
Lab 1
Warm-up : the target machine : TARGET18

Objective

• Be familiar with the TARGET18 instruction set.
• Understand how it executes on the TARGET18 processor with the help of a simulator.
• Write simple programs, assemble, execute.

1.1 The TARGET18 processor, instruction set

EXERCISE #1 Ï Lab preparation
Clone the github repository for this year’s labs:

git clone https://github.com/lauregonnord/cap-labs18.git

Then:

• In thetarget18/emu/directory, type make to compile the emulator. The assembler istarget18/asm.py.
Some more documentation can be found in the TARGET18 ISA on the course webpage and in Ap-
pendix A.

http://laure.gonnord.org/pro/teaching/capM1.html

• You may have issues to compile the graphical version of the simulator, which is not mandatory at all.
This can be solved by compiling it with make -B NO_SDL=1

• On your personal machines you might have to install the libncurses5-dev package.

• The files you need for this lab are in TP01.

In the architecture course, you already saw a version of the target machine TARGET18. The instruction set
is depicted in Appendix A.

1.1.1 Hand exercises

EXERCISE #2 Ï TD
On paper, write (in TARGET18 assembly language) a program which initializes the r0 register to 1 and incre-
ments it until it becomes equal to 8; using only one register.

Then, write a similar program that increments it until it becomes equal to 4242.

EXERCISE #3 Ï TD : sum
Write a program in TARGET18 assembly that computes the sum of the 10 first positive integers.

1.1.2 Assembling, disasembling

EXERCISE #4 Ï Hand assembling, simulation of the hex code
Assemble by hand the instructions :

1 begin:
and2i r0 0
cmpi r0 2
jumpif lt begin

print signed r0

Laure Gonnord, and al. 1/8

http://laure.gonnord.org/pro/teaching/capM1.html

ENS de Lyon, Département Informatique, M1 CAP Lab #1 – 2018

You will need the set of instructions of the TARGET18 machine and their associated opcode. All the info
is in the ISA documentation (and in the simulator Readme file for graphical instructions). Save your (hex)

encoding in a file dummy.bin, and launch the TARGET18 simulator on it:

$./<path/to/simulateur>/emu --text dummy.bin

The --text option is needed to read pseudo-binary files where 0 and 1’s are actually written as text (ascii
characters).

You may add the --debug option to run the program step-by-step in a debugger (use the s command).
Carefully follow each step of the execution.

EXERCISE #5 Ï Hand disassembling
In Figure 1.1 we depicted a toy example with its corresponding assembly code.

Fill the first two rows of the table, and everywhere you find dots (. . .); read the rest of the solution, and
answer the following questions:

• Which instruction is used to load data from memory?
• How is the pointer jumping done to create the loop?
• What happens to the labels in the disassembled program?
• What is the purpose of the “‘jump -13”’ instruction?
• In your own words describe what this program does.

Labels Binary Instructions pseudo-code

110011 000 00

1110011 001 000 01

11111101 010 001001011 lea r2 +75 R2 ← mem [+75] (label . . .)

110110 10 010 setctr a0 r2 a0 ← R2

10010 10 100 011 readze a0 8 r3 R3 ← mem[a0 : a0 +8]

loop: 0001 001 1000000010 add2i r1 2 R1 ← R1 +2

0011 011 01 sub2i r3 1 R3 ← R3 −1

0101 011 00 cmpi r3 0 Compare R3 and 0

1011 100 011001101 jumpif sgt -51 if R3 > 0 jump to . . .

halt: 11111110 0001 001 jump -13 jump . . .

data: 00000110 .const

Figure 1.1: A binary/hexadecimal program (ex5.bin)

From now on, we are going to write programs using an easier approach. We are going to write instructions
using the TARGET18 assembly.

1.2 TARGET18 Simulator

EXERCISE #6 Ï Execution and debugging

1. First test assembling and simulation on the file tp1-simple.s:
$python3 <path/to/assembleur/>asm.py -b tp1-simple.s
$</path/to/emu/simulateur/>emu ./tp1-simple.bin

Laure Gonnord, and al. 2/8

ENS de Lyon, Département Informatique, M1 CAP Lab # – 2018

2. Check if your guess in the previous exercise was right by executing ex5.bin
The simulator comes with a built-in debugger (option “-d” or “-debug”). The interface is divided into
multiple parts, and should render like this:

+---------------------+---------------+-------------+
Dissassembled code	Register Info	Memory view
+---------------------+---------------+-------------+		
Interactive shell		
+---+

If it does not look like this, your terminal might be too small, or something might be broken.

