Program verification introduction, bounded-model checking, SAT, symbolic model checking

Laure Gonnord David Monniaux

September 15, 2015

The teaching staff

- Laure GONNORD, associate professor, LIP laboratory, University of Lyon Laure.Gonnord@ens-lyon.fr
- David MONNIAUX, CNRS senior researcher, VERIMAG laboratory, Grenoble David.Monniaux@imag.fr

Safe software ?

- safety-critical software (control of vehicles e.g. airplanes and cars, surgical robots, radiation therapy...)
- less critical software (flight management systems, financial transactions, unmanned spacecraft...)
- general-purpose software?
- (hot topic) software facing the Internet, newer security and privacy issues (e.g. 0-day vulnerabilities sold to intelligence services; are lives at stake ?)

Software engineering

Considers the means of production of software:

- documentation imperatives
- organization of software development teams
- good programming practices
- use of appropriate programming languages
- software development environments

Try to reduce the number of errors at the source.

"Software metrics" Use of lint-like tools or more advanced

Not covered in this course

Proving properties of software

- Basic idea: software has mathematically defined behaviour
- Possible to do mathematical proofs on software
- Possible to automate these proofs

Proving that software truly does what it is meant to do. behaviours \subseteq acceptable behaviours

- What does software do?
- What is it meant to do?
- What is a proof?

Semantics

A **precise definition** of what a program does — given for all programs within a programming language.

Very difficult for a full industrial language e.g. C++

VS

A definition in \pm vague **natural language** (e.g. ISO C and C++ standards, programming language manuals...)

Imprecise, fuzzy, sometimes contradictory definitions. Language lawyers. Endless discussions on what a program should or should not be doing, on what a compiler has the right to do or not.

Specification

What software should do

- informal definition in natural language
- formal mathematical definition

Is the specification consistent?

Difficulties in writing specifications:

- Are all requirements taken into account?
- Redundancy with implementation

Specification example: sort

Unix command sort

(Without the options) Simple informal specification: "sort the lines in a file"

In more detail: complicated - e.g

- what is the sorting order wrt non-ASCII characters?
- how are equivalent lines sorted (e.g. numeric ordering)

Mathematical definition possible, but long.

Difficulty

 $behaviours \subseteq acceptable \ behaviours$

Both sets are not well defined in general.

May need to fix

- language definition
- target compilation environment (evaluation order, size of basic types, alignment...)
- precise specification

How about proofs?

The Halting Problem

Simple language: integers (\mathbb{Z}), tests, loops

There is no algorithm that says, given a program, whether this program halts. (Turing)

The Halting Problem, proof

Suppose we have a "magical analyzer" A: answer A(P, X) = 1"program P terminates eventually on input X" A(P, X) = 0otherwise

```
int B(Program x) {
    if (A(x,x)==0) {
        return 1;
    } else {
        while(true) {}
    }
}
```

What is B(B)? (*B* applied to its own source code)

The Halting Problem, contradiction

```
int B(Program x) {
    if (A(x,x)==0) {
        return 1;
    } else {
        while(true) {}
    }
}
```

If B(B) = 1 then A(B, B) = 0 "program *B* does not terminate on input *B*". Absurd!

If B(B) loops then A(B, B) = 1 "program B terminates on input B". Absurd!

There is no magical static analyser.

Workarounds

What is impossible is to check reachability

- 1. automatically
- 2. without false positives
- 3. without false negatives
- 4. on systems of unbounded state
- 5. with unbounded execution time

Lifting restrictions opens possibilities!

Starting states + transitions

State of the program / of the machine = values of variables, registers, memories...within $\Sigma.$

Par exemple :

- if system state = 17 Booleans, then $\Sigma = \{0, 1\}^{17}$;
- if system state = 3 unbounded integers, then $\Sigma = \mathbb{Z}^3$;
- if finite automaton, Σ is the set of states;
- If stack automaton, state = pair (automaton state, stack contents), so Σ = Σ_S × Σ_P^{*}.

