
http://laure.gonnord.org/pro/ CAP, ENSL, 2018/2019

Partial Exam

Compilation and Program Analysis (CAP)

November, 8th, 2018

Duration: 2 Hours

Instructions :

1. We give some typing/operational/code generation rules in a companion sheet.

2. Explain your results !

3. We give indicative timing.

4. Vous avez le droit de répondre en Français.

Solution: In blue, correction remarks and not fully redacted answers.

Page 1 on 8

http://laure.gonnord.org/pro/

Partial Exam CAP - 2018

Exercise #1 I A grammar attribution (20 min)

Inspiration : Compiler exam, Grenoble, by S. Boulmé

Let us consider the grammar of pre�x expressions :

expr ::= id variable

| + expr expr plus

| − expr expr minus

and in�x expressions with parenthesis :

expr ::= id variable

| expr + expr plus

| expr − expr minus

| (expr) parenthesis

We consider the translation of a pre�x expression into an in�x one : +ab should be transformed
into a+ b.

Question #1.1
De�ne on the pre�x grammar a naive synthetised (from leaves to node) attribution (types,
computation rules) that computes this translation. Give an example where your translation give
a non optimal number of parenthesis.

In the sequel, we will implement the idea that to avoid parenthesis under a minus operation, we
inverse signs :

a− (b+ c) = a− b− c a− (b− c) = a− b+ c

Question #1.2
De�ne on the pre�x grammar an attribution that inherits a boolean b and computes an in�x
expression e such that :

� if b is false then e has the same semantics as the analyzed chain.

� if b is true then by exchanging + and − symbols in e, we get an expression of the same
semantics as the analyzed chain.

For instance, if b is true, for the pre�x expression +a− bc we would get a− b+ c.

Question #1.3
What should be the initial value of b at the root ? Explain (draw the AST of the expression !)
what would be the propagation of information on the initial chain −−a+−cd+ ef −+gh− ij.

Solution:

� be careful to write an attribution

� same

� initial value = false. Be careful an AST is not a derivation tree.

let us denote my att the attribution

Page 2 on 8

Partial Exam CAP - 2018

att(e:expr) returns infixepr inherit[bool b]

x:id -> x

+ x y -> x.b = b, y.b = b;

if b then returns att(x) - att(y)

else returns att(x)+att(y)

- x y -> x.b = b y.b = not(b);

if b then returns att(x) + att (y)

else returns att(x)-att(y)

examples : if b is true :

� (+ab) should be equivalent to a− b
� for minus : (−ab) should be equivalent to a+ b. The right operand should be evaluating with

a �ipped b.

Exercise #2 I Program equivalence (10 min)

Question #2.1
Express program equivalence for the natural (big-steps) semantics of mini-while.

Question #2.2
Prove the equivalence of the following two programs :

P1 : while e do C;

and

P2 : if e then (C ; while e do C) else skip;

Please be precise in your justi�cations (use semantic rules and clean semantic proof trees).

Solution: Program eq : P1 equiv P2 for all initial memory state σ, (P1, σ)→ σ′ ⇔ (P2, σ)→ σ′).
(and no derivation equiv no derivation)

A clean proof is by double implication : Suppose we have (P1, σ) → σ′, there are two cases :
if B(e)[σ] = ff , then necessarily (thanks to the false while rule), σ = σ′, thus (insert a proof tree
here) is a proof tree for (P2, σ)→ σ′. . .

In particular, it is not su�cient to show two proof trees and say that they are equivalent.

Exercise #3 I Mini-While : typing + code generation (20 min)

Here is a program in the Mini-While language seen in the course :

var x,y: int;

x := 12;

Page 3 on 8

Partial Exam CAP - 2018

y := 4;

if (y > x) do

x := x - y;

done

Question #3.1
Show that this program is well-typed (declarations, statements). If some rules are missing in
the companion �le, invent them and report them on your sheet.

Solution: Be careful to apply the declaration rules to get. Γ = {x 7→ int, y 7→ int}. And then
a proof tree.

Question #3.2
Generate the TARGET18 3-address code 1 for the given program according to the code
generation rules. Recursive calls, auxiliary temporaries, code, must be separated and clearly

described. .

Solution: I was expecting �real� code generation, thus the recursive calls have to be instan-
tiated and produce real code, link in the exercises we did in the course. I gave very few points
to code coming with no explanation.

Question #3.3
Replace the conditional JUMP by a regular sequence of TARGET18 code (with temporaries).

Solution:
Voici le code généré par notre compilo :

1 ; ;Automatically generated TARGET code, MIF08 & CAP 2018

; ;non executable 3−Address instructions version
; ; (stat (assignment x = (expr (atom 12)) ;))

leti temp_2 12
let temp_1 temp_2

6 ; ; (stat (assignment y = (expr (atom 4)) ;))

leti temp_3 4
let temp_0 temp_3
; ; (stat (if_stat if (condition_block (expr (atom ((expr (expr (atom y)) > (expr (

atom x)))))) (stat_block (stat (assignment x = (expr (expr (atom x)) − (expr (atom y)))

;))))))

leti temp_4 0
11 ; ; cond_jump lbl_end_relational_2 temp_0 sle temp_1

cmp temp_0 temp_1
jumpif sle lbl_end_relational_2
; ; end cond_jump lbl_end_relational_2 temp_0 sle temp_1

leti temp_4 1
16 lbl_end_relational_2:

1. We recall that the TARGET18 three address code has the same instruction set as the TARGET18 regular code
except for conditions which use the idiom condJUMP(label,t1,condition,t2) and temporaries/virtual registers
instead of regular registers).

