
Lab 6
Abstract Interpretation:

Numerical Abstract Domains

Objective

• Write an abstract interpreter for the Mu language in Python.
• Implement classical finite abstract domains, and some infinite ones.
This lab is adapted from a lab by Pierre Roux, in the particular setting of Mu and PYTHON/ANTLR4.

No code is provided in the git. Pull for some examples.

Milestones for the 3 sessions
• Session 1: Operational code infrastructure, obtained by adapting code from previous lab, Makefile, and

basic command line. Exercise 1 and 2 (augmenting the grammar and concrete evaluator with random
expressions and assert statements). Adequating test files for the sign abstract domain. Starting the im-
plementation of the sign abstract domain, in parallel with the abstract evaluator (Exercise 3).

• Session 2: Finishing the abstract evaluator and the sign abstract (Exercise 3), implementing the constant
abstract domain (Exercise 4). Basic tests. Adapt the command line.

• Session 3: Interval lattice (Exercise 5 and 6), and automatic test infrastructure. Bonuses if everything else
is working.

Your work is due on Tomuss before Dec. 23th at 23:59:59, STRICT. Instructions (infra, tests, documen-
tation) are like all other labs.

6.1 Abstract Analyser for Mu programs

You are on your own. Based on what we did before, you have to implement an abstract interpreter for the Mu
language. We give you some tests cases, but they are not sufficient at all.

EXERCISE #1 Ï Language extension
Extend the grammar with random expressions and assert statements; extend your mu concrete evaluator from
Lab 3 and test.

expr := ... | rand(e1,e2)
stmt := ... | assert(b)

The expression rand(n,m) should evaluate to a random (int) number in the interval [n,m].

EXERCISE #2 Ï Generic Static Analyser
Implement a static analyser, test infrastructure for the sign abstract domain (Section 6.2.1). The abstract inter-
pretor should be a implemented as a visitor in the spirit of what you already did in Lab 3 (Mu evaluator). Try to
be as generic as you can in your analyser since you will have to change abstract domains from the command
line.

You will have to implement the following abstract domains: signs, constants, intervals (in bonus, polyhedra
or the congruence abstract domain - see exercise sheet). For assert, the analyser should print verified or
unable to verify if it is not capable of proving the assertion (see Section 6.4).

6.2 Finite height Abstract Domains

A cheat sheet about abstract domains can be found at the address:

http://perso.ens-lyon.fr/pierre.roux/vas_2013_2014/rappels_domaines_abstraits.pdf

(talk to your TA if you need help in reading the french there).

Laure Gonnord, and al. 1/4

http://perso.ens-lyon.fr/pierre.roux/vas_2013_2014/rappels_domaines_abstraits.pdf


ENS de Lyon, Département Informatique, M1 CAP Lab #6 – 2018

6.2.1 Signs

This domain makes it possible to find variables which are strictly positive or strictly negative, or zero, hence
allowing to guarantee the correctness of more divisions.

>

- 0 +

⊥

γ(>) = Z

γ(+) = {n ∈Z | n > 0}
γ(−) = {n ∈Z | n < 0}
γ(0) = {0}
γ(⊥) = ;

EXERCISE #3 Ï Signs
Implement this domain. Providing the option --domain sign should enable this domain.

6.2.2 Kildall (Constants)

This domain makes it possible to find variables which are constants at a certain point in the program. It can
also be used to simplify programs in a compiler.

>

·· · −2 −1 0 1 2 · · · 42 · · ·

⊥

γ(>) = Z

γ(n) = {n }
γ(⊥) = ;

EXERCISE #4 Ï Kildall
Implement this domain. Providing the option --domain constant should enable this domain.

6.3 Infinite Height: intervals

In this section, we wish to implement a domain of intervals, where variables are interpreted by the range of
values they can take.
The lattice is (D ],v]) with D ] =⊥ ∪ {(n1,n2) ∈ (Z∪ {−∞ })× (Z∪ {+∞ }) | n1 ≤ n2}.

