
Lab 4
Syntax-Directed Code Generation

Objective

During the previous lab, you have written your own evaluator of the Mu language. In this lab the objective is
to generate valid TARGET18 codes from Mu programs:

• Generate 3-address code for the Mu language.
• Generate executable “dummy” TARGET18 from programs in Mu via two simple allocation algorithms.
• Please follow instructions and COMMENT YOUR CODE!

Student files are in the Git repository.

4.1 Preliminaries

This section must be carefully read.

Important remark From now on, we add some restrictions to our language:
• Variables are of type (signed) int or bool only (no float, no string, no char). Thus all values can be stored

in regular registers or in one cell (16 bits) in memory. You can let your program crash if another type of
variable is provided.

• Print instruction only print (the content of) a register, or an int constant.
Note that real compilers would perform the code generation from a decorated AST (with type annotations

attached to nodes). For simplicity, we will work on the non-decorated AST: our language is simple enough to
generate code without decorations.

Structure of the compiler’s code

• In APICode18.py we provide you with utility functions to encode 3-address TARGET18 instructions.
Instruction classes are in Instruction3A.py and Operands.py. An Instruction is either a Comment, a
Label, or a Instru3A; it has arguments which can be immediate numbers (of type Immediate), tempo-
raries (of type Temporary), regular registers (Register), offsets in memory (Offset).

• A TARGET18 program contains a list of instructions, and also a temporary pool (temporary variables).

• In Section 4.2, you will use an instance of the Target18Prog class in order to construct a list of such
instructions via calls to addInstructionXXX methods. A call to the printCode method will dump this
code into a text file.

• File Allocation.py is responsible for the allocation part. From a Target18Prog with temporaries (in-
structions formed with temporaries), producing an actual TARGET18 program (instructions with regu-
lar registers or memory accesses) is done by:

– First, compute an allocation for each temporary (in the current Target18Prog instance). In Sec-
tion 4.3, we provide you with Target18Prog.naive_alloc() which computes such a (naive) al-
location, you will have to design your own allocation function in Section 4.4.

– For each instruction of the program, if the instruction contains a read or write access to a tempo-
rary, replace operands with the corresponding actual registers/memory location (and possibly add
some instructions before and after). This is done by the use of theTarget18Prog.iter_instructions
iterator on instructions and Allocations.replace_reg methods. In Section 4.4 you will have to
write such a “replacement” function.

Laure Gonnord, and al. 1/14

ENS de Lyon, Département Informatique, M1 CAP Lab #4 – 2018

• The file Main.py launches the chain: production of 3-address code with temporaries, allocation, re-
placement, print.

• The script test_codegen.py will help you to test your code. We will use it in Section 4.3.

• A Readme.md file to be completed progressively during the lab.

EXERCISE #1 Ï TARGET18 Simulator
Git pull, then recompile the TARGET18 simulator in the target18/ directory and test its command-line ver-
sion (we only need this!):

$ cd target18
$ make # Recompile the simulator
[...]
$./asm.py prog/hello.s
$./emu/emu --text prog/hello.obj
Hello, world!

4.1.1 Conventions used in the assembly code

• All data items are stored on 16 bits. Integers are short integers, and we don’t use the full power of TAR-
GET18 which would be able to address booleans at the bit level.

• Registers r0 and r1 are reserved for temporary computations (e.g. to compute an address before a write
or a readse, or to store a value between a memory access and an arithmetic operation).

• The address counters a0 an a1 are used for read/write accesses, but may be overwritten at any time (in
practice only a0 is useful).

• The stack pointer is sp. The stack is growing with increasing adresses. Thus data in the stack is accessed
by adding a positive offset to this register.

4.2 Three-address code generation

In this section you have to implement the course rules (Figures 4.2 and 4.3) in order to produce TARGET18
code with temporaries.

