
Lab 2
Lexing and Parsing with ANTLR4

Objective

• Understand the software architecture of ANTLR4.
• Be able to write simple grammars and correct grammar issues in ANTLR4.
Last update : Sept, 21h. Added instructions for the Lab submission.

EXERCISE #1 Ï Lab preparation 1/2
Prepare a file named yourname.txt with 2 lines of whatever content. Then try to connect to:

https://tomuss-fr.univ-lyon1.fr

with your ENS account. A manual operation should be done afterwards to add you to the CAP course. Then
you should be able to make a file deposit (“TP1 test rendu”).

EXERCISE #2 Ï Lab preparation 2/2
In the cap-labs18 directory1:

git pull

will provide you all the necessary files for this lab in TP02. You also have to install ANTLR4. For tests, we will
use pytest, you may have to install it:

pip3 install pytest --user

2.1 User install for ANTLR4 and ANTLR4 Python runtime

User installation steps:

mkdir ~/lib
cd ~/lib
wget http://www.antlr.org/download/antlr-4.7.1-complete.jar
pip3 install antlr4-python3-runtime --user

Then add to your ~/.bashrc:

export CLASSPATH=".:$HOME/lib/antlr-4.7.1-complete.jar:$CLASSPATH"
export ANTLR4="java -jar $HOME/lib/antlr-4.7.1-complete.jar"
alias antlr4="java -jar $HOME/lib/antlr-4.7.1-complete.jar"
alias grun="java org.antlr.v4.gui.TestRig"

Then source your .bashrc:

source ~/.bashrc

EXERCISE #3 Ï Install
Install and test ANTLR4 with the examples of section 2.2.

1if you don’t have it already, get it from https://github.com/lauregonnord/cap-labs18.git

Laure Gonnord, and al. 1/6

https://tomuss-fr.univ-lyon1.fr
https://github.com/lauregonnord/cap-labs18.git

ENS de Lyon, Département Informatique, M1 CAP Lab #2 – 2018

2.2 Structure of a .g4 file and compilation

Links to a bit of ANTLR4 syntax :

• Lexical rules (extended regular expressions): https://github.com/antlr/antlr4/blob/master/doc/
lexer-rules.md

• Parser rules (grammars)https://github.com/antlr/antlr4/blob/master/doc/parser-rules.md

The compilation of a given .g4 (for the PYTHON back-end) is done by the following command line if you
modified your .bashrc properly:

antlr4 -Dlanguage=Python3 filename.g4

If you did not define the alias or if you installed the .jar file to another location, you may also use:

java -jar /path/to/antlr-4.7-complete.jar -Dlanguage=Python3 filename.g4

(note: antlr4, not antlr which may also exists but is not the one we want)

2.3 Simple examples with ANTLR4

EXERCISE #4 Ï Demo files
Work your way through the five examples in the directory demo_files:

ex1 with ANTLR4 + Java : A very simple lexical analysis2 for simple arithmetic expressions of the form x+3.
To compile, run:

antlr4 Example1.g4
javac *.java

This generates Java code and then compiles them. You can finally execute using the Java runtime with:

grun Example1 tokens -tokens

To signal the program you have finished entering the input, use Control-D (you may need to press it twice).
Examples of run: [ˆD means that I pressed Control-D]. What I typed is in boldface.

1+1
^D^D
[@0,0:0=’1’,<DIGIT>,1:0]
[@1,1:1=’+’,<OP>,1:1]
[@2,2:2=’1’,<DIGIT>,1:2]
[@3,4:3=’<EOF>’,<EOF>,2:0]
)+
^D^D
line 1:0 token recognition error at: ’)’
[@0,1:1=’+’,<OP>,1:1]
[@1,3:2=’<EOF>’,<EOF>,2:0]
%

Questions:
• Read and understand the code.
• Allow for parentheses to appear in the expressions.
• What is an example of a recognized expression that looks odd? To fix this problem we need a syntactic

analyzer (see later).

2Lexer Grammar in ANTLR4 jargon

Laure Gonnord, and al. 2/6

https://github.com/antlr/antlr4/blob/master/doc/lexer-rules.md
https://github.com/antlr/antlr4/blob/master/doc/lexer-rules.md
https://github.com/antlr/antlr4/blob/master/doc/parser-rules.md

ENS de Lyon, Département Informatique, M1 CAP Lab #2 – 2018

ex1b : same with a PYTHON file driver :

antlr4 -Dlanguage=Python3 Example1b.g4
python3 main.py

test the same expressions. Observe the PYTHON file.
From now on you can alternatively use the commands make and make run instead of calling antlr4 and

python3.

ex2 : Now we write a grammar for valid expressions. Observe how we recover information from the lexing
phase (for ID, the associated text is $ID.text$).

