
RISCV ISA - Documentation

Ésisar, ENSL, Université Lyon 1

2022-2023

About

� RISCV is an open instruction set initially developed by Berkeley University, used among others by
Western Digital, Alibaba and Nvidia.

� We are using the rv64g instruction set: Risc-V, 64 bits, General purpose (base instruction set,
and extensions for floating point, atomic and multiplications), without compressed instructions. In
practice, we will use only 32 bits instructions (and very few of floating point instructions).

� Document: Laure Gonnord and Matthieu Moy, for CAP and MIF08 and CS444 and CE313 and
. . .

This is a simplified version of the machine, which is (hopefully) conform to the chosen simulator.

1 The RISCV architecture

Here is an example of RISCV assembly code snippet (a proper main function would be needed to execute
it, cf. course and lab):

1 addi a0, zero, 17 # initialisation of a register to 17

2 loop:

3 addi a0, a0, -1 # subtraction of an immediate

4 j loop # equivalent to jump xx

The rest of the documentation is adapted from https://github.com/riscv/riscv-asm-manual/blob/
master/riscv-asm.md and https://github.com/jameslzhu/riscv-card/blob/master/riscv-card.pdf

2 RISC-V Assembly Programmer’s Manual - adapted for CAP
and MIF08 and CE313 and CS444

2.1 Copyright and License Information - Documents

The RISC-V Assembly Programmer’s Manual is
© 2017 Palmer Dabbelt palmer@dabbelt.com © 2017 Michael Clark michaeljclark@mac.com ©

2017 Alex Bradbury asb@lowrisc.org
It is licensed under the Creative Commons Attribution 4.0 International License (CC-BY 4.0). The

full license text is available at https://creativecommons.org/licenses/by/4.0/.

� Official Specifications webpage: https://riscv.org/specifications/

� Latest Specifications draft repository: https://github.com/riscv/riscv-isa-manual

This document has been modified by Laure Gonnord & Matthieu Moy, in 2019-2022

1

https://github.com/riscv/riscv-asm-manual/blob/master/riscv-asm.md
https://github.com/riscv/riscv-asm-manual/blob/master/riscv-asm.md
https://github.com/jameslzhu/riscv-card/blob/master/riscv-card.pdf
mailto:palmer@dabbelt.com
mailto:michaeljclark@mac.com
mailto:asb@lowrisc.org

2.2 Registers

Registers are the most important part of any processor. RISC-V defines various types, depending on
which extensions are included: The general registers (with the program counter), control registers,
floating point registers (F extension), and vector registers (V extension). We won’t use control nor F or
V registers.

2.2.1 General registers

The RV32I base integer ISA includes 32 registers, named x0 to x31. The program counter PC is separate
from these registers, in contrast to other processors such as the ARM-32. The first register, x0, has a
special function: Reading it always returns 0 and writes to it are ignored.

In practice, the programmer doesn’t use this notation for the registers. Though x1 to x31 are all
equally general-use registers as far as the processor is concerned, by convention certain registers are used
for special tasks. In assembler, they are given standardized names as part of the RISC-V application
binary interface (ABI). This is what you will usually see in code listings. If you really want to see the
numeric register names, the -M argument to objdump will provide them.

Register ABI Use by convention Preserved?

x0 zero hardwired to 0, ignores writes n/a
x1 ra return address for jumps no
x2 sp stack pointer yes
x3 gp global pointer n/a
x4 tp thread pointer n/a
x5 t0 temporary register 0 no
x6 t1 temporary register 1 no
x7 t2 temporary register 2 no
x8 s0 or fp saved register 0 or frame pointer yes
x9 s1 saved register 1 yes
x10 a0 return value or function argument 0 no
x11 a1 return value or function argument 1 no
x12 a2 function argument 2 no
x13 a3 function argument 3 no
x14 a4 function argument 4 no
x15 a5 function argument 5 no
x16 a6 function argument 6 no
x17 a7 function argument 7 no
x18 s2 saved register 2 yes
x19 s3 saved register 3 yes
x20 s4 saved register 4 yes
x21 s5 saved register 5 yes
x22 s6 saved register 6 yes
x23 s7 saved register 6 yes
x24 s8 saved register 8 yes
x25 s9 saved register 9 yes
x26 s10 saved register 10 yes
x27 s11 saved register 11 yes
x28 t3 temporary register 3 no
x29 t4 temporary register 4 no
x30 t5 temporary register 5 no
x31 t6 temporary register 6 no
pc (none) program counter n/a

Registers of the RV32I. Based on RISC-V documentation and Patterson and Waterman “The RISC-V
Reader” (2017)

2

As a general rule, the saved registers s0 to s11 are preserved across function calls, while the
argument registers a0 to a7 and the temporary registers t0 to t6 are not. The use of the various
specialized registers such as sp by convention will be discussed later in more detail.

