
PROC18 ISA - Documentation

ASR1, MIF08, CAP, ENSL, Université Lyon1

September 2018

About

— ISA : Florent de Dinechin for ASR1, ENSL, 2017-18.

— Simulator and Assembler code : Maxime Darrin, Antonin Dudermel, Sébastien Michelland,
Alban Reynaud, L3 students at ENSL, 2017-18.

— Document : Remy Grüblatt, Laure Gonnord, Sébastien Michelland, and Matthieu Moy,
for CAP and MIF08.

This is a simplified version of the machine, which is (hopefully) conform to the chosen simulator.

1 Installing the simulator and getting started

To get the PROC18 assembler and simulator, follow instructions of the first lab (git pull
on the course lab repository).

2 The PROC18 architecture

Among others, the PROC18 architecture has two particular features :

— The number of bits used to encode instructions is non constant. But for compilation, we
do not care !

— Read and write instructions use special registers.

Here is an example of PROC18 assembly code for 2018 :

1 leti r0 17 ; initialisation of a register to 17
loop:
sub2i r0 1 ; subtraction of an immediate
jumpif nz loop ; equivalent to jump xx

Memory, Registers The memory is adressed by bits (and not words), from address 0.
The PROC18 has 8 registers from r0 to r7. Only r7 1 is reserved for the routine return

address. There are specific registers (“counters”) for manipulating memory, namely a1 and a0.
Finally, we have special registers sp (Stack Counter) and pc (Program Counter). Accesses to
registers are direct, and Section 2 explains how to access memory.

Shifts The directions for the shift are either ”left” or ”right”.

1. Registers are in lower case.

1



Table 1 – PROC18 instructions. For constants, padding is done with zeros (z) or sign extension
(s).

opcode mnemonic operands description ext. Flags update

0000 add2 reg reg addition zcvn

0001 add2i reg const add immediate constant z zcvn

0010 sub2 reg reg subtraction zcvn

0011 sub2i reg const subtract immediate constant z zcvn

0100 cmp reg reg comparison zcvn

0101 cmpi reg const comparison with immediate constant s zcvn

0110 let reg reg register copy

0111 leti reg const fill register with constant s

1000 shift dir reg shiftval logical shift zcn

10010 readze ctr size reg read size memory bits (zero-extended) to reg

10011 readse ctr size reg read size memory bits (sign-extended) to reg

1010 jump addr relative jump

1011 jumpif cond addr conditional relative jump

110000 or2 reg reg logical bitwise or zcn

110001 or2i reg const logical bitwise or z zcn

110010 and2 reg reg logical bitwise and zcn

110011 and2i reg const logical bitwise and z zcn

110100 write ctr size reg write the lower size bits of reg to mem

110101 call addr sub-routine call s

110110 setctr ctr reg set one of the four counters to the content of reg

110111 getctr ctr reg copy the current value of a counter to reg

1110000 push reg push value of register on stack

1110001 return return from subroutine

1110010 add3 reg reg reg zcvn

1110011 add3i reg reg const z zcvn

1110100 sub3 reg reg reg zcvn

1110101 sub3i reg reg const z zcvn

1110110 and3 reg reg reg zcn

1110111 and3i reg reg const z zcn

1111000 or3 reg reg reg zcn

1111001 or3i reg reg const z zcn

1111010 xor3 reg reg reg zcn

1111011 xor3i reg reg const z zcn

1111100 asr3 reg reg shiftval zcn

1111101 sleep sleep

1111110 rand rand

1111111 lea reg addr load effective address addr

11111110 print type reg print

11111111 printi type const print

Flags Each instruction may update carry flags (last column of 1). Flags represent informations
about the last operation that modified them :

— z : The result of the previous operation was a zero.

— c : A carry happened during the previous operation.

— v : An overflow happened during the previous operation.

— n : The result of the previous operation is strictly negative (¡0).

Check the file cap-labs18/target18/doc/emu flag management.md for details.

2



Table 2 – Constant encoding
addr : prefix-free encoding for addresses and moves

0 + 8 bits value of move on 8 bits

10 + 16 bits same on 16 bits

110 + 32 bits same on 32 bits

111 + 64 bits same on 64 bits

shiftval : prefix-free encoding of shift constants

0 + 6 bits constant between 0 and 63

1 constant value 1

const : prefix-free encoding of ALU constants

0 + 1 bit constant 0 ou 1

10 + 8 bits byte

110 + 32 bits

111 + 64 bits

size : prefix-free encoding of memory sizes

00 1 bit

01 4 bits

100 8 bits

101 16 bits

110 32 bits

111 64 bits

Constants : let and leti These expressions provide ways to initialize or copy registers.
The constants are encoded according to 2 (encoding of ALU constants). For the leti ins-

truction, padding is done with sign extension. Thus :

1 leti r0 −17

stores the constant -17 in register r0, and the encoding of the instruction is :