If these files read like a novel, go on with the other exercises. Otherwise, make sure that you understand
what is going on. You can ask the Teaching Assistant, or another student, for advice.

From now you will write your own grammars. Be careful the ANTLR4 syntax use unusual conventions:
“Parser rules start with a lowercase letter and lexer rules with an upper case.”a

ahttp://stackoverflow.com/questions/11118539/antlr-combination-of-tokens

EXERCISE #5 Ï Well-founded parenthesis
Write a grammar and files to accept any text with well-formed parenthesis ’)’ and ’[’ (e.g. accept “foo[bar](boz[])”
but neither “[” nor “[)”).

Important remark From now on, we will use Python at the right-hand side of the rules. As Python is sensitive
to indentation, there might be some issues when writing on several lines. Try to be as compact as you can!

EXERCISE #6 Ï Towards analysis: If then else ambiguity3 - Skip if you are late
We give you the following grammar for nested “ifs” :

grammar ITE;

prog: stmt;

stmt : ifStmt | ID ;

ifStmt : ’if’ ID stmt (’else’ stmt)? ;

ID : [a-zA-Z]+;
WS : [\t\r\n]+ -> skip ; // skip spaces, tabs, newlines

Find a way (with right actions) to test if:

if x if y a else b

is parsed as :

if x (if y a else b)

or

if x (if y a) else b

Thus ANTLR4 finds a way to decide which rule to “prioritize”. There are other ways of getting around this
problem explicitely:

• by changing the syntax: add explicit parentheses, or other block marks (“if .. then .. end else .. end”)
• by disambiguating the grammar:

3Also known as “dangling else”

Laure Gonnord, and al. 3/6

http://stackoverflow.com/questions/11118539/antlr-combination-of-tokens

ENS de Lyon, Département Informatique, M1 CAP Lab #2 – 2018

ifStmt : ’if’ ID ifStmt | ’if’ ID ifThenStmt ’else’ ifStmt
ifThenStmt : ’if’ ID ifThenStmt ’else’ ifThenStmt

• by using the ANTLR4 “lookahead” concept.
ifStmt : ’if’ ID stmt (’else’ stmt | {self.input.LA(1) != ELSE}?);
ELSE : ’else’;

more on https://en.wikipedia.org/wiki/Dangling_else

2.4 Grammar Attributes (actions)

This exercise is due on Tomuss-fr, before Monday 24, midnight FIRM. This work is individual - no copy
paste, thanks.

Until now, our analyzers are passive oracles, ie language recognizers. Moving towards a “real compiler”,
a next step is to execute code during the analysis, using this code to produce an intermediate representation
of the recognized program, typically ASTs. This representation can then be used to generate code or perform
program analysis (see next labs). This is what attribute grammars are made for. We associate to each produc-
tion a piece of code that will be executed each time the production will be reduced. This piece of code is called
semantic action and computes attributes of non-terminals.

Let us consider the following grammar (the end of an expression is a semicolon):

Z → E ;

E → E +T

E → T

T → T ∗F

T → F

F → i d

F → i nt

F → (E)

EXERCISE #7 Ï Test the provided code (ariteval/ directory)

To test your installs:

1. Type

make ; python3 arit2.py testfiles/hello01.txt

This should print:

prog = Hello

on the standard output.

2. Type:

make tests

This should print:

test_ariteval.py::TestEVAL::test_expect[./testfiles/hello01.txt] PASSED

To debug our grammar, we will use an interactive test (unlike make tests which is fully automatic): display
the parse tree graphically, and check manually that it matches your expectation. To help you, we provide a
make grun-gui target in the Makefile, that runs grun -gui internally. Since grun uses the Java target of
ANTLR, we first need to remove temporary any Python code in our Arit2.g4 file. Comment-out (i.e. prefix
with //) the header part of the grammar (you will uncomment it when you start writing Python code in the
grammar), and replace the main rule with prog: ID;. You can now run:

Laure Gonnord, and al. 4/6

https://en.wikipedia.org/wiki/Dangling_else

ENS de Lyon, Département Informatique, M1 CAP Lab #2 – 2018

make TESTFILE=testfiles/hello01.txt grun-gui

If you see a Java syntax error, you probably didn’t comment out the Python code properly. Otherwise, you
should see a graphical window containing the parse tree of testfiles/hello01.txt when parsed by the
grammar.

