
http://laure.gonnord.org/pro/ CAP, ENSL, 2017/2018

Partial Exam

Compilation and Program Analysis (CAP)

November, 8th, 2017

Duration: 2 Hours

Instructions :

1. We give some typing/operational/code generation rules in a companion sheet.

2. Explain your results !

3. We give indicative timing.

4. Vous avez le droit de répondre en Français.

Page 1 on 12

http://laure.gonnord.org/pro/

Partial Exam CAP - 2017

Exercise #1 I Attribution with visitors (15 min)

We consider ordered lists () in html �les :

<html> </html> EOF

where . . . are texts that are ignored and list elements are tagged with lis (denotes the beginning
of a list element and its end). The grammar is depicted in Figure 1. Nested lists are authorized,
and the content of an li element can be a list.

grammar Html;

prog: '<html >' listo '</html >' EOF;

listo:

'' listi '' listo #listorec

| #listobase

;

listi : onei #listibase

| onei listi #listirec

;

onei : '' listo '' #listiel

;

// [plus some other rules to skip text between tags]

WS : (' '|'\t'|'\n')+ -> skip;

Figure 1 � HTML grammar

Question #1.1
Give a non trivial exemple of a �le that belongs to the language.

Question #1.2
Give an attribution that permits to count the number of elements in the longest list of the �le
(pseudo code)

Question #1.3
The maximal list depth : a list of list of list is of depth 3.

Question #1.4
Implement these two attributions as a visitor �le (Fill Appendix A) that would be called with :

visitor = MyHtmlVisitor ()

nbelmax , profmax = visitor.visit(prog)

print("nb max ="+str(nbelmax)+"; profmax="+str(profmax))

Solution:

Page 2 on 12

Partial Exam CAP - 2017

Solution code dans le repertoire HtmlVisitor :

from HtmlVisitor import HtmlVisitor

class MyHtmlVisitor(HtmlVisitor):

def visitProg(self , ctx):

return(self.visit(ctx.listo()))

def visitListorec(self , ctx):

el1 , pr1 = self.visit(ctx.listi())

el2 , pr2 = self.visit(ctx.listo())

return (max(el1 , el2), max(pr1+1, pr2))

def visitListobase(self , ctx):

return (0, 0)

def visitListibase(self , ctx):

return self.visit(ctx.onei())

def visitListirec(self , ctx):

nbi , pli = self.visit(ctx.onei())

nbell , pl = self.visit(ctx.listi())

return (max(nbi , nbell +1), max(pli , pl))

def visitListiel(self , ctx):

Page 3 on 12

Partial Exam CAP - 2017

el, pr = self.visit(ctx.listo())

return (1, pr)

Page 4 on 12

Partial Exam CAP - 2017

Exercise #2 I Program equivalence (10 min)

Question #2.1
Express program equivalence for the natural semantics of mini-while.

Question #2.2
Prove the equivalence of the following two programs :

P1 : if (b1 and b2) then S1 else S2;

and

P2 : if b1 then (if b2 then S1 else S2);

Please be precise in your justi�cations (use semantic rules and clean semantic proof trees).

Exercise #3 I Mini-While : typing + code generation (20 min)

Here is a program in the Mini-While language seen in the course :

var x2: int;

x2 := 13;

while (x2 > 8) do

x2 := x2 - 1;

done

Question #3.1
Show that this program is well-typed (declarations, statements). If some rules are missing in
the companion �le, invent them and report them on your sheet.

Solution:

Flemme du correcteur

Question #3.2
Generate the LEIA 3-address code 1 for the given program according to the code generation
rules. Recursive calls, auxiliary temporaries, code, must be separated and clearly described. .

Question #3.3
Replace the conditional JUMP by a regular sequence of LEIA code with a snif (with tempo-
raries).

Solution: �emme

1. We recall that the LEIA three address code has the same instruction set as the LEIA regular code except
for conditions which use the idiom condJUMP(label,t1,condition,t2) and temporaries/virtual registers instead of
regular registers). This code can use the .LET preprocessing command if you want.

Page 5 on 12

Partial Exam CAP - 2017

Exercise #4 I Variable initialisation with typing (20min)

Adapted from a compilation exam from J-C. Filliâtre, ENS Paris.

In Java, a local variable should be initialized (by a value) before being used. In this exercise,
we propose to statically check this condition using Typing. For this purpose, we consider the same
while language as in the course.

We also suppose that there is no double variable declaration and all programs are �regularly
typed� with the typing rules of the course.

Question #4.1
What could be the interest for the compiler to know that a given variable is initialised before
being used ?

Solution: For instance, he avoids execution crashes due to non correctly initialised variables
(in C). Or in Java, it avoid �lling memory with default values when using contructors.

Question #4.2
Give an example of a well-typed program and a non well-typed program for the variable initia-
lisation condition.