Page 4 on 8

Partial Exam CAP - 2018

; ; cond_jump lbl_end_cond_1 temp_4 eq 0

cmp temp_4 0
jumpif eq lbl_end_cond_1
; ; end cond_jump lbl_end_cond_1 temp_4 eq 0

21 sub3 temp_5 temp_1 temp_0
let temp_1 temp_5
jump lbl_end_if_0

lbl_end_cond_1:
lbl_end_if_0:

26

; ; postlude

end:
jump end

Exercise #4 I A variation on expressions and side-e�ects (30 min)

Let us consider arithmetic expressions :

expr ::= id variable

| n const. value

| expr + expr plus

| − expr unary minus

| f̃(expr) function

We also suppose that each f̃ has an interpretation f as a partial function N → N. We recall in
the companion �le the denotational semantics A for the subset of expressions without interpreted
functions. Usual operations are interpreted in the standard way.

Question #4.1
Give an additional denotational rule for functions.

Question #4.2
Give an operational big steps semantics for expressions that we will denote by (e, σ) σ′ (5
rules).

Question #4.3
Show the equivalence between these two semantics, i.e. :

(e, σ) e′ ⇔ A[e]σ = e′

Now we add a new kind of expression, c resultis e, whose informal semantics is �we evaluate e in
the environment obtained after evaluating the command c. Let us evaluate commands with the big
steps semantics (→) depicted in the companion �le.

Page 5 on 8

Partial Exam CAP - 2018

Question #4.4
Give the operational semantic rule for this new expression.

Question #4.5
Give the derivation tree for (x := x + 1 resultis x) + (y := x + x resultis y) in the initial
environment σ : [x 7→ 3].

Solution: (e, σ) σ′ was a typo, of course expressions reduce to values in big steps semantics..
There was no real di�culty in this exercise.

Exercise #5 I Typing with e�ects (40 min)

Adapted from JC Filliâtre, ENS Paris, and J. Goubault Larrecq, ENS Paris Saclay

We consider a variant of our mini-ML language seen in the course, whose reduction semantics
is depicted in the companion �le :

e ::=
| c cst only in N here . . .
| e+ e plus
| fun x→ e function
| e e application

and we can use let x = e1 in e2 for syntactic sugar for (fun x → e2)e1 This language is enriched
with two new constructions :

e ::= print e printing
| ifnul e then e else e conditions

Question #5.1
Give a reduction rule for the ifnul construction, whose semantics is straighforward.

Solution: Be careful to use notations that are compatible with the provided semantics in the
companion �le. For this rule, you can choose to evaluate both branches of the if or not.

The informal semantics of the print expression is that it evaluates the expression and prints it on
the standard output. Thus, now expressions have values (like before) as well as a printing side-e�ect.

Question #5.2
Give a new de�nition of reduction semantics that has side e�ects. Explain notations, sets, and

how rules are modi�ed. Justify !

Solution: A straighforward solution consists in changing con�gurations into (value, `) where
` is the list of printed values. Then the printing rule :

Question #5.3
Compute the semantics of print(2)− (print(60)− print(100)) in your setting.

Page 6 on 8

Partial Exam CAP - 2018

Solution: Here a proof tree. [2, 60, 100] was one popular printing e�ect.

Now we will type our expressions with e�ects, φ, that can take three values :

� ⊥ if the computation doesn't produce any printing.

� P if it may produce a printing, that doesn't depend of the evaluation order.

� > if it may produce a printing, that may depend of the evaluation order.

E�ects are naturally ordered with ⊥ ≤ P ≤ >, thus de�ning a max function on e�ects. An operation
�upper bound� on e�ects is also de�ned by the three following equations :

� ⊥ t φ = φ,

� φ t ⊥ = φ,

� φ1 t φ2 = > else.

Typing judgments are now of the form Γ ` e : τ&φ , which means �under the environment Γ, the

expression e has type τ and e�ect φ�. Types τ are either int or τ
φ−→ τ for functions. Thus, function

types contain their �latent e�ect�, which will be the e�ect of its application.

We depict some of the typing rules here :

x ∈ dom(Γ)

Γ ` x : Γ(x)&⊥

Γ ` n : int&⊥

Γ ` e1 : int&φ1 Γ ` e2 : int&φ2
Γ ` e1 + e2 : int&φ1 t φ2

Γ + x : τ1 ` e : τ2&φ

Γ ` fun x→ e : τ1
φ−→ τ2

Γ ` e1 : τ2
φ−→ τ1&φ1 Γ ` e2 : τ2&φ2

Γ ` e1 e2 : τ2&max(φ1 t φ2, φ)

Question #5.4
Explain the rule for function application with the help of well-chosen examples.

Solution: The di�cult part here is to understand when max and union should be applied :

� the evaluation of the function e1 or the argument e2 can be in any order, thus if both of
them have a side e�ect (φi 6= ⊥), we have > as the returned second element of the type.

� if only one has a non ⊥ side e�ect, then it propagates into the result.

This explain the union.

+ examples

If then function has a latent e�ect φ, this will propagate to the result, hence the max.

Question #5.5
Give the rules for the constructions print and test.

Solution: Yes test was �if nul�, sorry for the typo.

Question #5.6
Give 3 expressions e1, e2, e3 such that :

� ` e1 : int&>

Page 7 on 8

Partial Exam CAP - 2018

� ` e2 :
(
int

P−→ int
)
&P

� ` e3 :
(
(int

>−→)
P−→ int

)
&⊥

Solution: typo in e3, should add an int somewhere.

Question #5.7
What �correctness property� do we expect for this typing with respect to the semantics (2
propositions) ?

Solution:

� If a given expression types into τ&P , then ...

� If a given expression types into τ&⊥, then ...

Question #5.8
(Bonus) Prove these two propositions.

Page 8 on 8