EXERCISE #8 Ï Implement!
In the ariteval/Arit2.g4 file, implement THIS grammar in ANTLR4. Write test files and test them wrt.
the grammar with make grun-gui, like in the previous exercise. Keep your test files for the next exercise. In
particular, verify the fact that ’*’ has higher priority on ’+.’ Is ’+’ left or right associative ?

Important! Before you begin to implement, it is MANDATORY to read carefully until the end of the lab
subject.

EXERCISE #9 Ï Evaluating arithmetic expressions with ANTLR4 and PYTHON

Based on the grammar you just wrote, build an expression evaluator. You can proceed incrementally as follows
(but test each step!):

• Attribute the grammar to evaluate arithmetic expressions. For the moment, launch an error for all uses
of variables:

if $ID.text not in idTab: # Always true, for now
raise UnknownIdentifier($ID.text);

• Execute your grammar against expressions such as 1+(2*3);.
• Augment the grammar to treat lists of assignments. You will use PYTHON dictionaries to store values of

ids when they are defined:

idTab[$ID.text]=...

The assignments can be separated by line breaks.
• Execute your grammar against lists of assignements such as x=1;2+x;. When you read a variable that is

not (yet) defined, you have to launch the UnknownIdentifier error.
Here are examples of expected outputs 4:

Input Output (on stdout)
1; 1 = 1
-12; -12 = -12
12; 12 = 12

1 + 2; 1+2 = 3
1 + 2 * 3 + 4; 1+2*3+4 = 11
(1+2)*(3+4); (1+2)*(3+4) = 21
a=1+4/1; a now equals 5
b + 1; b+1 = 43
a + 8; a+8 = 13
-1 + x; -1+x = 41

The parsed expression can be printed from an expr for instance with:

rule :
expr ... {print($expr.text);}

EXERCISE #10 Ï Test infrastructure
We provide to you a test infrastructure. In the repository, we provide you a script that enables you to test your
code. For the moment it only tests files of the form testfiles/foo*.txt.

Just type:

make tests

4The expected behavior of your evaluator may not be completely specified. If you make a design choice, explain it in the Readme file.

Laure Gonnord, and al. 5/6

ENS de Lyon, Département Informatique, M1 CAP Lab # – 2018

and your code will be tested on these files.
To test on more relevant tests, you should open the test_ariteval.py and change some paths.

We will use the same exact script to test your code (but with our own test cases!).

A given test has the following behavior: if the pragma # EXPECTED is present in the file, it compares the
actual output with the list of expected values (see testfiles/test01.txt for instance). There is also a special
case for errors, with the pragma # EXIT CODE, that also check the (non zero) return code if there has been an
error followed by an exit (see testfiles/bad01.txt).

EXERCISE #11 Ï Archive
Type make tar to obtain the archive to put on TOMUSS-FR (change your name in the Makefile before!). Your
archive must also contain tests (grammar tests as well as unit tests) and a Readme.md with your name, the
functionality of the code, how to use it, your design choices, and known bugs.

Partial solutions are allowed, but only if they compile and execute (comment your code if it does not work)!.
Again, your work is personal.

Be careful, the deadline is strict (the submission will be closed at due time).
3 remarks:

• Our solution is 80 lines of code, including empty lines and comments.

• If you have problems with installing the required tools, the procedure we describe work on the ENSL
machines. Use ssh to access to them.

• If you have any question with the deposit, send an email to matthieu.moy@univ-lyon1.fr or remy.
grunblatt@inria.fr.

• If you do not have access to your tomuss account, write an email to laure.gonnord@ens-lyon.fr
ASAP.

Laure Gonnord, and al. 6/6

mailto:matthieu.moy@univ-lyon1.fr
mailto:remy.grunblatt@inria.fr
mailto:remy.grunblatt@inria.fr
mailto:laure.gonnord@ens-lyon.fr

	Lexing and Parsing with ANTLR4
	User install for ANTLR4 and ANTLR4 Python runtime
	Structure of a .g4 file and compilation
	Simple examples with ANTLR4
	Grammar Attributes (actions)

