
http://laure.gonnord.org/pro/ CAP, ENSL, 2017/2018

Final Exam
Compilation and Program Analysis (CAP)

January, 10 th, 2018
Duration: 3 Hours

No document

Instructions :

1. Every single answer must be informally explained AND formally
proved.

2. We give indicative timing.

3. Vous avez le droit de répondre en Français.

Page 1 on 14

http://laure.gonnord.org/pro/

Final Exam CAP - 2017-18

Mu-While syntax and semantics

In this exam, we consider the Mu abstract syntax of the course :

S(Smt) ::= x := e assignment
| skip do nothing
| S1; S2 sequence
| if b then S1 else S2 test
| while b do S done loop

where numerical expressions are :

e ::= c constant
| x variable
| e + e addition
| e× e multiplication

and Boolean expressions :
b ::= true constant

| f alse constant
| b and b and
| not b not
| e1 < e2 leq
| e1 = e2 eq

We also consider the structural operational semantics depicted in the following table (Source
Nielson) :

Page 2 on 14

Final Exam CAP - 2017-18

1 Operational semantics - 40 min

The object of this exercise is to extend the Mu-While semantics with two new different
constructions. Adapted from R. Manevich.

1.1 Extension with parallel assignments

Parallel assignments are of the form x1, x2 . . . xn := a1, a2 . . . an. We consider the following Fib
program :

1 if n=0

2 res := 0

3 else {

4 i,a,res := 1,0,1;

5 while (i<n) do

6 a, res , i := res , a+res , i+1

7 done

8 }

Question #1
Give a SOS semantics rule for this new construction.

Question #2
Compute the semantics of the Fib program under the initial state where all variables are 0
except n, which is 2. For succintness, use the notation Fib[i] to denote statement at line i and Fib[i, j]
to denote the subprogram between i and j (inclusive).

Question #3
Give an alternative implementation SeqFib for Fib not using parallel assignement.

Question #4
Give two notions of SOS semantic equivalence ≡1 and ≡2 such that Fib ≡1 SeqFib and
Fib 6≡2 SeqFib.

1.2 Extension with side-effect expressions

Consider the following modification for arithmetical expressions :

e ::= c constant
| x variable
| e + e addition
| e× e multiplication
| x ++ inc with side effect (1)
| ++ x inc with side effect (2)

Page 3 on 14

Final Exam CAP - 2017-18

Informal semantics :

— x ++ increments x by one and evaluates to its new value.

— ++ x increments x by one and evaluates to its old value.

We modify the semantics for expressions in order to compute new environments, now arithmetic
expressions have evaluation rules of the form :

< a, σ >→< a′, σ′ >

where σs are still States, ie functions from variables to values (same for boolean expressions).

Question #5
Write down rules for all numerical and boolean expressions. Explain your choices.

Question #6
Write down rules for statements, including those with parallel assignements. There is no
need to repeat rules that remain the same.

Question #7
Show the modifications induced by your semantics (including the new derivation steps for
expressions) on the following SideFib program :

1 if n=0

2 res := 0

3 else {

4 i,a,res := 1,0,1;

5 while (i++ < n) do

6 a, res := res , a+res

7 done

8 }

2 Register allocation for trees - 20 min

Adapted from J.C Filliâtre
We want to characterise “à la Sethi Ullman” the number of registers that are necessary to

compute a given arithmetic expression following the syntax :

e ::= x variable
| −e negation
| e + e addition

We compile these expressions into a machine with registers and the following instructions :

— load x, r reads the memory at address x and stores the result in register r.

— neg r performs the negation in place.

— add ri rj performs the operation ri + rj and stores the result in rj.

All variables have an address.

Here are the rules :

Page 4 on 14

Final Exam CAP - 2017-18

— Given e an expression and r a register, we want to produce a sequence of instructions that
finally puts in r the value of the expression e.

— No simplification (common subexpressions, x + x, for instance, reloads x twice), nor use of
addition associativity.

— We can exploit the property of addition commutativity (evaluate e1 before e2 or the converse
while evaluating e1 + e2).