Solution:

var x,y:int;

x := 2;

y := 42 + x;

is well-typed, but not :

var x,y:int;

y := 42 + x;

Let S be a variable set. Given an expression e, S ` e denotes the judgment �expression e only uses
variables that appear in S�.

Question #4.3
Give inference rules for S ` e, de�ned by induction on the abstract syntax of numerical expres-
sions.

Solution: Adapt these to the language we have.

To verify that a given instruction stm is correct, let us de�ne S ` smt→ S′ which means �supposing
that all variables in S are already initialised, the execution of stm only accesses initialised variables,
and at the end of the execution, all variables in S′ are initialised, with S ⊆ S′�.

Page 6 on 12

Partial Exam CAP - 2017

Question #4.4
Give the 5 inference rules for this typing judgment. Apply on your two examples.

Solution:

Exercise #5 I A new mini-while construction (15 min)

We augment the mini-while language with �guarded commands� of the form : �case F esac�
with F a (non empty) list of elements of the kind :�[e]→ S;� : Here is an example :

case [x=1] -> x:=x+1 ;

[y=3] -> y:=2 ;

esac

the conditions must evaluate to a boolean, and the command which is executed is the �rst command
whose associated condition evaluates to true. If no conditions are true, then the case behave like a
skip.

This new command is well-typed if for each sublist the e expr is of type bool, and S is of type
void.

Question #5.1
Augment the mini while abstract syntax (use regular grammar de�nition idioms : + and * are
forbidden).

Solution:
smt ::= x := e assign

| . . .
| case condstmtlist esac case

where :
condsmtlist ::= (bexpr, smt) condsmtlist

| (bexpr, smt)

Question #5.2
Give new typing rules for this construction.

Solution: todo

Question #5.3
Give new natural operational rules for this construction.

Page 7 on 12

Partial Exam CAP - 2017

Question #5.4
Give new 3 address code generation rules for this construction.

Question #5.5
Illustrate the previous solutions on the example within an appropriate environnement. The
details of the rules used in the process of code generation is not mandatory.

Exercise #6 I Operational semantics, a debugger (40min)

Adapted from a compilation exam, Grenoble, 2008

We consider the following abstract grammar for a (low level) imperative language :

S(Smt) ::= x := e assign

| if b goto ` test

| goto ` goto

The con�gurations are triples (pc, C, σ) where pc is the program counter, C is the code (a
sequence of statements labelled by N), and σ is the memory state (State = V al→ Z). The semantics
of arithmetic expressions as well as boolean expressions is the natural semantics seen in the course.

Statement Semantics We denote by B the small step semantics of this language :

� (pc, C, σ) B (pc+ 1, C, σ[x 7→ A[a]σ]) if C(pc) = x := a.

� (pc, C, σ) B (`, C, σ) if C(pc) = goto `.

� (pc, C, σ) B (pc+ 1, C, σ) if C(pc) = if b goto ` and B[b]σ = false.

� (pc, C, σ) B (`, C, σ) if C(pc) = if b goto ` and B[b]σ = true.

The evaluation of a program is done from the initial con�guration with an empty memory : (0, C, []).

Question #6.1
Compute the semantics (B) of the following program :

1:x=8;

2:y:=12;

3:if x<y goto 5;

4:x:=y-x;

5:x:=42;

Solution: We denote C the above code and supposed that the program starts in an empty
memory with pc = 0

(0, C, []) B (1, C, [x 7→ 8]) B (3, C, [x 7→ 8, y 7→ 12]) B (5, C, [x 7→ 8, y 7→ 12]) B (6, C, [x 7→ 42, y 7→ 12])

Page 8 on 12

Partial Exam CAP - 2017

Debugger Now we consider a given program and its interaction with a debugger, which provides
the following commands :

� setbrk(n) : sets a breakpoint at statement labeled by n : where the program counter is equal
to n, the execution stops.

� rmbrk(n) : remove the breakpoint set at statement labeled by n.
� step : performs a single execution step.
� cont : resumes program execution up to the next breakpoint.
� set(x, v) : sets value v to variable x.
� print(x) : prints the value of variable x.
� exit : exits from the debugger.

Now a given con�guration is composed of : a program con�guration (pc, C, σ), a set of breakpoints
β and optionally a debugger command. An initial con�guration is of the form ((1, C, σ), ∅, cmd). We
denote by → the transition relation ((pc, C, σ), β, cmd)→ ((pc′, C, σ′), β).

The following program :

1: x:=8

2: y:=12

3: if x=y goto 9

4: if x<y goto 7

5: x:=x-y

6: goto 3

7: x:=y-x

8: goto 3

9:

was designed to compute the gcd of the two variables x and y, but it has a bug.