3. Use the debugger to follow the execution of tp1-simple.bin.
4. Guess the output of the program nohalt.s, then use the simulator to check if your assumtion was right.

Use the built-in debugger to follow the execution of the program, and find out or confirm happened.

Remark 1: When displaying a binary file on a terminal (e.g. using the cat command), many characters
do not print correctly. Check the catmanual (especially options “-v” and “-A”) to find out how to fix this.
Be sure your text editor is not doing some funny stuff too with special characters.

Remark 2: You can use the “xxd” program to display files content in binary or hexadecimal, e.g “xxd -b
tp1-simble.bin” (binary)

EXERCISE #7 Ï Algo in TARGET18 assembly
Write a program in TARGET18 assembly that computes the min and max of two integers, and stores the result
in a precise location of the memory that has the label min. Try with different values.

EXERCISE #8 Ï (Advanced) Algo in TARGET18 assembly

Write and execute the following programs in assembly :
• Count the number of non-nul bits of a given integer.
• Draw squares and triangles of stars (character ’*’) of size n, n being stored somewhere in memory.

Examples:
n=3 square:

n=3 triangle:
*
* *
* * *

1.2.1 Finished?

If you’re done with the lab, do the python tutorial at the following address:

https://docs.python.org/fr/3.5/tutorial/

Laure Gonnord, and al. 3/8

https://docs.python.org/fr/3.5/tutorial/

Appendix A
TARGET18 Assembly Documentation (ISA)

About

• ISA: Florent de Dinechin for ASR1, ENSL, 2017-18.

• Simulator and Assembler code: Maxime Darrin, Alain Delaët-Tixueil, Antonin Dudermel, Sébastien
Michelland, Alban Reynaud, L3 students at ENSL, 2017-18.

• Document: Remy Grüblatt, Laure Gonnord, Sébastien Michelland, and Matthieu Moy, for CAP and
MIF08.

This is a simplified version of the machine, which is (hopefully) conform to the chosen simulator.

A.1 Installing the simulator and getting started

To get the TARGET18 assembler and simulator, follow instructions of the first lab (git pull on the course lab
repository).

A.2 The TARGET18 architecture

Among others, the TARGET18 architecture has two particular features:

• The number of bits used to encode instructions is non constant. But for compilation, we do not care!

• Read and write instructions use special registers.

Here is an example of TARGET18 assembly code for 2018:

leti r0 17 ; initialisation of a register to 17
loop:

sub2i r0 1 ; subtraction of an immediate
jumpif nz loop ; equivalent to jump xx

Memory, Registers The memory is adressed by bits (and not words), from address 0.
The TARGET18 has 8 registers from r0 to r7. Only r71 is reserved for the routine return address. There are

specific registers (“counters”) for manipulating memory, namely a1 and a0. Finally, we have special registers
sp (Stack Counter) and pc (Program Counter). Accesses to registers are direct, and Section A.2 explains how to
access memory.

Shifts The directions for the shift are either "left" or "right".

Flags Each instruction may update carry flags (last column of A.1). Flags represent informations about the
last operation that modified them:

• z: The result of the previous operation was a zero.

• c: A carry happened during the previous operation.

• v: An overflow happened during the previous operation.

• n: The result of the previous operation is strictly negative (< 0).

Check the file cap-labs18/target18/doc/emu_flag_management.md for details.

1Registers are in lower case.

