Mini-ML operational semantics (from slides from JC Filliatre)

Laure Gonnord

October 10, 2018

Abstract syntax

Recall the abstract syntax of miniML (without recursion):

e = x identificator
| ¢ constant (1, 2, ..., true, ...)
| op primitive (4, x, fst, ...)
| funzx —e function
| ee application
| (e,e) pair
| letz=ecine local binding

1 Semantic rules

1.1 Natural “big steps” semantics (NAT)

We define the relation:
)]

where values (v) have the following abstract syntax:

v o= ¢ constant
| op primitive
| funx —e function
| (v,v) pair
Name Rule
v
cste c—c
v
op op — op
v
fun (fun z —e) — (fun z — e)
v U
€e1—v €| T<—v1|—v
locvar 1 2[, 11],
let z=e; in eo—v
elﬁ>(fun T—e) ea-3v9 e[x<—v2]i>v
apply Z
€1 €e2—V
v v
e . — - —
primitives eamt epm(ming) n=mitng
el ea—n
v v
e1—fst ea—(v1,v
tuples 1= 2 (v1,v2)
€] e2—V]

Proposition 1 (closed terms). If e = v then v is a value. Moreover, if e is closed (no free
variable) then v is also closed.

Proposition 2. Determinism If e — v and e — v’ then v ='.

1.2 Reduction semantics (small steps)

e—>€e1 —> €y —> -

Then iterations may: finish with a value, or block on an irreducible expression, or do not
terminate.

We first define a “head reduction” - at the toplevel of an expression:

(funz —e)v 5 efr < v]

letz=vine 5 e[r <+ v

Then rules for primitives:

€
+ (n1,n2) — n avec n = nj -+ no

1o

fst (vi,v2) V1

snd (1)1,1)2) — V2

Now we have to introduce “deep reduction” (in order to evaluate subexpressions):

€1 —E) €9
E(e1) — E(e2)

where F is a context, with the following syntax:
F =010
| Ee
| vE
| letz=Fine
| (E,e)
| (v, E)

Example 1.
E“let . =+(2,0) in let y = +(z,z) in y

Definition 1 (substitution). E(e) denotes the context E where (I has been replaced by e.

Example 2.

E(+(10,9)) = let z = +(2,4(10,9)) in let y = +(z,z) iny

A context is a “term with a hole”, where [J is the hole.

Example 3.
+(1,2) 5 3
let x = +(1,2) in + (z,z) — let x =3 in + (z,x)

thanks to the context E < let v =0 in + (z,x)

Definition 2. We denote by = the reflexive and transitive closure of —.

Definition 3. A normal form is any “unreductible expression”, ie an expression for which there
is no €' such that e — €.

2 Equivalence
Theorem 1.
eSv ifand only if e v
Big steps implies small step The demo is based on the following lemma:
Lemma 1. Let us suppose e — €'. Then for every expression es and value v:
1. ees =€ ey
2. ve—ve
3. letx=ciney — let x =¢ in ey

Proposition 3. If e = v, then e > v.

Small steps to big steps First, some lemmas:

Lemma 2. v = v for every value v.

Lemma 3 (reduction and evaluation). If e — ¢’ and ¢/ = v, then e = v.
Lemma 4. If e 5 ¢ and E(€/) 5 v then E(e) > v.

Proposition 4 (small steps to big steps). If e 5 v, then e 5 v.

	Semantic rules
	Natural ``big steps'' semantics (NAT)
	Reduction semantics (small steps)

	Equivalence