Here is an example of the expected output of this part. From the following Mu program:

var a,n:int;
n=1;
a=7;
while (n<a) {
n= n+1;
}
log(n);

the following code is supposed to be generated:

1 ; ;Automatically generated TARGET code, MIF08 & CAP 2018
; ;non executable 3−Address instructions version

; ; (stat (assignment n = (expr (atom 1)) ;))
leti temp_2 1
let temp_0 temp_2

6 ; ; (stat (assignment a = (expr (atom 7)) ;))
leti temp_3 7
let temp_1 temp_3
; ; (stat (while_stat while (expr (atom ((expr (expr (atom n)) < (expr (atom a)))))) (stat_block { (

block (stat (assignment n = (expr (expr (atom n)) + (expr (atom 1))) ;)) (stat (log log (expr (atom ((expr (
atom n))))) ;))) })))

Laure Gonnord, and al. 2/14

ENS de Lyon, Département Informatique, M1 CAP Lab #4 – 2018

lbl_l_while_begin_0:
11 leti temp_4 0

; ; cond_jump lbl_end_relational_1 temp_0 sge temp_1
cmp temp_0 temp_1
jumpif sge lbl_end_relational_1
; ; end cond_jump lbl_end_relational_1 temp_0 sge temp_1

16 leti temp_4 1
lbl_end_relational_1:

; ; cond_jump lbl_l_while_end_0 temp_4 neq 1
cmp temp_4 1
jumpif neq lbl_l_while_end_0

21 ; ; end cond_jump lbl_l_while_end_0 temp_4 neq 1
; ; (stat (assignment n = (expr (expr (atom n)) + (expr (atom 1))) ;))
leti temp_5 1
add3 temp_6 temp_0 temp_5
let temp_0 temp_6

26 ; ; (stat (log log (expr (atom ((expr (atom n))))) ;))
print signed temp_0
print char ’\n’
jump lbl_l_while_begin_0

lbl_l_while_end_0:
31 ; ; (stat (log log (expr (atom ((expr (atom n))))) ;))

print signed temp_0
print char ’\n’

36 ; ;postlude
end:

jump end

EXERCISE #2 Ï 3-address code generation
In the archive, we provide you a main and an incomplete MuCodeGen3AVisitor.py. To test it, type

make TESTFILE=tests/step1/test01.mu

and observe the generated code in <samepath>/test01.s1. You now have to implement the 3-address code
generation rules seen in the course. Code and test incrementally 2:

• the printing instruction log for scalar variables (chars and strings are optional) (we recall that there is a
native print instruction in the TARGET18 assembly).

• numerical expressions without variables (constants are expected to hold on 16 bits).
• then (numerical) assignments and expressions with variables; PowExpr and MultiplicativeExpr are bonus,

implement them only if after everything else is working.
At this step, the code generation is not finished, but we will do some allocation to be able to test properly.

All examples in tests/step1 directory should generate code without any error at this point:

for i in tests/step1/*.mu; do echo "file="$i; python3 Main.py $i > /dev/null; done

4.3 Testing with the trivial allocator, end of code generation.

The former code is not executable since it uses temporaries. We provide you with an allocation method which
allocates temporaries in registers as long as possible, and fails if there is no available registers. The process
takes as input the former 3-address code and transforms each instruction according to the allocation function.

1We generated TARGET18 comments with Mu statements for debug.
2Using files in the TP04/tests/* directories. All the test files you use will have to be in your archive.

Laure Gonnord, and al. 3/14

ENS de Lyon, Département Informatique, M1 CAP Lab #4 – 2018

EXERCISE #3 Ï Testing the trivial allocator
Open, read, understand the prog.naive_alloc() implementation in APICode18 and Allocations.py and
how it is used to perform the actual TARGET18 code generation. Then, intensively test your former code
generation with this allocator 3:

1. Have a look at the test_codegen.py script: comment or uncomment files to test, and what to test.

2. Test with:

python3 test_codegen.py

This script tests all files in the test/* directories:

• if the pragma # EXPECTED is present in the file, it compares the actual output after assembling and
simulating with the list of expected values. For instance:

var x,y:int;
x = 42;
log x
y = x + 8;
log(y)
EXPECTED
42
50

is a great test case to test assignments.