Question #1
For each of the following expressions, generate a program with a minimal number of registers
(including the target register) :

1. ((x + y) + z) + t ;

2. (x + y) + (z + t) ;

3. x + ((y + z) + t) ;

Solution: voir filliatre 2, 3, 2 registres.

Question #2
Give a way to compute n(e) the minimal number of registers necessary to compute e (struc-
tural induction on e).

Question #3
We define size(e) the number of occurrences of the + operator in the expression e. Give a
minoration of t(e) by an (exponential) expression in n(e) (and a proof of it). Deduce the
minimal size of an expression which is not computable with 5 registers.

Solution: cd filliatre. t(e) ≥ 2n(e)−1 − 1. 31.

3 Code generation and Register Allocation - 40 min

We consider the following Mu program :

var x,y,z,t:int;

x=12; y=3+x; z=4+y; t=x-y+z;

For readibility reasons, tempi is renamed into ti. The 3 address code generation process of Lab 5
and 6 produces the following code, where (t, z, y, x) 7→ (t1, t2, t2, t3) :

.let t4 12
2 copy t3 t4

.let t5 3
add t6 t5 t3
copy t2 t6
.let t7 4

7 add t8 t7 t2
copy t1 t8
sub t9 t3 t2
add t10 t9 t1
copy t0 t10

Page 5 on 14

Final Exam CAP - 2017-18

Question #1
Generate (see Appendix) the final code for the first two lines of the 3 address code with the
“all-in-memory” allocation strategy. Use R0 to compute stack addresses, R6 as “stack pointer” and
R1 and R2 to get access to stack elements.

Solution:

; ; Automatically generated LEIA code, MIF08 2017
; ; all−in−memory allocation version
; ; stack management

4 .set r6 stack
; ; (stat (assignment x = (expr (atom 12)) ;))
; ; .let temp_4 12
.LET r1 12
SUB r0 r6 3

9 WMEM r1 [r0]
; ; end .let temp_4 12
; ; copy temp_3 temp_4
SUB r0 r6 3
RMEM r1 [r0]

14 COPY r1 r1
SUB r0 r6 2
WMEM r1 [r0]
; ; end copy temp_3 temp_4

Question #2
Propose a better strategy for allocating a copy in the case of the all-in-mem allocation. Explain
on the example and on the general case.

Solution: Une copie peut tenir dans une même place. Dans le cas all inmem, rmem copy
wmem on peut supprimer la copie.

Question #3
Same question for the “smart” allocation strategy.

Solution: L’idée serait de considérer ensemble les variables copiées dans le graphe de
conflit, dans le même noeud. Il faut faire attention aux durées de vie néanmoins. “ ’For
each copy where the source and destination live ranges don’t interfere, union the 2 live
ranges and remove the copy”

Question #4
Fill the array in Appendix with the result of the liveness analysis. Each star in a line will
mean “the temporary is alive at the entry of this line”.

Solution: Il faudra que ce soit cohérent avec le graphe ci-dessous. Attention dans la correc-
tion j’utilise le compilateur codé en TP5, donc les temporaires ont des noms ti.

Page 6 on 14

Final Exam CAP - 2017-18

Question #5
Draw the interference graph.

Solution:

temp_10

temp_9

temp_1

temp_2

temp_6

temp_4temp_8

temp_3

temp_7 temp_5

temp_0

In the rest of the exercice we will use the following notations : — Color 1 is red, and is associated
to register R3 ; — Color 2 is blue, and is associated to register R4 ; — Color 3 is green, and is
associated to register R5 ;
Question #9

Color the graph with the heuristic of the course and 2 colors. Do not forget to draw the color
stack.

Solution: Avec 3 ça donnerait :

temp_10

temp_9

temp_1

temp_2

temp_6

temp_4temp_8

temp_3

temp_7 temp_5

temp_0

Avec deux couleurs on obtient le même coloriage et t2 ne peut être colorié.

Question #10
What are the variable(s) to spill ? Explain the spilling process.

Page 7 on 14

Final Exam CAP - 2017-18

Solution: On va donc spiller (ie stocker sa valeur en mémoire) la variable t2. Le procédé est
décrit dans le cours.

