

0
 = read()

 
1
: if a

0
 < 2 goto L

6

L
6
: a

3
 = a

0
 - 1

 
7
: goto L

8

For	one,	we	can	distribute	phi-funcAons	here	and	there,	and	then	we	only	
have	to	worry	about	one	thing:	we	must	ensure	that	every	use	of	a	variable	v	
has	the	same	name	as	the	instance	of	v	that	dominates	that	use.	



The	Dominance	FronAer	

•  There	is	an	algorithm	more	efficient	than	the	iteraAve	
applicaAon	of	the	path-convergence	criteria,	which	is	
almost	linear	Ame	on	the	size	of	the	program.	
– This	algorithm	relies	on	the	noAon	of	dominance	fronAer	

•  A	node	x	strictly	dominates	w	if	x	dominates	w	and	x	≠	w.	

•  The	dominance	fronAer	of	
a	node	x	is	the	set	of	all	
nodes	w	such	that	x	
dominates	a	predecessor	
of	w,	but	does	not	strictly	
dominate	w.	

What	are	the	
nodes	that	"e"	
dominates?	



The	Dominance	FronAer	

•  There	is	an	algorithm	more	efficient	than	the	iteraAve	
applicaAon	of	the	path-convergence	criteria,	which	is	
almost	linear	Ame	on	the	size	of	the	program.	
– This	algorithm	relies	on	the	noAon	of	dominance	fronAer	

•  A	node	x	strictly	dominates	w	if	x	dominates	w	and	x	≠	w.	

•  The	dominance	fronAer	of	
a	node	x	is	the	set	of	all	
nodes	w	such	that	x	
dominates	a	predecessor	
of	w,	but	does	not	strictly	
dominate	w.	

What	are	the	nodes	
in	the	dominance	
fronAer	of	e?	



The	Dominance	FronAer	

•  There	is	an	algorithm	more	efficient	than	the	iteraAve	
applicaAon	of	the	path-convergence	criteria,	which	is	
almost	linear	Ame	on	the	size	of	the	program.	
– This	algorithm	relies	on	the	noAon	of	dominance	fronAer	

•  A	node	x	strictly	dominates	w	if	x	dominates	w	and	x	≠	w.	

•  The	dominance	fronAer	of	
a	node	x	is	the	set	of	all	
nodes	w	such	that	x	
dominates	a	predecessor	
of	w,	but	does	not	strictly	
dominate	w.	

Why	is	e	included	
in	its	dominance	

fronAer?	



The	Dominance	FronAer	Criterion	

•  Dominance-Fron=er	Criterion:	Whenever	node	x	
contains	a	definiAon	of	some	variable	a,	then	any	node	z	
in	the	dominance	fronAer	of	x	needs	a	phi-funcAon	for	a.	

•  Iterated	dominance	fron=er:	since	a	phi-funcAon	itself	is	
a	kind	of	definiAon,	we	must	iterate	the	dominance-
fronAer	criterion	unAl	there	are	no	nodes	that	need	phi-
funcAons.	

Theorem:	the	iterated	dominance	fronAer	criterion	and	
the	iterated	path-convergence	criteria	specify	exactly	
the	same	set	of	nodes	at	which	to	put	phi-funcAons.		
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The	Dominance	FronAer	Criterion	

•  Dominance-Fron=er	Criterion:	Whenever	node	x	contains	a	
definiAon	of	some	variable	a,	then	any	node	z	in	the	dominance	
fronAer	of	x	needs	a	phi-funcAon	for	a.	

•  Iterated	dominance	fron=er:	since	a	phi-funcAon	itself	is	a	kind	of	
definiAon,	we	must	iterate	the	dominance-fronAer	criterion	unAl	
there	are	no	nodes	that	need	phi-funcAons.	

Where	should	we	
place	phi-funcAons	
due	to	the	definiAon	

of	x	at	block	f?	
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The	Dominance	FronAer	Criterion	

Is	there	any	other	
place	that	should	

receive	phi-
funcAons?	



