
Appendix A
LEIA Assembly Documentation (ISA)

Source:

• ISA: Florent de Dinechin, Nicolas Louvet, Antoine Plet, for ASR1, ENSL, 2016.

• Simulator: Pierre Oechsel and Guillaume Duboc, L3 students at ENSL, 2016.

A.1 Installing the simulator and getting started

To get the LEIA assembler and simulator, follow instructions of the first Lab (git pull on the course lab reposi-
tory).

A.2 The LEIA architecture

Here is an example of LEIA assembly code for 2017:

letl r0 17 ; initialisation of a register
loop:
wmem r13 [r0] ; write in memory

4 rmem r13 [r2] ; read in memory
add r0 r10 r11 ; add
snif r0 eq 3 ; test : if r0 = 3 skip next instruction
jump loop ; equivalent to jump -3, and this is a comment
xor r0 r0 -1

Memory, Registers The memory is shared into words of 16 bits, with address of size 16 bits (from (0000)H to
(FFFF)H).

The LEIA has 16 generalistic registers. Only R151 is reserved for the routine return address. They are also
specific 16 bits registers: PC (Program Counter), IR (Instruction Register).

Constants: leth and letl These expressions provide ways to initialize registers. The constant is encoded in
the bits 0 to 7. For the letl instruction, bit 7 (sign bit) of the constant is replicated into the bits 8 to 15 of the
destination register. Thus:

letl r0 xx

stores the constant xx in register r0, provided xx between -128 and 127. The leth instruction stores the 8 bit
constant in the bits 8 to 15 of the destination register, the other bits being unchanged. Thus:

letl r0 2
leth r0 3

stores in r0 the constant 2+3∗28 = 770. The LEIA assembler tool provides a macro:

.let r0 770

to generate these two instructions automatically.

1registers are indifferently in capital letters or in lower case.

Aurore Alcolei, Laure Gonnord, Valentin Lorentz. 5/8

ENS de Lyon, Département Informatique, M1 CAP Lab #A – Automne 2017

Table A.1: All LEIA instructions

15 14 13 12 mnemonic class description ext(i)

0 0 0 0 wmem wmem write to memory
0 0 0 1 add ALU addition z(i)
0 0 1 0 sub ALU subtraction z(i)
0 0 1 1 snif snif skip next if s(i)
0 1 0 0 and ALU logical bitwise and s(i)
0 1 0 1 or ALU logical bitwise or s(i)
0 1 1 0 xor ALU logical bitwise xor s(i)
0 1 1 1 lsl ALU logical shift left z(i)
1 0 0 0 lsr ALU logical shift right z(i)
1 0 0 1 asr ALU arithmetic shift right z(i)
1 0 1 0 call call sub-routine call
1 0 1 1 jump jump relative jump if offset �= 1

return return from call if offset= 1
1 1 0 0 letl letl 8-bit constant to Rd, sign-extended
1 1 0 1 leth leth 8-bit constant to high half of Rd
1 1 1 0 print print print or refresh
1 1 1 1 rmem rmem read from memory if i=0

copy register-to-register copy if i=1

notation meaning

d a 3 or 4 bit number that specifies the destination register
i a 4-bit number (bits 4 to 7 of the instruction word), the number of the first operand register
j a 4-bit number

Table A.2: Notations

Arithmetical and logical instructions Arithmetical and logical instructions have 3 operands:

add r1 r0 3 ; add immediate
add r1 r2 r1 ; add registers

The first operand is the destination register, and the two remaining operands are sources: either two registers
(if the bit 11 is 0) or a register and an immediate constant j of 4 bits (if the bit 11 is 1). Because of the restricted
number of bits to describe the first operand, the destination register can only be one of the first eight registers
(from r0 to r7). If a constant is used then it is extended into a 16 bit constant before the operation. This is
documented in the last column of table A.1:

• z(j) means that j is extended with zeros. In other words j is interpreted as a positive integer.

• s(j) means that the bit 3 (sign bit) of j is replicated into bits 4 to 15: j is interpreted as a signed integer
and is transformed into a 16 bits integer of the same value.

Thus the result of the instruction:

add r1 r0 -1

is not really what is expected. The constant j =−1 is encoded as 1111, extended as z(j) =0000000000001111,
thus the sum should be done with the 31 constant. The assembler tool throws an error in that case:

instruction add: Number, Not in bound: [0, 15]

Branching Let a be the instruction’s address, and c the integer encoded in the bits 0 to 11 of the instruction’s
word. The call instruction makes a copy of a+1 into r15 then executes pc← c×16. Thus procedures should
have addresses that are multiple of 16.

The jump instruction considers the constant c as a signed integer (thus between -2048 and 2047) and ex-
ecutes pc← a+c except if c = 1, in which case it executes pc← r15. In this case we can use the mnemonic
return.