Question #11
Complete the generated code (in Appendix).

Solution:

; ; Automatically generated LEIA code, MIF08 2017
; ;Smart Allocation version

3 ; ; stack management
.set r6 stack

; ; (stat (assignment x = (expr (atom 12)) ;))
; ; .let temp_4 12
.LET r3 12

8 ; ; end .let temp_4 12
; ; copy temp_3 temp_4
COPY r4 r3
; ; end copy temp_3 temp_4
; ; (stat (assignment y = (expr (expr (atom 3)) + (expr (atom x))) ;))

13 ; ; .let temp_5 3
.LET r3 3
; ; end .let temp_5 3
; ; add temp_6 temp_5 temp_3
ADD r3 r3 r4

18 ; ; end add temp_6 temp_5 temp_3
; ; copy temp_2 temp_6
COPY r1 r3
SUB r0 r6 0
WMEM r1 [r0]

23 ; ; end copy temp_2 temp_6
; ; (stat (assignment z = (expr (expr (atom 4)) + (expr (atom y))) ;))
; ; .let temp_7 4
.LET r3 4
; ; end .let temp_7 4

28 ; ; add temp_8 temp_7 temp_2
SUB r0 r6 0
RMEM r1 [r0]
ADD r3 r3 r1
; ; end add temp_8 temp_7 temp_2

33 ; ; copy temp_1 temp_8
COPY r3 r3
; ; end copy temp_1 temp_8
; ; (stat (assignment t = (expr (expr (expr (atom x)) − (expr (atom y))) + (expr (

atom z))) ;))
; ; sub temp_9 temp_3 temp_2

38 SUB r0 r6 0

Page 8 on 14

Final Exam CAP - 2017-18

RMEM r1 [r0]
SUB r4 r4 r1
; ; end sub temp_9 temp_3 temp_2
; ; add temp_10 temp_9 temp_1

43 ADD r3 r4 r3
; ; end add temp_10 temp_9 temp_1
; ; copy temp_0 temp_10
COPY r3 r3
; ; end copy temp_0 temp_10

48

; ; postlude
jump 0
.align16

53 stackend:
.reserve 42
stack:

4 Code generation and Abstract Machines - 60 min

In this exercice we will compile the Mu/mini-while language into a stack abstract machine.
Inspiration and tables from “Semantics with Applications, a Formal Introduction, M.R. Nielson and F.
Nielson”.

The abstract machine AM we consider has configurations of the form (c, e, s) where :

— c is the sequence of instructions to be executed,

— e is the evaluation stack (used to evaluate expressions),

— s is a state, used to hold the values of variables.

The instructions of the machine and their semantics are depicted in Table 4.1 (Z are integer
values, T Boolean values, tt and ff stands for true and false respectively) :

Page 9 on 14

Final Exam CAP - 2017-18

Initial configurations always have an empty evaluation stack. A terminal configuration has an
empty code component. A stuck configuration is a configuration that cannot evolve any more.
A terminating sequence is a finite sequence that cannot evolve any more, thus it can end with a
terminal or stuck configuration (non mutually exclusive !). The meaning of a given sequence of
functions is defined as usual by :

M[c]s =

{
s′ if < c, ε, s > .? < ε, e, s′ >
undef otherwise.

The compilation scheme of Mu(While) programs to this machine are given by

Page 10 on 14

Final Exam CAP - 2017-18

Question #1
Compute the operational semantics of the two following sequences of the AM machine :

— P1 : PUSH-1:FETCH-x:ADD:STORE-x with the initial state s where s(x) = 3.

— P2 : LOOP(TRUE,NOOP)

Question #2
Compute the generated code for the factorial function :

1 y:=1

2 while not(x=1) do

3 y := y * x;

4 x := x-1

5 done

Trace its computation from the initial state where x = 3.

Question #3
Same question with

1 if (x=1) then

Page 11 on 14

Final Exam CAP - 2017-18

2 y :=2

3 else

4 y:=3

5 done

Question #4
Give a code generation rule for the repeat S until b construction. The definition has to be
compositional, ie by induction on the syntax (and you do not need to extend the instruction
set of the machine).