• If the AllocationError exception is raised by the naive allocator, the test is skipped.

• If the compilation succeeded, it compares the actual output after assembling and simulating to the
output given by your evaluator of the Mu Language (Lab 3). If your evaluator is buggy, you can
decide either to correct your bugs or to comment appropriate lines in the Python script.

• For debugging, you can obviously launch your compiler manually with e.g.

python3 Main.py --naive-alloc --stdout tests/step1/test00.mu

Run python3 Main.py �help or see Main.py for more options.

At this step, the tests should be OK for all files given in directory tests/step1/:

make tests
============================= 6 passed, 2 skipped in xx seconds ========

Now that we have a way to test our code generation for tiny Mu codes, we can come back to it.

EXERCISE #4 Ï End of 3-address code generation for Mu
Implement the 3-address code generation rules:

• for boolean expressions and numerical comparison: compute 1 (true) or 0 (false) in the destination
register;

• while loops;
• if then else. Be careful with nested ifs and their labels!.

At this point all the tests should be ok for all files in directory tests/step2/ (You should modify the test
script pathes). However these tests are not sufficient, you should add some other ones (in the directory
tests/mine/).

About if and while For tests (and boolean expressions), make sure you generate “conditional jumps” with:

self._prog.addInstructionCondJUMP(label, op1, cond, op2)

where op1 (resp op2) is the left operand (resp right operand), ie a register or a value of the boolean condition
(Condition(’eq’) for equality, for instance), and label is a label to jump to if the condition evaluates to true.
Later on (while printing), this instruction will expand itself to a regular list of TARGET18 instructions.

3Be careful, this allocator crashes if there is more than 8 temporaries !

Laure Gonnord, and al. 4/14

ENS de Lyon, Département Informatique, M1 CAP Lab #4 – 2018

About nested if-then-else There is an issue with nested ifs. Indeed, how can we remember where to jump af-
ter one CondBlock (invisitCondBlock(self, ctx))? We propose to use a label stack calledself.ctx_stack:
each time we enter visitIfStat, we push the end label. This label is used in all visitCondBlock (at some
point you have to insert a jump instruction to the cond_if label). At the end of the visitIfStat function this
label is popped out.

4.4 TARGET18 code with “all-stack” allocation of temporaries

As the number of registers is only 8, the naive allocator cannot deal with more than 8 temporaries (or even 6
considering that we reserved r0 and r1): we have to find a way to store the results elsewhere. In this particular
lab, we will use the following solution:

• the generated code will use memory locations in the stack, and will not use registers r2 to r7 at all (r2 to
r7 will be used to store some temporaries in the clever version of the allocator);

• but all values that are propagated from one rule to another (sub-expressions, . . .) must be stored in the
stack, whose address will be stored in sp (as defined in Target18Prog.printCode).

• r0 will be used to compute the actual addresses from the base stack register sp.
• r1 will be used to compute the value to store or as a destination register for the value to read.
• a0 and a1 will be used to compute actual addresses.

Figure 4.1 depicts the stack implementation for the TARGET18 machine.

x0000

x3000

R0
R1

x3001
ins1

ins2

TARGET18 Memory Model

R6
R7

x3000pc
sp

a0
a1

x30FFx30FF

xFFFF

x30FE
x30FE

stack

growing @

Figure 4.1: Memory model for TARGET18

Following the convention that sp always stores the “begining of stack address”, pushing4 the content of r1

in the stack will be done following the steps:

• compute a new offset (call to the new_offset method of the class Target18Prog).

• generate the following instructions:

GETCTR sp r0
ADD r0 r0 <valueofoffset*16>
SETCTR a0 r0
WRITE a0 16 r1

r0 is used to compute the address, r1 holds the value to write, and is the register to use instead of the
temporary in the final instruction.

Be careful with the size of the offsetvalue!
4Please do not use the assembly macros push and pop that do not follow our conventions!