2.3 Instructions

2.3.1 Arithmetic

add, addi, sub, classically.

addi a0, zero, 42

initialises a0 to 42.

2.3.2 Labels

Text labels are used as branch, unconditional jump targets and symbol offsets. Text labels are added to
the symbol table of the compiled module.

loop:

j loop

Jumps and branches target is encoded with a relative offset. It is relative to the beginning of the
current instruction. For example, the self-loop above corresponds to an offset of 0.

2.3.3 Branching

Test and jump, within the same instruction:

beq a0, a1, end

tests whether a0=a1, and jumps to ‘end’ if its the case.

2.3.4 Absolute addressing

The following example shows how to load an absolute address:

.section .text

.globl _start

_start:

lui a0, %hi(msg) # load msg(hi)

addi a0, a0, %lo(msg) # load msg(lo)

jal ra, puts

2: j 2b

.section .rodata

msg:

.string "Hello World\n"

which generates the following assembler output and relocations as seen by objdump:

0000000000000000 <_start>:

0: 000005b7 lui a1,0x0

0: R_RISCV_HI20 msg

4: 00858593 addi a1,a1,8 # 8 <.L21>

4: R_RISCV_LO12_I msg

3

2.3.5 Relative addressing

The following example shows how to load a PC-relative address:

.section .text

.globl _start

_start:

1: auipc a0, %pcrel_hi(msg) # load msg(hi)

addi a0, a0, %pcrel_lo(1b) # load msg(lo)

jal ra, puts

2: j 2b

.section .rodata

msg:

.string "Hello World\n"

which generates the following assembler output and relocations as seen by objdump:

0000000000000000 <_start>:

0: 00000597 auipc a1,0x0

0: R_RISCV_PCREL_HI20 msg

4: 00858593 addi a1,a1,8 # 8 <.L21>

4: R_RISCV_PCREL_LO12_I .L11

2.3.6 Load Immediate

The following example shows the li pseudo instruction which is used to load immediate values:

li a0, 0x76543210

which generates the following assembler output as seen by objdump (generated code will be different
depending on the constant):

0: 76543537 lui a0,0x76543

4: 2105051b addiw a0,a0,528

2.3.7 Load Address

The following example shows the la pseudo instruction which is used to load symbol addresses:

.section .text

.globl _start

_start:

la a0, msg

.section .rodata

msg:

.string "Hello World\n"

2.4 Assembler directives

Both the RISC-V-specific and GNU .-prefixed options.
The following table lists assembler directives:

4

Directive Arguments Description

.align integer align to power of 2 (alias for
.p2align)

.file “filename” emit filename FILE LOCAL symbol
table

.globl symbol name emit symbol name to symbol table
(scope GLOBAL)

.local symbol name emit symbol name to symbol table
(scope LOCAL)

.section [{.text,.data,.rodata,.bss}] emit section (if not present, default
.text) and make current

.size symbol, symbol accepted for source compatibility

.text emit .text section (if not present)
and make current

.data emit .data section (if not present)
and make current

.rodata emit .rodata section (if not present)
and make current

.string “string” emit string

.equ name, value constant definition

.word expression [, expression]* 32-bit comma separated words

.balign b,[pad val=0] byte align

.zero integer zero bytes

2.5 Assembler Relocation Functions

The following table lists assembler relocation expansions:

Assembler Notation Description Instruction / Macro

%hi(symbol) Absolute (HI20) lui
%lo(symbol) Absolute (LO12) load, store, add
%pcrel hi(symbol) PC-relative (HI20) auipc
%pcrel lo(label) PC-relative (LO12) load, store, add

2.6 Instruction encoding

Credit This is a subset of the RISC-V greencard, by James Izhu, licence CC by SA, https://github.
com/jameslzhu/riscv-card

Core Instruction Formats

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type
imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type
imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode B-type

imm[31:12] rd opcode U-type
imm[20|10:1|11|19:12] rd opcode J-type

“imm[x:y]” means “bits x to y from binary representation of imm”. “imm[y|x]” means “bits y, then x of
imm”.