Aurore Alcolei, Laure Gonnord, Valentin Lorentz. 6/8

ENS de Lyon, Département Informatique, M1 CAP Lab #A – Automne 2017

Table A.3: Encoding per instruction class

class action 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ALU reg rd ← ri op r j opcode 0 d i j
ALU imm4 rd ← ri op ext(j) opcode 1 d i j

snif skip next if 0 0 1 1 c/r condition i j

letl rd ← s(b) 1 1 0 0 d b
leth rd [15..8] ← b 1 1 0 1 d b

call jump to the routine 1 0 1 0 c
jump jump 1 0 1 1 c
return return to calling routine 1 0 1 1 0 1

wmem mem[r j] ← ri 0 0 0 0 0 0 0 0 i j
rmem rd ← mem[r j] 1 1 1 1 d 0 0 0 0 j
copy rd ← r j 1 1 1 1 d 0 0 0 1 j

print reg print (the numerical content of) ri 1 1 1 0 0 1 0 0 0 i
print char print c 1 1 1 0 1 0 0 0 asci i (c)
refresh wait 1 1 1 0 0

Tests: snif “skip next if” The snif op1 <condition> op2 instruction deactivates the next instruction if
the condition is true. Operands 1 and 2 are encoded like in the ALU instructions. In particular the second
operand can be an immediate constant, which sign will be extended. The condition is encoded thanks to the
following table:

10 9 8 mnemonic description

0 0 0 eq equal, op1 = op2
0 0 1 neq not equal, op1 �= op2
0 1 0 sgt signed greater than, op1 > op2, two’s complement
0 1 1 slt signed smaller than, op1 < op2, two’s complement
1 0 0 gt op1 > op2, unsigned
1 0 1 ge op1 ≥ op2, unsigned
1 1 0 lt op1 < op2, unsigned
1 1 1 le op1 ≤ op2, unsigned

Let us illustrate the difference between sgt et gt: if R0 contains 0, then:

snif r0 gt -1

is false, but

snif r0 sgt -1

is true. In fact, the −1 constant is extended as ffff (hexa), which is interpreted as 65535 by gt, and -1 by sgt.

Memory accesses The memory address is always specified in the r j register encoded in bits 0 to 3. The
instruction rmem rd [rj] copies in the destination register (coded in bits 8 to 11) the content of the memory
at address r j . The instruction wmem ri [rj] copies the content of the register ri (coded in bits 4 to 7) in the
memory cell whose address is stored inside rj.

Register management Some registers cannot be used with arithmetic and logical instructions, yet it is possi-
ble to use them to store a result thanks to the copy instruction. This instruction is also usefull before function
calls to quickly save registers that are known to be used by the function.

Print Two examples of use of the native print instruction:

print r1 ; prints the content of r1 (numerical value)
print 'z' ; prints the character 'z'

Aurore Alcolei, Laure Gonnord, Valentin Lorentz. 7/8

ENS de Lyon, Département Informatique, M1 CAP Lab #A – Automne 2017

Assembly directives A bit more of syntax:
• The assembly begins at address 0.
• Labels can be used for jumps. Warning, for the compiler to work properly, do not type anything else

than the label on its line, followed by a colon ’:’.
• The keyword .word xxxx reserves a memory cell initialized to the 16 bit constant xxxx.
• The keyword .reserve xxxx reserves n memory cells initialized to 0.
• The keyword .string “Hello” reserves 6 memory cells and store the ascii numbers corresponding to

all the characters of the message (ending it with a Null character).
• The keyword .align16 pads memory cells in order for the next line to be at an address multiple of 16.
• The macro .let r3 585 stores the constant 585 in register 3 (see paragraph A.2)
• The macro .set r3 label loads the address corresponding to label onto r3. For instance, the following

program:

.set r0 foo
foo:

3 .word 42

is assembled into:
c002 ; letl r0 2 (because 42 is stored at line 2)
d000 ; leth r0 0
002a ; the 42 constant

From Lab 5 we will be using a stack. The address of its top will be stored in r7 and we will use the following
macros:

• The macro .push ri that pushes the content of the ri register into the memory. It is equivalent to:

sub r7 r7 1
2 wmem ri [r7] ;

• The macro .pop ri that does the converse:

rmem ri [r7]
add r7 r7 1

A.3 Help to encode constants

hex to binary
a b c d e f

1010 1011 1100 1101 1110 1111

2’s complement Let us code n = (−3)10 in 2’s complement on 6 bits, with the recipe: “code -n in base 2,
then negate bitwise, then add one”. First, 3 is encoded as 000011 on 6 bits. Its negation is 111100, thus
(−3)10 = 1111012̄.

A.4 The graphical library

Coordinates of the screen start on the bottom left corner of the screen ((0,0) ↑x
−→y)

• cleanscr: does what it is supposed to do. Uses register r1.
• putstr: puts a string on the screen at coordinates (r1, r2) ; the string address is in register r3 ; if r4 is not

1 then refresh between each letter. Uses registers 1, 2, 3, 6, 14, 15 and those of putchar. An example can
be found in Lab 1.

• putchar: puts a char on the screen at coordinates (r1, r2). Uses registers r1 to r6. An example can be
found in Lab 1.

• refresh: refreshes the screen.

Aurore Alcolei, Laure Gonnord, Valentin Lorentz. 8/8