Laure Gonnord, and al. 5/14

ENS de Lyon, Département Informatique, M1 CAP Lab #4 – 2018

EXERCISE #5 Ï Manual translation
Complete the expected output for the following two statements (15 lines of TARGET18 code):

var x,y:int;
x=4;
y=12+x

Listing 4.1: ’all in mem alloc for test00b.mu’

1 ; ;Automatically generated TARGET code, MIF08 & CAP 2018
; ; all−in−memory allocation version

; ; (stat (assignment x = (expr (atom 4)) ;))
; ; leti temp_2 4
leti r1 4

6 getctr sp r0
add r0 r0 64
setctr a0 r0
write a0 16 r1
; ; end leti temp_2 4

11 ; ; let temp_1 temp_2
getctr sp r0
add r0 r0 64
setctr a0 r0
readse a0 16 r0

16 let r1 r0
getctr sp r0
add r0 r0 16
setctr a0 r0
write a0 16 r1

21 ; ; end let temp_1 temp_2
; ; (stat (assignment y = (expr (expr (atom 12)) + (expr (atom x))) ;))
; ; leti temp_3 12

; ;; 5 LINES HERE
; ;; <TODO>

26 ; ; end leti temp_3 12
; ; add3 temp_4 temp_3 temp_1

; ;; 13 LINES HERE
; ;; <TODO>

; ; let temp_0 temp_4
31 ; ;; <NOT TODO>

; ;postlude
end:

36 jump end

EXERCISE #6 Ï Implement
Now you are on your own to implement this code generation. Here are the main steps (less than 50 locs of
PYTHON):

1. We have implemented for you an alloc_to_mem(self) method in APICode18.py. This method only
maps each temporary (“temporary”) to a new offset in memory (in a PYTHON dict), then iterates the
replace_mem function on all instructions of the three adress program to perform the actual allocation.

2. In Allocations.py, implement a replace_mem(old_i) that takes as input a “3-address with tempo-
raries” TARGET18 code and outputs a list of instructions as a replacement. For instance, each time we
access a source operand, we have to load it from memory before, thus the replace_mem should contains
lines like:

Laure Gonnord, and al. 6/14

ENS de Lyon, Département Informatique, M1 CAP Lab # – 2018

after.append(Instru3A(’getctr’, SP, Indirect(R0)))
after.append(Instru3A(’add’, R0, R0, offset * 16))
after.append(Instru3A(’setctr’, A0, Indirect(R0)))
after.append(Instru3A(’write’, A0, 16, R1))

The files you generate have to be tested with the TARGET18 simulator with the same script as before.

4.5 Extensions

Here are a list of (non mandatory) extensions you can implement:

• more expressions (xor, pow, multiplication): some are nearly free.

• fortran-like for.

• get information from the typer to save memory when storing a boolean value.

• . . .

Laure Gonnord, and al. 7/14

ENS de Lyon, Département Informatique, M1 CAP Lab # – 2018

c

dr <-newTemp()
code.add(InstructionLETI(dr, c))
return dr

x

#get the place associated to x.
regval<-getTemp(x)
return regval

e1+e2

t1 <- GenCodeExpr(e_1)
t2 <- GenCodeExpr(e_2)
dr <- newTemp()
code.add(InstructionADD(dr, t1, t2))
return dr

e1-e2

t1 <- GenCodeExpr(e_1)
t2 <- GenCodeExpr(e_2)
dr <- newTemp()
code.add(InstructionSUB(dr, t1, t2))
return dr

true

dr <-newTemp()
code.add(InstructionLETI(dr, 1))
return dr

e1 < e2

dr <- newTemp()
t1 <- GenCodeExpr(e1)
t2 <- GenCodeExpr(e2)
endrel <- newLabel()
code.add(InstructionLETI(dr, 0))
#if t1>=t2 jump to endrel
code.add(InstructionCondJUMP(endrel, t1, ’sge’ , t2)
code.add(InstructionLETI(dr, 1))
code.addLabel(endrel)
return dr

Figure 4.2: 3@ Code generation for numerical or Boolean expressions (t1 and t2 are already defined)