Question #5
Give a code generation rule for the for x:= a1 to an do S construction. You may have to
introduce a new instruction for the AM machine. If this is the case, also provide its operatio-
nal semantics.

Now we want to refine the abstract machine in order to be closer to real-life ones. We first define
AMbis which differs from AM in that :

— The configurations have the form < c, e, m > where c, e are as in AM but m “the memory”
is a finite list of values (m ∈ Z∗).

— The instructions FETCH-X and STORE-X are replaced by instructions GET-N and PUT-N where
n is a natural number (an address).

Question #6
Specify the operational semantics of the AMbis machine. You may use m[n] to select the nth
element of the list m.

Question #7
Modify the code generation rules so that to transform Mu (while) programs into AMbis. You
can assume the existence of a function env : Var → N that maps variable to their address.

Question #8
Apply this new code generation to the factorial example of Question 2 and trace its compu-
tation from initial state where x = 3.

The next step is to get rid of the operations BRANCH and LOOP. The idea is to introduce instruction
to define labels and jumping to labels. We thus define AMter which differs from AMbis in that :

— The configurations have the form < pc, c, e, m > where c, e, m are as before and pc is a
natural number pointing to an instruction in c ;

— The instructions BRANCH and LOOP are replaced by the instructions LABEL-` JUMP-` and
JUMPFALSE-` where ` is a label.

Informal semantics : the labeling has no effect but increments the program counter by 1. JUMP-`
moves the program counter to the instruction LABEL-` if it exists. JUMPFALSE-` does the same if
an only if the value on the top of the stack is ff , else it only increments the program counter by
one. In both cases the Boolean value is pop out of the stack.

Question #9
Specify the operational semantics of the AMter machine. You may use c[pc] to refer to the
instruction at line pc.

Question #10
Modify the code generation rules so that to transform Mu (while) programs into AMter. Be

Page 12 on 14

Final Exam CAP - 2017-18

careful to generate and use unique labels, for instance by having a parameter “next unused
label” as an additional parameter to the code generation functions.

Question #11
Apply this new code generation to the factorial example of Question 2 and trace its compu-
tation from initial state where x = 3.

Question #12
State a correctness property for the compilation process. Explain how you would prove it
(5/10 lines).

5 Abstract Interpretation : variation on constants - 20 min

Inspiration from T. Nipkow for TU Munich.
We recall the following principles for abstract interpretation : Sets X of valuations are abs-

tracted by elements of an abstract domain (A,v), using an abstraction α and a concretisation
γ s.t. X ⊆ γ(α(X)). Defining an abstract domain amounts to give A,v,�,©,u,t and abstract
transfer functions (+], . . .). Then :

— Perform abstract iterations on the CFG.
— If the lattice is of finite height, iterations terminates on a postfixpoint.
— If not : invent a widening operator to ensure finite convergence. Property (X v Y) : Y v

X∇Y and finite chain condition.

In this exercise, we want to design a static analysis that tries to determine whether a variable is
−1, 0 or 1, or any other value. The abstract domain consists on the values -1,0,1,Any.

Question #1
Properly define the abstraction α, concretisation γ.

Question #2
Define the ordering ≤ on the abstract domain.

Question #3
Define the join operator t.

Question #4
Define the abstract operations +] and ×].

Question #5
Run the analysis on the following program :

1 x=-1;

2 x=x*x + (-1);

3 if (rand(true ,false))

4 then x = x+1

5 else x = 10*x

Page 13 on 14

Final Exam CAP - 2017-18

Fill and paste section

Report your ANONYMITY NUMBER HERE

.1 Code generation and register allocation

Page 14 on 14

	Operational semantics - 40 min
	Extension with parallel assignments
	Extension with side-effect expressions

	Register allocation for trees - 20 min
	Code generation and Register Allocation - 40 min
	Code generation and Abstract Machines - 60 min
	Abstract Interpretation: variation on constants - 20 min
	Code generation and register allocation