The	Dominance	FronAer	Criterion	
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CompuAng	the	Dominance	FronAer	

We	compute	the	dominance	fronAer	of	the	nodes	of	a	graph	by	
iteraAng	the	following	equaAons:	

DF[n]	=	DFlocal[n]	∪	{	DFup[c]	|	c	∈	children[n]	}	

Where:	
•  DFlocal[n]:	the	successors	of	n	that	are	not	strictly	dominated	

by	n	
•  DFup[c]:	nodes	in	the	dominance	fronAer	of	c	that	are	not	

strictly	dominated	by	n.	
•  children[n]:	the	set	of	children	of	node	n	in	the	dominator	

tree	

1)	It	should	be	clear	
why	we	need	
DFlocal[n],	right?	

2)	But,	why	do	we	
have	this	second	

part	of	the	
equaAon?	



CompuAng	the	Dominance	FronAer	

We	compute	the	dominance	
fronAer	of	the	nodes	of	a	graph	by	
iteraAng	the	following	equaAons:	

DF[n]	=	DFlocal[n]	∪	{	DFup[c]	|	c	∈	
children[n]	}	

Where:	
•  DFlocal[n]:	the	successors	of	n	

that	are	not	strictly	dominated	
by	n	

•  DFup[c]:	nodes	in	the	dominance	
fronAer	of	c	that	are	not	strictly	
dominated	by	n.	

•  children[c]:	the	set	of	children	of	
node	c	in	the	dominator	tree	

computeDF[n]: 
S = {} 
for each node y in succ[n] 
    if idom(y) ≠ n 
        S = S ∪ {y} 
for each child c of n in the dom-tree 
    computeDF[c] 
    for each w ∈ DF[c] 
        if n does not dom w, or n = w 
            S = S ∪ {w} 
DF[n] = S 

The	algorithm	below	computes	the	
dominance	fronAer	of	every	node	in	
the	CFG.	It	must	be	called	from	the	
root	node:	



InserAng	Phi-FuncAons	

place-phi-functions: 
  for each node n: 
      for each variable a ∈ Aorig[n]: 
          defsites[a] = defsites[a] ∪ [n] 
  for each variable a: 
      W = defsites[a] 
      while W ≠ empty list 
          remove some node n from W 
          for each y in DF[n]: 
              if a ∉ Aphi[y] 
                  insert-phi(y, a) 
                  Aphi[y] = Aphi[y] ∪ {a} 
                  if a ∉ Aorig[y] 
                      W = W ∪ {y}  

insert-phi(y, a): 
  insert the statement a = ϕ(a, a, …, a) 
  at the top of block y, where the 
  phi-function has as many arguments 
  as y has predecessors 

Where:	
•  Aorig[n]:	the	set	of	variables	defined	

at	node	"n"	
•  Aphi[y]:	the	set	of	variables	that	

have	phi-funcAons	at	node	"y"	

NoAce	that	W	can	grow,	
due	to	this	union.	How	
do	we	know	that	this	
algorithm	terminates?	



Renaming	Variables	

•  We	already	have	a	
procedure	that	renames	
variables	in	straight-line	
segments	of	code	

•  We	must	now	extend	this	
procedure	to	handle	
general	control	flow	
graphs.	

for each variable a: 
    Count[a] = 0 
    Stack[a] = [0] 
rename-basic-block(B): 
    for each instruction S in block B: 
        for each use of a variable x in S: 
            i = top(Stack[x]) 
            replace the use of x with xi 

        for each variable a that S defines 
            count[a] = Count[a] + 1 
            i = Count[a] 
            push i onto Stack[a] 
            replace definition of a with ai 

How	should	we	
extend	this	

algorithm	to	handle	
general	CFGs?	



Renaming	Variables	

rename(n): 
  rename-basic-block(n) 
  for each successor Y of n, where n is the 
  j-th predecessor of Y: 
      for each phi-function f in Y, where the 
      operand of f is ‘a’ 
          i = top(Stack[a]) 
          replace j-th operand with ai 

  for each child X of n: 
      rename(X) 
  for each instruction S ∈ n: 
      for each variable v that S defines: 
          pop Stack[v] 

Child	is	the	successor	
of	n	in	the	dominator	
tree.	Why	we	cannot	
use	the	successors	of	

n	in	the	CFG?	

