
Compilation and Program Analysis (#6) :
Intermediate Representations: CFG, DAGs (Instruction

Selection and Scheduling), SSA

Laure Gonnord
http://laure.gonnord.org/pro/teaching/capM1.html

Laure.Gonnord@ens-lyon.fr

Master 1, ENS de Lyon

2018-2019

http://laure.gonnord.org/pro/teaching/capM1.html
Laure.Gonnord@ens-lyon.fr


Big picture

source code
↓

lexical+syntactic analysis + typing
↓

decorated AST
↓

code production (numerous phases)
↓

assembly language

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2018-2019 � 2 / 25 �



In context 1/2

In the last course we saw the need for a better data structure to
propagate and infer information. We need :

A data structure that helps us to reason about the flow of
the program.

Which embeds our three address code.

I Control-Flow Graph.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2018-2019 � 3 / 25 �



In context 2/2

decorated AST
↓

IR Construction
↓

Control-Flow Graph
↓

Clever analyses/code generation
↓

assembly language

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2018-2019 � 4 / 25 �



Control flow Graph

1 Control flow Graph

2 Basic Bloc DAGs, instruction selection/scheduling

3 Other IRS

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2018-2019 � 5 / 25 �



Control flow Graph

Definitions

Definition (Basic Block)
Basic block : largest (3-address TARGET18) instruction
sequence without label. (except at the first instruction) and
without jumps and calls.

Definition (CFG)
It is a directed graph whose vertices are basic blocks, and edge
B1 → B2 exists if B2 can follow immediately B1 in an execution.

I two optimisation levels : local (BB) and global (CFG)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2018-2019 � 6 / 25 �



Control flow Graph

Identifying Basic Blocks (from 3@code)

The first instruction of a basic block is called a leader.

We can identify leaders via these three properties :

1 The first instruction in the intermediate code is a leader.
2 Any instruction that is the target of a conditional or

unconditional jump is a leader.
3 Any instruction that immediately follows a conditional or

unconditional jump is a leader.

Once we have found the leaders, it is straighforward to
find the basic blocks : for each leader, its basic block
consists of the leader itself, plus all the instructions until
the next leader.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2018-2019 � 7 / 25 �



Control flow Graph

Exercise

Generate the “high level” CFG for the given program :

p:=0;i:=1;

while (i <= 20) do

if p>60 then

p:=0;i:=5;

endif

i:=2*i+1;

done

k:=p*3;

(inside your compiler, blocks will be a list of 3@-TARGET18
code)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2018-2019 � 8 / 25 �



Control flow Graph

CFG for tests

if (expr1 and expr2)

...branch1...

else

...branch2...

expr1?

expr2?

branch2branch1

end of if

(blocks are subgraphs)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2018-2019 � 9 / 25 �



Basic Bloc DAGs, instruction selection/scheduling

1 Control flow Graph

2 Basic Bloc DAGs, instruction selection/scheduling
Instruction Selection
Instruction Scheduling

3 Other IRS

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2018-2019 � 10 / 25 �



Basic Bloc DAGs, instruction selection/scheduling

Big picture

Front-end → a CFG where nodes are basic blocks.

Basic blocks → DAGs that explicit common computations

u1 := c - d

u2 := b + u1

u3 := a * u2

u4 := u2 * u1

u5 := u3 + u4

+

* *

a +

b -

c d

MULADD

MUL

ADD

SUB

I choose instructions(selection) and order them (scheduling).

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2018-2019 � 11 / 25 �



Basic Bloc DAGs, instruction selection/scheduling Instruction Selection

1 Control flow Graph

2 Basic Bloc DAGs, instruction selection/scheduling
Instruction Selection
Instruction Scheduling

3 Other IRS

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2018-2019 � 12 / 25 �



Basic Bloc DAGs, instruction selection/scheduling Instruction Selection

Instruction Selection

The problem of selecting instructions is a DAG-partitioning
problem. But what is the objective?

The best instructions :

cover bigger parts of computation.

cause few memory accesses.

I Assign a cost to each instruction, depending on their
addressing mode.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2018-2019 � 13 / 25 �



Basic Bloc DAGs, instruction selection/scheduling Instruction Selection

Instruction Selection : an example

+

ADD(c=2)

+

cte

ADD(c=1)

*

MUL(c=2)

*

cte

MUL(c=1)

+

*

MULADD(c=3)

What is the optimal
instruction selection for :

+

+ 42

* b

1515 a

I Finding a tiling of minimal cost : it is NP-complete (SAT
reduction).