Laure Gonnord, and al. 4/8

ENS de Lyon, Département Informatique, M1 CAP Lab #A – 2018

Table A.1: TARGET18 instructions. For constants, padding is done with zeros (z) or sign extension (s).

opcode mnemonic operands description ext. Flags update

0000 add2 reg reg addition zcvn
0001 add2i reg const add immediate constant z zcvn
0010 sub2 reg reg subtraction zcvn
0011 sub2i reg const subtract immediate constant z zcvn
0100 cmp reg reg comparison zcvn
0101 cmpi reg const comparison with immediate constant s zcvn
0110 let reg reg register copy
0111 leti reg const fill register with constant s
1000 shift dir reg shiftval logical shift zcn
10010 readze ctr size reg read size memory bits (zero-extended) to reg
10011 readse ctr size reg read size memory bits (sign-extended) to reg
1010 jump addr relative jump
1011 jumpif cond addr conditional relative jump
110000 or2 reg reg logical bitwise or zcn
110001 or2i reg const logical bitwise or z zcn
110010 and2 reg reg logical bitwise and zcn
110011 and2i reg const logical bitwise and z zcn
110100 write ctr size reg write the lower size bits of reg to mem
110101 call addr sub-routine call s
110110 setctr ctr reg set one of the four counters to the content of reg
110111 getctr ctr reg copy the current value of a counter to reg
1110000 push reg push value of register on stack
1110001 return return from subroutine
1110010 add3 reg reg reg zcvn
1110011 add3i reg reg const z zcvn
1110100 sub3 reg reg reg zcvn
1110101 sub3i reg reg const z zcvn
1110110 and3 reg reg reg zcn
1110111 and3i reg reg const z zcn
1111000 or3 reg reg reg zcn
1111001 or3i reg reg const z zcn
1111010 xor3 reg reg reg zcn
1111011 xor3i reg reg const z zcn
1111100 asr3 reg reg shiftval zcn
1111101 sleep sleep
1111110 rand rand
1111111 lea reg addr load effective address addr
11111110 print type reg print
11111111 printi type const print

Constants: let and leti These expressions provide ways to initialize or copy registers.
The constants are encoded according to A.2 (encoding of ALU constants). For theleti instruction, padding

is done with sign extension. Thus:

1 leti r0 −17

stores the constant -17 in register r0, and the encoding of the instruction is:

0111 000 1011101111

Register copy is done with:

let r0 r1

Arithmetical and logical instructions Arithmetical and logical instructions have 2 or 3 operands:

add3i r1 r0 3 ; r1 <− r0+3
add2i r1 15 ; r1 <− r1+15
add3 r1 r2 r3 ; r1 <− r2+r3

4 add2 r1 r2 ; r1 <− r1+r2

Laure Gonnord, and al. 5/8

ENS de Lyon, Département Informatique, M1 CAP Lab #A – 2018

Table A.2: Constant encoding
addr : prefix-free encoding for addresses and moves
0 + 8 bits value of move on 8 bits
10 + 16 bits same on 16 bits
110 + 32 bits same on 32 bits
111 + 64 bits same on 64 bits

shiftval : prefix-free encoding of shift constants
0 + 6 bits constant between 0 and 63
1 constant value 1

const : prefix-free encoding of ALU constants
0 + 1 bit constant 0 ou 1
10 + 8 bits byte
110 + 32 bits
111 + 64 bits

size : prefix-free encoding of memory sizes
00 1 bit
01 4 bits
100 8 bits
101 16 bits
110 32 bits
111 64 bits

The first operand is always the destination register, and the two remaining operands are sources, registers or
constants. If a constant is used then its value is encoded in the instruction following the encoding depicted in
Table A.2. For instance:

1 add2i r1 15 ; r1 <− r1+15

is encoded as:

0001 001 10 00001111 ;
add2i, register 1, 1 byte constant (*addr* prefix code), value 15 and padding with 0

Be careful, add only uses positive constants:

add3i r1 r0 −12

Throw the following error:

couldn’t read UCONSTANT : The value is not in the right range

Branching (jump jumpif) Let a be the address of the instruction following the jump or call instruction, and
c the integer encoded in a constant of type addr (see Table A.2), and signed.