On this program named C, we give the expected steps of our semantics :

� ((1, C, [x 7→ 0, y 7→ 0]), ∅, setbrk(3)) produces con�guration ((1, C, [x 7→ 0, y 7→ 0]), {3}).
� Con�guration ((3, C, [x 7→ 8, y 7→ 12]), {3}, cont) produces con�guration ((3, C, [x 7→ 4, y 7→

12]), {3}).

Question #6.2
Give the operational semantic rules (→)for setbrk(n) and rmbrk(n) and show their e�ect with
appropriate examples similar to the previous ones. Your semantic rules will be be written in a

Natural Semantics style similar to the one described in the course. Please explain and justify

them.

Solution: ((pc, C, σ), β, setbrk(n))→ ((pc, C, σ), {n}∪β) and ((pc, C, σ), {n}∪β, rmbrk(n))→
((pc, C, σ), β).

Con�guration ((3, C, [x 7→ 8, y 7→ 12]), {3}, setbrk(6)) produces con�guration ((3, C, [x 7→
8, y 7→ 12]), {3, 6}).
Con�guration ((3, C, [x 7→ 8, y 7→ 12]), {3, 6}, rmbrk(6)) produces con�guration ((3, C, [x 7→
8, y 7→ 12]), {3}).

Page 9 on 12

Partial Exam CAP - 2017

Question #6.3
Same questions for set(x,v) and print(x).

Solution: ((pc, C, σ), β, set(x,v)) → ((pc, C, σ[x 7→ v]), β) and ((pc, C, σ), β, print(x)) →
((pc, C, σ, β).

Con�guration ((3, C, [x 7→ 8, y 7→ 12]), {3}, set(x,2) produces con�guration ((3, C, [x 7→
2, y 7→ 12]), {3}).
Con�guration ((3, C, [x 7→ 8, y 7→ 12]), {3, 6}, print(x)) produces con�guration ((3, C, [x 7→
8, y 7→ 12]), {3}) and prints 8.

Question #6.4
Same questions for step.

Solution: ((pc, C, σ), β, step)→ ((pc′, C, σ′), β) where (pc, C, σ) B (pc′, C, σ′)

Con�guration ((3, C, [x 7→ 8, y 7→ 12]), {3}, step) produces con�guration ((4, C, [x 7→ 2, y 7→
12]), {3}).

Question #6.5
Same questions for cont.

Solution: There are two rules, a base one if the next control point is a breakpoint, and a
recursive one if this is not the case. The recursive one makes one step in the semantics of
the program, and re-executes the debugger from it. ((pc, C, σ), β, cont) → ((pc′, C, σ′), β) if
pc′ ∈ β and (pc, C, σ) B (pc′, C, σ′).

(pc, C, σ) B (pc′′, C, σ′′), , ((pc′′, C, σ′′)), β, cont)→ ((pc′, C, σ′), β)

((pc, C, σ), β, cont)→ ((pc′, C, σ′), β′)
if pc′′ 6∈ β.

Con�guration ((1, C, []), {3}, cont) produces con�guration ((3, C, [x 7→ 8, y 7→ 12]), {3}).

Now we de�ne a debugging sequence as a sequence of con�gurations :

((1, C, σ), ∅, cmd), (pc1, C, σ1), β1, cmd1) . . . ((pci, C, σk), βk, cmdk)

such that each step is conform to the debugging semantics (→) :

((pci, C, σi), βi, cmdi)→ ((pci+1, C, σi+1), βi+1)

A maximal debugging sequence is of the form :

((1, C, σ), ∅, cmd), (pc1, C, σ1), γ1, cmd1) . . . ((pcn, C, σn), βn, exit)

Question #6.6
Give the debugging sequence obtained by applying the following debugging commands on the
example program :

setbrk(3), cont, cont, cont, cont

Solution:

Page 10 on 12

Partial Exam CAP - 2017

((1, C, σ), ∅, setbrk(3)),
((1, C, σ), {3}, cont),
((3, C, [x 7→ 8, y 7→ 12]), {3}, cont),
((3, C, [x 7→ 4, y 7→ 12]), {3}, cont),
((3, C, [x 7→ 8, y 7→ 12]), {3}, cont),
((3, C, [x 7→ 4, y 7→ 12]), {3}, cont)

Question #6.7
Same question with :

setbrk(3), step, step.

Solution: ((1, C, σ), ∅, setbrk(3)), ((2, C, σ), {3}, step), ((3, C, [x 7→ 8]), {3}, step)

Question #6.8
Where is the bug ?

Solution: line 7 should be y := y − x instead of x := y − x.

Page 11 on 12

Partial Exam CAP - 2017

A Visitor

from HtmlVisitor import HtmlVisitor

class MyHtmlVisitor(HtmlVisitor):

def visitProg(self , ctx):

def visitListorec(self , ctx):

def visitListobase(self , ctx):

def visitListibase(self , ctx):

def visitListirec(self , ctx):

def visitListiel(self , ctx):

#

Page 12 on 12

	Visitor

