Mini-ML operational semantics (from slides from JC Filliâtre)

Laure Gonnord

October 10, 2018

Abstract syntax

Recall the abstract syntax of miniML (without recursion):

$$\begin{array}{lll} e & ::= & x & & \text{identificator} \\ & & c & & \text{constant } (1,\,2,\,\ldots,\,\textit{true},\,\ldots) \\ & | & op & & \text{primitive } (+,\,\times,\,\textit{fst},\,\ldots) \\ & | & \text{fun } x \to e & & \text{function} \\ & | & e & & \text{application} \\ & | & (e,e) & & \text{pair} \\ & | & \text{let } x = e \text{ in } e & \text{local binding} \end{array}$$

1 Semantic rules

1.1 Natural "big steps" semantics (NAT)

We define the relation:

$$e \xrightarrow{v} v$$

where values (v) have the following abstract syntax:

$$\begin{array}{cccc} v & ::= & c & & \text{constant} \\ & \mid & op & & \text{primitive} \\ & \mid & \text{fun } x \rightarrow e & & \text{function} \\ & \mid & (v,v) & & \text{pair} \end{array}$$

Name	Rule
cste	$c \xrightarrow{v} c$
op	$op \xrightarrow{v} op$
fun	$(\operatorname{fun} x \to e) \xrightarrow{v} (\operatorname{fun} x \to e)$
locvar	$\frac{e_1 \xrightarrow{v} v_1 e_2[x \leftarrow v_1] \xrightarrow{v} v}{\text{let } x = e_1 \text{ in } e_2 \xrightarrow{v} v}$
apply	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
primitives	$\underbrace{e_1 \xrightarrow{v} + e_2 \xrightarrow{v} (n_1, n_2) n = n_1 + n_2}_{e_1 \ e_2 \xrightarrow{v} n}$
tuples	$\frac{e_1 \xrightarrow{v} fst e_2 \xrightarrow{v} (v_1, v_2)}{e_1 e_2 \xrightarrow{v} v_1}$

Proposition 1 (closed terms). If $e \xrightarrow{v} v$ then v is a value. Moreover, if e is closed (no free variable) then v is also closed.

Proposition 2. Determinism If $e \xrightarrow{v} v$ and $e \xrightarrow{v} v'$ then v = v'.

1.2 Reduction semantics (small steps)

$$e \rightarrow e_1 \rightarrow e_2 \rightarrow \cdots$$

Then iterations may: finish with a value, or block on an irreducible expression, or do not terminate.

We first define a "head reduction" $\stackrel{\epsilon}{\to}$ at the toplevel of an expression:

$$(\mathtt{fun}\ x \to e)\ v \quad \stackrel{\epsilon}{\to} \quad e[x \leftarrow v]$$

$$\mathtt{let}\ x = v\ \mathtt{in}\ e \ \stackrel{\epsilon}{\to}\ e[x \leftarrow v]$$

Then rules for primitives:

$$+ (n_1, n_2) \xrightarrow{\epsilon} n$$
 avec $n = n_1 + n_2$
 $fst (v_1, v_2) \xrightarrow{\epsilon} v_1$
 $snd (v_1, v_2) \xrightarrow{\epsilon} v_2$

Now we have to introduce "deep reduction" (in order to evaluate subexpressions):

$$\frac{e_1 \stackrel{\epsilon}{\to} e_2}{E(e_1) \to E(e_2)}$$

where E is a context, with the following syntax:

$$E ::= \Box$$

$$\mid E e$$

$$\mid v E$$

$$\mid \text{let } x = E \text{ in } e$$

$$\mid (E, e)$$

$$\mid (v, E)$$

Example 1.

$$E \stackrel{\mathrm{\scriptscriptstyle def}}{=} \mathtt{let}\ x = +(2,\square)\ \mathtt{in}\ \mathtt{let}\ y = +(x,x)\ \mathtt{in}\ y$$

Definition 1 (substitution). E(e) denotes the context E where \square has been replaced by e.

Example 2.

$$E(+(10,9)) = \text{let } x = +(2,+(10,9)) \text{ in let } y = +(x,x) \text{ in } y$$

A context is a "term with a hole", where \square is the hole.

Example 3.

$$\frac{+(1,2) \stackrel{\epsilon}{\rightarrow} 3}{\operatorname{let} \ x = +(1,2) \ \operatorname{in} \ +(x,x) \rightarrow \operatorname{let} \ x = 3 \ \operatorname{in} \ +(x,x)}$$

thanks to the context $E \stackrel{\text{def}}{=} \mathtt{let} \ x = \square \ \mathtt{in} \ + (x,x)$

Definition 2. We denote by $\stackrel{\star}{\rightarrow}$ the reflexive and transitive closure of \rightarrow .

Definition 3. A normal form is any "unreductible expression", ie an expression for which there is no e' such that $e \to e'$.

2 Equivalence

Theorem 1.

$$e \xrightarrow{v} v$$
 if and only if $e \xrightarrow{\star} v$

Big steps implies small step The demo is based on the following lemma:

Lemma 1. Let us suppose $e \to e'$. Then for every expression e_2 and value v:

1.
$$e e_2 \rightarrow e' e_2$$

2.
$$v e \rightarrow v e'$$

3. let
$$x = e$$
 in $e_2 \to \text{let } x = e'$ in e_2

Proposition 3. If $e \stackrel{v}{\rightarrow} v$, then $e \stackrel{\star}{\rightarrow} v$.

Small steps to big steps First, some lemmas:

Lemma 2. $v \xrightarrow{v} v$ for every value v.

Lemma 3 (reduction and evaluation). If $e \to e'$ and $e' \xrightarrow{v} v$, then $e \xrightarrow{v} v$.

Lemma 4. If $e \stackrel{\epsilon}{\to} e'$ and $E(e') \stackrel{v}{\to} v$ then $E(e) \stackrel{v}{\to} v$.

Proposition 4 (small steps to big steps). If $e \stackrel{\star}{\to} v$, then $e \stackrel{v}{\to} v$.