The jump instruction executes pc← a+c.
The jumpif instruction does the same, but only if the condition is true (see Section A.2).
The call instruction stores R7 in PC and jumps to the called address.
The return instruction does pc← R7.
In:

loop:
sub2i r0 1 ; substraction of an immediate
jumpif nz loop ; equivalent to jump −25

is assembled into

0011 000 01 ; 9 bits
1011 001 011100111 ; 16 bits
jump, nz, 0 (mv on 8 bits), -25 bits jump

Laure Gonnord, and al. 6/8

ENS de Lyon, Département Informatique, M1 CAP Lab #A – 2018

Table A.3: Tests

mnemonic description (after cmp op1 op2)

0 0 0 eq, z equal, op1 = op2
0 0 1 neq, nz not equal, op1 6= op2
0 1 0 sgt signed greater than, op1 > op2, two’s complement
0 1 1 slt signed smaller than, op1 < op2, two’s complement
1 0 0 sge op1 ≥ op2, signed
1 0 1 ge, nc op1 ≥ op2, unsigned
1 1 0 lt, c op1 < op2, unsigned
1 1 1 sle op ≤ op2, signed

Table A.4: Counters (special registers).

encoding mnemonic description

00 pc program counter
01 sp stack pointer
10 a0 generic address counter
11 a1 generic address counter

Tests Operands 1 and 2 are encoded like in the ALU instructions. In particular the second operand can be an
immediate constant. The condition is encoded thanks to Table A.3.

In this class, we will use only the signed version of comparisons (sgt/slt/sle/sge, and eq/neq/z/nz
which work for both signed and unsigned). Not all unsigned comparisons are available, and they are mislead-
ing: don’t use them here.

Memory accesses Special registers a0, a1 are used to access memory.
The instructions readze, readse and write read or write the specified number of bits and also increment

the associated (address) registers:

readze a0 4 r1

reads 4 bits of memory content from the address stored in a0 and store them in r1 (with a zero padding). In
addition, a0 is incremented by 4.

write a1 2 r1

writes the lower 2 bits of register r1.
We can emulate the classical read operation in memory from an adress stored in a register r2 ← Mem[r1]:

setctr a0 r1
readse a0 xxx r2 ; xxx the number of bits to read

The instruction lea r3 label loads the address corresponding to label onto r3. For instance, the follow-
ing program:

lea r0 foo

3 foo:
.const 5 #10101

loads the adress of the constant. The # prefix is used to introduce a binary constant (10101, i.e. 21), and works
only for the .const directive. It is assembled into:

11111101 000 000000000
10101

The TARGET18 emulator’s memory layout is documented in the
cap-labs18/target18/doc/emu_memory_layout.md file.

Laure Gonnord, and al. 7/8

ENS de Lyon, Département Informatique, M1 CAP Lab #A – 2018

Print Two examples of use of the native print instruction:

1 let r0 126
print char r0 ; "~"
print char ’\n’ ; newline
print signed r0 ; "126"
print unsigned r0 ; "0x7e"

6 print unsigned ’0’ ; "0x30"

You can also print a string at a given label with:

lea r0 str
print string r0 ; "Hello, World!"

4 str :
.string "Hello, World!"

Assembly directives A bit more of syntax:
• The assembly begins at address 0.
• Labels can be used for jumps.
• The keyword .const n xxxx reserves a memory cell initialized to the n bits constant xxxx.
• The keyword .string “Hello” reserves 6 memory cells and store the ascii numbers corresponding to

all the characters of the message (ending it with a Null character).
• Hexadecimal constants are prefixed by 0x, for instance 0xff is decimal 255.
• Comments begin with a semicolum;

The assembly implements a stack in memory, from an address stored in the special register sp. We will use it
in Lab5.

Stopping execution When instructions terminate, the emulator halts the execution. But as it has no way of
differenciating instructions from data (like strings or constants), the emulator provides a way to stop execution
by detecting infinite self loops, such as this one:

halt:
jump halt

A.3 Help to encode constants

hex to binary
a b c d e f

1010 1011 1100 1101 1110 1111

2’s complement Let us code n = (−3)10 in 2’s complement on 6 bits, with the recipe: “code -n in base 2,
then negate bitwise, then add one”. First, 3 is encoded as 000011 on 6 bits. Its negation is 111100, thus
(−3)10 = 1111012̄.

Laure Gonnord, and al. 8/8

	Warm-up : the target machine : TARGET18
	The TARGET18 processor, instruction set
	Hand exercises
	Assembling, disasembling

	TARGET18 Simulator
	Finished?

	TARGET18 Assembly Documentation (ISA)
	Installing the simulator and getting started
	The TARGET18 architecture
	Help to encode constants