Laure Gonnord, and al. 8/14

ENS de Lyon, Département Informatique, M1 CAP Lab # – 2018

x = e

dr <- GenCodeExpr(e)
#a code to compute e has been generated
find loc the location for var x
code.add(instructionLET(loc,dr))

S1; S2

#concat codes
GenCodeSmt(S1)
GenCodeSmt(S2)

if b then S1 else S2

lelse,lendif <-newLabels()
t1 <- GenCodeExpr(b)
#if the condition is false, jump to else
code.add(InstructionCondJUMP(lelse, t1, "eq", 0))
GenCodeSmt(S1) #then
code.add(InstructionJUMP(lendif))
code.addLabel(lelse)
GenCodeSmt(S2) #else
code.addLabel(lendif)

while b do S done

ltest,lendwhile <-newLabels()
code.addLabel(ltest)
t1 <- GenCodeExpr(b)
code.add(InstructionCondJUMP(lendwhile, t1, "eq", 0))
GenCodeSmt(S) #execute S
code.add(InstructionJUMP(ltest)) #and jump to the test
code.addLabel(lendwhile) #else it is done.

Figure 4.3: 3@ Code generation for Statements

Laure Gonnord, and al. 9/14

Appendix A
TARGET18 Assembly Documentation (ISA)

About

• ISA: Florent de Dinechin for ASR1, ENSL, 2017-18.

• Simulator and Assembler code: Maxime Darrin, Alain Delaët-Tixueil, Antonin Dudermel, Sébastien
Michelland, Alban Reynaud, L3 students at ENSL, 2017-18.

• Document: Remy Grüblatt, Laure Gonnord, Sébastien Michelland, and Matthieu Moy, for CAP and
MIF08.

This is a simplified version of the machine, which is (hopefully) conform to the chosen simulator.

A.1 Installing the simulator and getting started

To get the TARGET18 assembler and simulator, follow instructions of the first lab (git pull on the course lab
repository).

A.2 The TARGET18 architecture

Among others, the TARGET18 architecture has two particular features:

• The number of bits used to encode instructions is non constant. But for compilation, we do not care!

• Read and write instructions use special registers.

Here is an example of TARGET18 assembly code for 2018:

1 leti r0 17 ; initialisation of a register to 17
loop:

sub2i r0 1 ; subtraction of an immediate
jumpif nz loop ; equivalent to jump xx

Memory, Registers The memory is adressed by bits (and not words), from address 0.
The TARGET18 has 8 registers from r0 to r7. Only r71 is reserved for the routine return address. There are

specific registers (“counters”) for manipulating memory, namely a1 and a0. Finally, we have special registers
sp (Stack Counter) and pc (Program Counter). Accesses to registers are direct, and Section A.2 explains how to
access memory.

Shifts The directions for the shift are either "left" or "right".

Flags Each instruction may update carry flags (last column of A.1). Flags represent informations about the
last operation that modified them:

• z: The result of the previous operation was a zero.

• c: A carry happened during the previous operation.

• v: An overflow happened during the previous operation.

• n: The result of the previous operation is strictly negative (< 0).

Check the file cap-labs18/target18/doc/emu_flag_management.md for details.

1Registers are in lower case.

Laure Gonnord, and al. 10/14

ENS de Lyon, Département Informatique, M1 CAP Lab #A – 2018

Table A.1: TARGET18 instructions. For constants, padding is done with zeros (z) or sign extension (s).