Does	this	algorithm	
ensure	that	the	
definiAon	of	a	

variable	dominates	
all	its	uses?	



SSA Control Flow Graph Example

1 Control flow Graph
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Puong	it	All	Together	

•  Lets	convert	the	following	program	to	SSA	form:	

i = 1 
j = 1 
k = 0 
while k < 100 
    if j < 20 
        j = i 
        k = k + 1 
    else 
       j = k 
        k = k + 2 
return j 

What	is	the	
dominator	tree	
of	this	CFG?	



Puong	it	All	Together	

The	Dominator	Tree:	

Can	you	compute	
the	dominance	
fronAer	of	each	

node?	



CompuAng	the	Dominance	FronAer	

The	dominance	fronAer	of	
each	node	is	listed	below:	

L0:	{}		

L3:		{L3}		

L4:	{L3}		

L5:	{L9}		

L7:	{L9}		

L9:	{L3}		

L10:	{}		

Can	you	insert	phi-
funcAons	in	the	CFG	on	
the	ley,	given	these	
dominance	fronAers?	



InserAng	Phi-FuncAons	

Which	succession	of	
events	has	forced	us	to	

add	phi	funcAons	onto	L3?	



Iterated	Dominance	FronAer	

•  Node	L5	does	not	dominate	L9,	although	L9	is	a	successor	of	L5.	
Therefore,	L9	is	in	the	dominance	fronAer	of	L5.	L9	should	have	
a	phi-funcAon	for	every	variable	defined	inside	L5.	

•  We	repeat	the	process	for	L9,	
ayer	all,	we	are	considering	
the	iterated	dominance	
fronAer.	

•  L3	is	in	the	dominance	
fronAer	of	L9,	and	should	also	
have	a	phi-funcAon	for	every	
variable	defined	in	L5.	NoAce	
that	these	variables	are	now	
redefined	at	L9,	due	to	the	
phi-funcAons.	



Ayer	Variable	Renaming	



SSA Control Flow Graph Example

Demo !

cf demossa.c and Exercise sheet.
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SSA Control Flow Graph Out of SSA !

1 Control flow Graph
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SSA Construction
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Phi-FuncAons	

A	set	of	N	phi-funcAons	with	M	arguments	each	at	the	beginning	
of	a	basic	block	represents	M	parallel	copies.	Each	copy	reads	N	
inputs,	and	writes	on	N	outputs.	

How	do	we	
implement	phi-
funcAons	in	
assembly?	



SSA	EliminaAon	

Compilers	that	use	the	SSA	form	usually	
contain	a	step,	before	the	generaAon	of	
actual	assembly	code,	in	which	phi-
funcAons	are	replaced	by	ordinary	
instrucAons.	Normally	these	instrucAons	
are	simple	copies.	

And	where	would	we	
place	the	copy	b2	=	b0?	
Why	is	this	an	
important	quesAon	at	
all?	



L0: a0 = read()
 1: b0 = read()
 x: b2 = b0
 2: if a0 > b0 goto L3

L3: b1 = a0
 5: goto L0

    b2 =ϕ(b0, b1)
L6: ret b2

✗

CriAcal	Edges	

The	placement	of	the	copy	b2	=	b0	is	not	simple,	because	the	
edge	that	links	L2	to	L5	is	cri-cal.	A	criAcal	edge	connects	a	block	
with	mulAple	successors	to	a	block	with	mulAple	predecessors.	

If	we	were	to	put	the	copy	between	labels	L1	and	L2,	then	we	
would	be	creaAng	a	parAal	redundancy.	

1)  have	you	heard	of	
criAcal	edges	
before?	How	so?	

2)  How	can	we	solve	
this	conundrum?	



Edge	Spliong	

We	can	solve	this	problem	by	doing	cri-cal	edge	
spli/ng.	This	CFG	transformaAon	consists	in	
adding	an	empty	basic	block	(empty,	except	by	–	
perhaps	–	a	goto	statement)	between	each	pair	
of	blocks	connected	by	a	criAcal	edge.	

Ok,	but	let’s	go	
back	into	SSA	
construcAon:	
where	to	insert	
phi-funcAons?	
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