Transition relation \rightarrow : $x \rightarrow y =$ "if I'm at x I can go to y at the next step"

(A more general definition exists. Consider the simplest case.)

Show that a program cannot reach a "bad state" (crash, out-of-specification). Set *W* of bad states.

Show that there is no $n \ge 0$ and $\sigma_0 \to \sigma_1 \to \dots \sigma_n$, σ_0 initial state (= reset), $\sigma_n \in W$ (trace of *n* steps leading to a bad state).

Otherwise said: $\sigma_0 \rightarrow^* \sigma_n \in W$. \rightarrow^* reflexive transitive closure of \rightarrow .

Reachable states

Let $\Sigma_0 \subseteq \Sigma$ be the initial states. The set *A* of **reachable states** is the set of states σ such that TODO

$$\exists \sigma_0 \in \Sigma_0 \; \sigma_0 \to^* \sigma \tag{1}$$

On veut montrer que $A \cap W = \emptyset$.

Bounding the state space

Restrict to a finite number of variables of a finite type.

Finite state space \implies "it's just a big finite automaton!"

Everything is decidable!

Explicit-state model checking

Given a transition relation τ

- Set R := {initialstate}
- For each state x in R, add all x' such that $(x, x') \models \tau$
- Do it until R is saturated (no new states are added)
- ► Then *R* is the set of **reachable states**.

Then test whether R contains undesirable states.

Implementation issues

If state = n Boolean variables, 2^n possible states.

Memory usage linear in number of reachable states.

Store states in hash table. Store states in distributed hash table.

Tool example: CADP (INRIA Grenoble)

Explicit state model checking, a weakness

Representation expensive even if the set of reachable states is "simple".

e.g. $\{0,1\}^n$ "everything reachable" needs $\Theta(2^n)$ memory

Try to compress sets of states by **symbolic** representation.

Reachable states as a limit

 X_n is the set of states reachable within n steps of \rightarrow : $X_0 = \Sigma_0$, $X_1 = \Sigma_0 \cup R(\Sigma_0), X_2 = \Sigma_0 \cup R(\Sigma_0) \cup R(R(\Sigma_0))$, etc. with $R(X) = \{y \in \Sigma \mid \exists x \in X \ x \to y\}$.

 X_k grows wrt \subseteq . Its limit (= union of all terms) is the set of reachable states.

Iterative computation

Remark $X_{n+1} = \Sigma_0 \cup R(X_n)$.

Intuition: to reach in at most n + 1 steps

- either in 0 steps = initial states Σ_0
- ► either in 0 < k ≤ n + 1 steps, thus in at most n steps (X_n) followed by another step

But how to efficiently represent the X_n and compute over them?

The problem

Representing compactly sets of Boolean states

A set of vector *n* Booleans = a function from $\{0, 1\}^n$ into $\{0, 1\}$.

Example: $\{(0, 0, 0), (1, 1, 0)\}$ represented by $(0, 0, 0) \mapsto 1$, $(1, 1, 0) \mapsto 1$ and 0 elsewhere.

Expanded BDD

Binary decision diagrams

Given ordered Boolean variables (a, b, c), represent $(a \land c) \lor (b \land c)$:

Removing useless nodes

Silly to keep two identical subtrees:

identiques

Compression

Reduced BDD

Idea: turn the original tree into a DAG with **maximal sharing**.

Two different but isomorphic subtrees are never created. **Canonicity:** a given example is always encoded by the same DAG.

Implementation: hash-consing

Important: implementation technique that you may use in other contexts

"Consing" from "constructor" (cf Lisp : cons).

Keep a hash table of all nodes created, with hashcode H(x) computed quickly.