(−∞,+∞)

...

· · · (−1,1) · · ·

· · · (−1,0) (0,1) · · ·

· · · (−1,−1) (0,0) (1,1) · · ·

⊥

γ(−∞,+∞) = �−∞,+∞�
γ(−∞,n) = �−∞,n�
γ(n,+∞) = �n,+∞�
γ(n1,n2) = �n1,n2�
γ(⊥) = ;

Reminder: a widening operator can be used to accelerate the convergence of the fixpoint calculation. The idea
is to extrapolate in the computation, so that we reach a result without going upwards ad infinitum in a lattice

Laure Gonnord, and al. 2/4



ENS de Lyon, Département Informatique, M1 CAP Lab #6 – 2018

of unbounded height:

x]Oy ] =



�a,b� if x] = �a,b� , y ] = �c,d� ,c ≥ a,d ≤ b
�a,+∞� if x] = �a,b� , y ] = �c,d� ,c ≥ a,d > b
�−∞,b� if x] = �a,b� , y ] = �c,d� ,c < a,d ≤ b
�−∞,+∞� if x] = �a,b� , y ] = �c,d� ,c < a,d > b
y ] if x] =⊥
x] if y ] =⊥

EXERCISE #5 Ï Intervals
Implement this domain. Providing the option --domain interval should enable this domain. Firstly, imple-
ment without widening, then test, then implement widening. You will have to change your generic analyser to
apply widening at loop heads. Test on well-chosen examples.

EXERCISE #6 Ï Descending sequence, widening delay
On the following program:

i = 0 ; j = 0 ;
while ( i < 10) {

i f ( i <= 0) {
j = 1 ;
++ i ;

} e lse {
++ i ; } }

What interval does one get for variable j? First try to improve by using a descending sequence, then by a
widening delay. Augment the command line of your tool:--descend n, --delay m.

6.4 Diagnostics

EXERCISE #7 Ï Printing logs
For every print statement, make the analyzer print the abstract value of the expression given to the print state-
ment if the --verbose option is given on the command line.

EXERCISE #8 Ï Assertions
Augment the language with a construction assert that takes a boolean expression and prints once, at the end
of the analysis, in ascending line order:

• “assert on line n: verified” if the abstract value is sufficient to prove the property
• “assert on line n: failed to verify” otherwise. If no --verbose or --debug (optional) options are given,

no other output should be generated.

EXERCISE #9 Ï Division by zero
Make your analyzer find potential divisions by zero, ie detect all cases when there is a risk of a division by zero.

EXERCISE #10 Ï Assume
Add an assume statement that takes a boolean expression, so that your analyzer assumes the assertion is true
after it in the flow.

6.5 Optional extensions

Only do this section if you have time. Exercises below are in ascending order of difficulty. Documentation and
appropriate test cases are always required.

EXERCISE #11 Ï Arrays, 1
Add arrays to the Mu language. Describe their semantics and operations on the arrays on paper. Add support
for checking out of bound access to arrays (negative and illegal accesses).

Laure Gonnord, and al. 3/4



ENS de Lyon, Département Informatique, M1 CAP Lab # – 2018

EXERCISE #12 Ï Arrays, 2
Add basic support for abstract values in the arrays. The easiest way to do it is to join (ie. make the union) ab-
stract values of all variables in the array to a single value (“array smashing” in the literature). Find appropriate
tests cases.

EXERCISE #13 Ï Overflows
Find a way to safely deal with overflows.

EXERCISE #14 Ï Polyhedra
Add a new abstract domain, that uses a convex polyhedron as the type of an abstract value. You may use a
third-party library if its license allows it.

Laure Gonnord, and al. 4/4


	Abstract Interpretation:  Numerical Abstract Domains
	Abstract Analyser for Mu programs
	Finite height Abstract Domains
	Signs
	Kildall (Constants)

	Infinite Height: intervals
	Diagnostics
	Optional extensions