0111 000 1011101111

Register copy is done with :

let r0 r1

Arithmetical and logical instructions Arithmetical and logical instructions have 2 or 3
operands :

add3i r1 r0 3 ; r1 <− r0+3
add2i r1 15 ; r1 <− r1+15
add3 r1 r2 r3 ; r1 <− r2+r3

4 add2 r1 r2 ; r1 <− r1+r2

The first operand is always the destination register, and the two remaining operands are sources,
registers or constants. If a constant is used then its value is encoded in the instruction following
the encoding depicted in Table 2. For instance :

1 add2i r1 15 ; r1 <− r1+15

is encoded as :

0001 001 10 00001111 ;

add2i, register 1, 1 byte constant (*addr* prefix code), value 15 and padding with 0

Be careful, add only uses positive constants :

3



Table 3 – Tests

mnemonic description (after cmp op1 op2)

0 0 0 eq, z equal, op1 = op2

0 0 1 neq, nz not equal, op1 6= op2

0 1 0 sgt signed greater than, op1 > op2, two’s complement

0 1 1 slt signed smaller than, op1 < op2, two’s complement

1 0 0 sge op1 ≥ op2, signed

1 0 1 ge, nc op1 ≥ op2, unsigned

1 1 0 lt, c op1 < op2, unsigned

1 1 1 sle op ≤ op2, signed

add3i r1 r0 −12

Throw the following error :

couldn’t read UCONSTANT : The value is not in the right range

Branching (jump jumpif) Let a be the address of the instruction following the jump or call
instruction, and c the integer encoded in a constant of type addr (see Table 2), and signed.

The jump instruction executes pc← a + c.
The jumpif instruction does the same, but only if the condition is true (see Section 2).
The call instruction stores R7 in PC and jumps to the called address.
The return instruction does pc← R7.
In :

loop:
sub2i r0 1 ; substraction of an immediate
jumpif nz loop ; equivalent to jump −25

is assembled into

0011 000 01 ; 9 bits

1011 001 011100111 ; 16 bits

jump, nz, 0 (mv on 8 bits), -25 bits jump

Tests Operands 1 and 2 are encoded like in the ALU instructions. In particular the second
operand can be an immediate constant. The condition is encoded thanks to Table 3.

In this class, we will use only the signed version of comparisons (sgt/slt/sle/sge, and
eq/neq/z/nz which work for both signed and unsigned). Not all unsigned comparisons are
available, and they are misleading : don’t use them here.

Memory accesses Special registers a0, a1 are used to access memory.
The instructions readze, readse and write read or write the specified number of bits and

also increment the associated (address) registers :

readze a0 4 r1

reads 4 bits of memory content from the address stored in a0 and store them in r1 (with a zero
padding). In addition, a0 is incremented by 4.

write a1 2 r1

4



Table 4 – Counters (special registers).

encoding mnemonic description

00 pc program counter

01 sp stack pointer

10 a0 generic address counter

11 a1 generic address counter

writes the lower 2 bits of register r1.
We can emulate the classical read operation in memory from an adress stored in a register

r2 ←Mem[r1] :

setctr a0 r1
readse a0 xxx r2 ; xxx the number of bits to read

The instruction lea r3 label loads the address corresponding to label onto r3. For instance,
the following program :

lea r0 foo

3 foo:
.const 5 #10101

loads the adress of the constant. The # prefix is used to introduce a binary constant (10101, i.e.
21), and works only for the .const directive. It is assembled into :

11111101 000 000000000

10101

The PROC18 emulator’s memory layout is documented in the
cap-labs18/target18/doc/emu memory layout.md file.

Print Two examples of use of the native print instruction :

1 let r0 126
print char r0 ; ”˜”
print char ’\n’ ; newline
print signed r0 ; ”126”
print unsigned r0 ; ”0x7e”

6 print unsigned ’0’ ; ”0x30”

You can also print a string at a given label with :

lea r0 str
print string r0 ; ”Hello, World!”

4 str :
.string ”Hello, World!”

5



Assembly directives A bit more of syntax :
— The assembly begins at address 0.
— Labels can be used for jumps.
— The keyword .const n xxxx reserves a memory cell initialized to the n bits constant

xxxx.
— The keyword .string ‘‘Hello’’ reserves 6 memory cells and store the ascii numbers

corresponding to all the characters of the message (ending it with a Null character).
— Hexadecimal constants are prefixed by 0x, for instance 0xff is decimal 255.
— Comments begin with a semicolum;

The assembly implements a stack in memory, from an address stored in the special register sp.
We will use it in Lab5.

Stopping execution When instructions terminate, the emulator halts the execution. But as
it has no way of differenciating instructions from data (like strings or constants), the emulator
provides a way to stop execution by detecting infinite self loops, such as this one :

halt :
jump halt

3 Help to encode constants

hex to binary
a b c d e f

1010 1011 1100 1101 1110 1111

2’s complement Let us code n = (−3)10 in 2’s complement on 6 bits, with the recipe : “code
-n in base 2, then negate bitwise, then add one”. First, 3 is encoded as 000011 on 6 bits. Its
negation is 111100, thus (−3)10 = 1111012̄.

6


	Installing the simulator and getting started
	The PROC18 architecture
	Help to encode constants