If node = (v, b_0, b_1) compute *H* from *v* and unique identifiers of b_0 and b_1

Unique identifier = address (if unmovable) or serial number

If an object matching (v, b_0, b_1) already exists in the table, return it

How to collect garbage nodes? (unreachable)

Garbage collection in hash consing

Needs **weak pointers**: the pointer from the hash table should be ignored by the GC when it computes reachable objects

- Java WeakHashMap
- OCaml Weak

Garbage collection in hash consing

Needs **weak pointers**: the pointer from the hash table should be ignored by the GC when it computes reachable objects

- Java WeakHashMap
- OCaml Weak

(Other use of weak pointers: caching recent computations.)

Hash-consing is magical

Ensures:

- ► maximal sharing: never two identical objects in two ≠ locations in memory
- ultra-fast equality test: sufficient to compare pointers (or unique identifiers)

And once we have it, BDDs are easy.

Once a variable ordering is chosen:

- Create BDD false, true(1-node constants).
- Create BDD for *v*, for *v* any variable.
- Operations \land , \lor , etc.

Binary BDD operations

Operations \land , \lor : recursive descent on both subtrees, with **dynamic programming**:

- store values of f(a, b) already computed in a hash table
- index the table by the unique identifiers of *a* and *b*

Complexity with and without dynamic programming?

Binary BDD operations

Operations \land , \lor : recursive descent on both subtrees, with **dynamic programming**:

- store values of f(a, b) already computed in a hash table
- index the table by the unique identifiers of *a* and *b*

Complexity with and without dynamic programming?

- without dynamic programming: unfolds DAG into tree
 ⇒ exponential
- ► with dynamic programming O(|a|.|b|) where |x| the size of DAG x

Quantifiers

BDD for formula *F* over variables *x*, *y*, *z*. Want a BDD for formula $\exists x F$ over variables *y* et *z*. $[\exists x F](y, z) \equiv F(0, y, z) \lor F(1, y, z)$: compute $F[0/x] \lor F[1/x]$ (F[b/x] is *F* where *x* has been replaced by *b*).

Same for \forall but with \land .

Otherwise said quantifier elimination.

Back to transition systems

- The set Σ_0 of initial states is defined by a formula over $x_1, \ldots, x_n \Rightarrow$ a BDD over *n* variables.
- ► The transition relation *T* over Boolean variables x₁,..., x_n, x'₁,..., x'_n (x' = updated x) ⇒ a BDD over 2n variables.

Recall $\phi(X) = \Sigma_0 \cup R(X)$, in formulas:

$$\phi(\mathbf{X}) = \Sigma_0 \lor (\exists \mathbf{x}_1, \dots, \mathbf{x}_n(\mathbf{X} \land \mathbf{T})) [\mathbf{x}'_1 / \mathbf{x}_1, \dots, \mathbf{x}'_n / \mathbf{x}_n]$$
(2)

All operations doable on BDDs!

Iterative computations over BDDs

Compute sequence X_0, \ldots with $X_0 = \Sigma_0$ and $X_{n+1} = \phi(X_n)$, stop when $X_n = X_{n+1}$ (recall: ultra-fast equality test!)

(Or stop when X_i intersects bad states.)

Sounds very simple but many possible optimizations and variants (e.g. **signed BDDs**), much work needed

In practice, need other operators (e.g. "constrain", "restrict"...)

Backward analysis

TODO

- Forward: compute reachable states by → from initial states Σ₀, test intersection with bad states W
- Backward: compute co-reachable states from W, test intersection with initial states Σ₀

A glimpse into the next weeks

The set *X* of reachable states satisfies $X = \phi(X)$. It is the least set wrt \subseteq that satisfies $\phi(X) \subseteq X$ $\phi(X)$ = "next states from *X* and add initial states"

Search for *X* satisfying $\phi(X) \subseteq X$ (**inductive invariant**).

If **any** inductive invariant does not intersect *W*, *W* unreachable.

Industrial use: hardware

Clocked hardware \simeq reset state + transition relation

Checking properties of circuits during conception (building prototypes is very expensive)

Tools such as Cadence-SMV

Bounded model checking

BDDs are too costly (worst-case exponential time and space)

Unbounded reachability in Boolean circuits is PSPACE-complete

Idea: limit search to n steps, "only" NP-complete