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2018-2019 � 14 / 25 �



Basic Bloc DAGs, instruction selection/scheduling Instruction Selection

Tiling trees / DAGs, in practise

For tiling :

There is an optimal algorithm for trees based on dynamic
programing.

For DAGs we use heuristics (decomposition into a forest of
trees, . . . )

I The litterature is pletoric on the subject.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2018-2019 � 15 / 25 �



Basic Bloc DAGs, instruction selection/scheduling Instruction Scheduling

1 Control flow Graph

2 Basic Bloc DAGs, instruction selection/scheduling
Instruction Selection
Instruction Scheduling

3 Other IRS

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2018-2019 � 16 / 25 �



Basic Bloc DAGs, instruction selection/scheduling Instruction Scheduling

Instruction Scheduling, what for?

We want an evaluation order for the instructions that we choose
with Instruction Scheduling.

A scheduling is a function θ that associates a logical date to
each instruction. To be correct, it must respect data
dependancies :

(S1) u1 := c - d

(S2) u2 := b + u1

implies θ(S1) < θ(S2).
I How to choose among many correct schedulings? depends
on the target architecture.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2018-2019 � 17 / 25 �



Basic Bloc DAGs, instruction selection/scheduling Instruction Scheduling

Architecture-dependant choices

The idea is to exploit the different ressources of the machine at
their best :

instruction parallelism : some machine have parallel units
(subinstructions of a given instruction).

prefetch : some machines have non-blocking load/stores,
we can run some instructions between a load and its use
(hide latency !)

pipeline.

registers : see next slide.

(sometimes these criteria are incompatible)

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2018-2019 � 18 / 25 �



Basic Bloc DAGs, instruction selection/scheduling Instruction Scheduling

Register use

Some schedules induce less register pressure :

I How to find a schedule with less register pressure?

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2018-2019 � 19 / 25 �



Basic Bloc DAGs, instruction selection/scheduling Instruction Scheduling

Scheduling wrt register pressure

Result : this is a linear problem on trees, but NP-complete on
DAGs (Sethi, 1975).

I Sethi-Ullman algorithm on trees, heuristics on DAGs

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2018-2019 � 20 / 25 �



Basic Bloc DAGs, instruction selection/scheduling Instruction Scheduling

Sethi-Ullman algorithm on trees

ρ(node) denoting the number of (pseudo)-registers necessary
to compute a node :

ρ(leaf) = 1

ρ(nodeop(e1, e2)) =

max{ρ(e1), ρe2} if ρ(e1) 6= ρ(e2)

ρ(e1) + 1 else

(the idea for non “balanced” subtrees is to execute the one with
the biggest ρ first, then the other branch, then the op. If the tree
is balanced, then we need an extra register)
I then the code is produced with postfix tree traversal, the
biggest register consumers first.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2018-2019 � 21 / 25 �



Basic Bloc DAGs, instruction selection/scheduling Instruction Scheduling

Sethi-Ullman algorithm on trees - an example

+

3

*

2

*

2

b

1

b

1

4

1

*

2

a

1

c

1

tmp1 tmp2 tmp3 tmp4

mul tmp1, b b

mul tmp2, a c

leti tmp3, 4

mul tmp4, tmp2, tmp3

mul tmp5, tmp1 ,temp4

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2018-2019 � 22 / 25 �



Basic Bloc DAGs, instruction selection/scheduling Instruction Scheduling

Conclusion (instruction selection/scheduling)

Plenty of other algorithms in the literature :

Scheduling DAGs with heuristics, . . .

Scheduling loops (M2 course on advanced compilation)

Practical session :

we have (nearly) no choice for the instructions in the
TARGET18 ISA.

evaluating the impact of scheduling is a bit hard.

We won’t implement any of the previous algorithms.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2018-2019 � 23 / 25 �



Other IRS

1 Control flow Graph

2 Basic Bloc DAGs, instruction selection/scheduling

3 Other IRS

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2018-2019 � 24 / 25 �



Other IRS

SSA

Later.

Laure Gonnord (M1/DI-ENSL) Compilation and Program Analysis (#6): IRs 2018-2019 � 25 / 25 �


	Control flow Graph
	Basic Bloc DAGs, instruction selection/scheduling
	Other IRS