opcode mnemonic operands description ext. Flags update

0000 add2 reg reg addition zcvn
0001 add2i reg const add immediate constant z zcvn
0010 sub2 reg reg subtraction zcvn
0011 sub2i reg const subtract immediate constant z zcvn
0100 cmp reg reg comparison zcvn
0101 cmpi reg const comparison with immediate constant s zcvn
0110 let reg reg register copy
0111 leti reg const fill register with constant s
1000 shift dir reg shiftval logical shift zcn
10010 readze ctr size reg read size memory bits (zero-extended) to reg
10011 readse ctr size reg read size memory bits (sign-extended) to reg
1010 jump addr relative jump
1011 jumpif cond addr conditional relative jump
110000 or2 reg reg logical bitwise or zcn
110001 or2i reg const logical bitwise or z zcn
110010 and2 reg reg logical bitwise and zcn
110011 and2i reg const logical bitwise and z zcn
110100 write ctr size reg write the lower size bits of reg to mem
110101 call addr sub-routine call s
110110 setctr ctr reg set one of the four counters to the content of reg
110111 getctr ctr reg copy the current value of a counter to reg
1110000 push reg push value of register on stack
1110001 return return from subroutine
1110010 add3 reg reg reg zcvn
1110011 add3i reg reg const z zcvn
1110100 sub3 reg reg reg zcvn
1110101 sub3i reg reg const z zcvn
1110110 and3 reg reg reg zcn
1110111 and3i reg reg const z zcn
1111000 or3 reg reg reg zcn
1111001 or3i reg reg const z zcn
1111010 xor3 reg reg reg zcn
1111011 xor3i reg reg const z zcn
1111100 asr3 reg reg shiftval zcn
1111101 sleep sleep
1111110 rand rand
1111111 lea reg addr load effective address addr
11111110 print type reg print
11111111 printi type const print

Constants: let and leti These expressions provide ways to initialize or copy registers.
The constants are encoded according to A.2 (encoding of ALU constants). For theleti instruction, padding

is done with sign extension. Thus:

1 leti r0 −17

stores the constant -17 in register r0, and the encoding of the instruction is:

0111 000 1011101111

Register copy is done with:

let r0 r1

Arithmetical and logical instructions Arithmetical and logical instructions have 2 or 3 operands:

add3i r1 r0 3 ; r1 <− r0+3
add2i r1 15 ; r1 <− r1+15
add3 r1 r2 r3 ; r1 <− r2+r3

4 add2 r1 r2 ; r1 <− r1+r2

Laure Gonnord, and al. 11/14

ENS de Lyon, Département Informatique, M1 CAP Lab #A – 2018

Table A.2: Constant encoding
addr : prefix-free encoding for addresses and moves
0 + 8 bits value of move on 8 bits
10 + 16 bits same on 16 bits
110 + 32 bits same on 32 bits
111 + 64 bits same on 64 bits

shiftval : prefix-free encoding of shift constants
0 + 6 bits constant between 0 and 63
1 constant value 1

const : prefix-free encoding of ALU constants
0 + 1 bit constant 0 ou 1
10 + 8 bits byte
110 + 32 bits
111 + 64 bits

size : prefix-free encoding of memory sizes
00 1 bit
01 4 bits
100 8 bits
101 16 bits
110 32 bits
111 64 bits

The first operand is always the destination register, and the two remaining operands are sources, registers or
constants. If a constant is used then its value is encoded in the instruction following the encoding depicted in
Table A.2. For instance:

1 add2i r1 15 ; r1 <− r1+15

is encoded as:

0001 001 10 00001111 ;
add2i, register 1, 1 byte constant (*addr* prefix code), value 15 and padding with 0

Be careful, add only uses positive constants:

add3i r1 r0 −12

Throw the following error:

couldn’t read UCONSTANT : The value is not in the right range

Branching (jump jumpif) Let a be the address of the instruction following the jump or call instruction, and
c the integer encoded in a constant of type addr (see Table A.2), and signed.

The jump instruction executes pc← a+c.
The jumpif instruction does the same, but only if the condition is true (see Section A.2).
The call instruction stores R7 in PC and jumps to the called address.
The return instruction does pc← R7.
In:

loop:
sub2i r0 1 ; substraction of an immediate
jumpif nz loop ; equivalent to jump −25

is assembled into

0011 000 01 ; 9 bits
1011 001 011100111 ; 16 bits
jump, nz, 0 (mv on 8 bits), -25 bits jump

Laure Gonnord, and al. 12/14

ENS de Lyon, Département Informatique, M1 CAP Lab #A – 2018

Table A.3: Tests

mnemonic description (after cmp op1 op2)