5

https://github.com/jameslzhu/riscv-card
https://github.com/jameslzhu/riscv-card

RV32I Base Integer Instructions - (excerpt)
Inst Name FMT Opcode funct3 funct7 Description (C) Note

add ADD R 0110011 0x0 0x00 rd = rs1 + rs2

sub SUB R 0110011 0x0 0x20 rd = rs1 - rs2

xor XOR R 0110011 0x4 0x00 rd = rs1 ^ rs2

or OR R 0110011 0x6 0x00 rd = rs1 | rs2

and AND R 0110011 0x7 0x00 rd = rs1 & rs2

slt Set Less Than R 0110011 0x2 0x00 rd = (rs1 < rs2)?1:0

sltu Set Less Than (U) R 0110011 0x3 0x00 rd = (rs1 < rs2)?1:0 zero-extends

addi ADD Immediate I 0010011 0x0 rd = rs1 + imm

xori XOR Immediate I 0010011 0x4 rd = rs1 ^ imm

ori OR Immediate I 0010011 0x6 rd = rs1 | imm

andi AND Immediate I 0010011 0x7 rd = rs1 & imm

lb Load Byte I 0000011 0x0 rd = M[rs1+imm][0:7]

lw Load Word I 0000011 0x2 rd = M[rs1+imm][0:31]

lbu Load Byte (U) I 0000011 0x4 rd = M[rs1+imm][0:7] zero-extends
sb Store Byte S 0100011 0x0 M[rs1+imm][0:7] = rs2[0:7]

sw Store Word S 0100011 0x2 M[rs1+imm][0:31] = rs2[0:31]

beq Branch == B 1100011 0x0 if(rs1 == rs2) PC += imm

bne Branch != B 1100011 0x1 if(rs1 != rs2) PC += imm

blt Branch < B 1100011 0x4 if(rs1 < rs2) PC += imm

bge Branch ≥ B 1100011 0x5 if(rs1 >= rs2) PC += imm

bltu Branch < (U) B 1100011 0x6 if(rs1 < rs2) PC += imm zero-extends
bgeu Branch ≥ (U) B 1100011 0x7 if(rs1 >= rs2) PC += imm zero-extends

jal Jump And Link J 1101111 rd = PC+4; PC += imm

jalr Jump And Link Reg I 1100111 0x0 rd = PC+4; PC = rs1 + imm

lui Load Upper Imm U 0110111 rd = imm << 12

auipc Add Upper Imm to PC U 0010111 rd = PC + (imm << 12)

Pseudo Instructions (excerpt)

Pseudoinstruction Base Instruction(s) Meaning

la rd, symbol
auipc rd, symbol[31:12]

Load address
addi rd, rd, symbol[11:0]

{lb|lh|lw|ld} rd, symbol
auipc rd, symbol[31:12]

Load global{lb|lh|lw|ld} rd, symbol[11:0](rd)

{sb|sh|sw|sd} rd, symbol, rt
auipc rt, symbol[31:12]

Store global
s{b|h|w|d} rd, symbol[11:0](rt)

nop addi x0, x0, 0 No operation
li rd, immediate Myriad sequences Load immediate
mv rd, rs addi rd, rs, 0 Copy register
not rd, rs xori rd, rs, -1 One’s complement
neg rd, rs sub rd, x0, rs Two’s complement
sext.w rd, rs addiw rd, rs, 0 Sign extend word
seqz rd, rs sltiu rd, rs, 1 Set if = zero

beqz rs, offset beq rs, x0, offset Branch if = zero
bnez rs, offset bne rs, x0, offset Branch if ̸= zero
blez rs, offset bge x0, rs, offset Branch if ≤ zero
other similar instructions are cut here

bgt rs, rt, offset blt rt, rs, offset Branch if >
ble rs, rt, offset bge rt, rs, offset Branch if ≤
bgtu rs, rt, offset bltu rt, rs, offset Branch if >, unsigned
bleu rs, rt, offset bgeu rt, rs, offset Branch if ≤, unsigned

j offset jal x0, offset Jump
jal offset jal x1, offset Jump and link
ret jalr x0, x1, 0 Return from subroutine

call offset
auipc x1, offset[31:12]

Call far-away subroutine
jalr x1, x1, offset[11:0]

fence fence iorw, iorw Fence on all memory and I/O

6

	The RISCV architecture
	RISC-V Assembly Programmer's Manual - adapted for CAP and MIF08 and CE313 and CS444
	Copyright and License Information - Documents
	Registers
	General registers

	Instructions
	Arithmetic
	Labels
	Branching
	Absolute addressing
	Relative addressing
	Load Immediate
	Load Address

	Assembler directives
	Assembler Relocation Functions
	Instruction encoding