0 0 0 eq, z equal, op1 = op2
0 0 1 neq, nz not equal, op1 6= op2
0 1 0 sgt signed greater than, op1 > op2, two’s complement
0 1 1 slt signed smaller than, op1 < op2, two’s complement
1 0 0 sge op1 ≥ op2, signed
1 0 1 ge, nc op1 ≥ op2, unsigned
1 1 0 lt, c op1 < op2, unsigned
1 1 1 sle op ≤ op2, signed

Table A.4: Counters (special registers).

encoding mnemonic description

00 pc program counter
01 sp stack pointer
10 a0 generic address counter
11 a1 generic address counter

Tests Operands 1 and 2 are encoded like in the ALU instructions. In particular the second operand can be an
immediate constant. The condition is encoded thanks to Table A.3.

In this class, we will use only the signed version of comparisons (sgt/slt/sle/sge, and eq/neq/z/nz
which work for both signed and unsigned). Not all unsigned comparisons are available, and they are mislead-
ing: don’t use them here.

Memory accesses Special registers a0, a1 are used to access memory.
The instructions readze, readse and write read or write the specified number of bits and also increment

the associated (address) registers:

readze a0 4 r1

reads 4 bits of memory content from the address stored in a0 and store them in r1 (with a zero padding). In
addition, a0 is incremented by 4.

write a1 2 r1

writes the lower 2 bits of register r1.
We can emulate the classical read operation in memory from an adress stored in a register r2 ← Mem[r1]:

setctr a0 r1
readse a0 xxx r2 ; xxx the number of bits to read

The instruction lea r3 label loads the address corresponding to label onto r3. For instance, the follow-
ing program:

lea r0 foo

3 foo:
.const 5 #10101

loads the adress of the constant. The # prefix is used to introduce a binary constant (10101, i.e. 21), and works
only for the .const directive. It is assembled into:

11111101 000 000000000
10101

The TARGET18 emulator’s memory layout is documented in the
cap-labs18/target18/doc/emu_memory_layout.md file.

Laure Gonnord, and al. 13/14

ENS de Lyon, Département Informatique, M1 CAP Lab #A – 2018

Print Two examples of use of the native print instruction:

1 let r0 126
print char r0 ; "~"
print char ’\n’ ; newline
print signed r0 ; "126"
print unsigned r0 ; "0x7e"

6 print unsigned ’0’ ; "0x30"

You can also print a string at a given label with:

lea r0 str
print string r0 ; "Hello, World!"

4 str :
.string "Hello, World!"

Assembly directives A bit more of syntax:
• The assembly begins at address 0.
• Labels can be used for jumps.
• The keyword .const n xxxx reserves a memory cell initialized to the n bits constant xxxx.
• The keyword .string “Hello” reserves 6 memory cells and store the ascii numbers corresponding to

all the characters of the message (ending it with a Null character).
• Hexadecimal constants are prefixed by 0x, for instance 0xff is decimal 255.
• Comments begin with a semicolum;

The assembly implements a stack in memory, from an address stored in the special register sp. We will use it
in Lab5.

Stopping execution When instructions terminate, the emulator halts the execution. But as it has no way of
differenciating instructions from data (like strings or constants), the emulator provides a way to stop execution
by detecting infinite self loops, such as this one:

halt:
jump halt

A.3 Help to encode constants

hex to binary
a b c d e f

1010 1011 1100 1101 1110 1111

2’s complement Let us code n = (−3)10 in 2’s complement on 6 bits, with the recipe: “code -n in base 2,
then negate bitwise, then add one”. First, 3 is encoded as 000011 on 6 bits. Its negation is 111100, thus
(−3)10 = 1111012̄.

Laure Gonnord, and al. 14/14

	Syntax-Directed Code Generation
	Preliminaries
	Conventions used in the assembly code

	Three-address code generation
	Testing with the trivial allocator, end of code generation.
	TARGET18 code with ``all-stack'' allocation of temporaries
	Extensions

	TARGET18 Assembly Documentation (ISA)
	Installing the simulator and getting started
	The TARGET18 architecture
	Help to encode constants

