Program verification

introduction, bounded-model checking, SAT,
symbolic model checking

Laure Gonnord David Monniaux

September 15, 2015

1/40

The teaching staff

» Laure GONNORD, associate professor, LIP laboratory,
University of Lyon
Laure.Gonnord@ens-1lyon. fr

» David MoNNIAuX, CNRS senior researcher, VERIMAG

laboratory, Grenoble
David.Monniaux@imag. fr

\/m

2/40

Laure.Gonnord@ens-lyon.fr
David.Monniaux@imag.fr

Safe software ?

» safety-critical software (control of vehicles e.g. airplanes
and cars, surgical robots, radiation therapy...)

» less critical software (flight management systems,
financial transactions, unmanned spacecraft...)

» general-purpose software?

» (hot topic) software facing the Internet, newer security
and privacy issues (e.g. 0-day vulnerabilities sold to
intelligence services; are lives at stake ?)

\/m

3/40

Software engineering

Considers the means of production of software:
» documentation imperatives
» organization of software development teams
» good programming practices
» use of appropriate programming languages
» software development environments

Try to reduce the number of errors at the source.

“Software metrics”
Use of 11int-like tools or more advanced

Not covered in this course \/
erimac

4/40

Proving properties of software

» Basic idea: software has mathematically defined
behaviour

» Possible to do mathematical proofs on software

» Possible to automate these proofs

5/40

Program proofs

Proving that software truly does what it is meant to do.

behaviours C acceptable behaviours

» What does software do?
» What is it meant to do?

» What is a proof?

\/m

6/40

Semantics

A precise definition of what a program does — given for all
programs within a programming language.

Very difficult for a full industrial language e.g. C++
Vs

A definition in £ vague natural language (e.g. 1SO C and
C++ standards, programming language manuals...)

Imprecise, fuzzy, sometimes contradictory definitions.
Language lawyers. Endless discussions on what a program
should or should not be doing, on what a compiler has the
right to do or not.

\/m

7/40

Specification

What software should do
» informal definition in natural language

» formal mathematical definition

Is the specification consistent?

Difficulties in writing specifications:
» Are all requirements taken into account?

» Redundancy with implementation

\/m

8/40

Specification example: sort

Unix command sort

(Without the options) Simple informal specification: “sort the
lines in a file”

In more detail: complicated —e.g
» what is the sorting order wrt non-ASCII characters?

» how are equivalent lines sorted (e.g. numeric ordering)

Mathematical definition possible, but long.

\/m

9/40

Difficulty

behaviours C acceptable behaviours
Both sets are not well defined in general.

May need to fix
» language definition

» target compilation environment (evaluation order, size of
basic types, alignment...)

» precise specification

How about proofs?

\/m

10/40

The Halting Problem

Simple language: integers (Z), tests, loops

There is no algorithm that says, given a program,
whether this program halts. (Turing)

11/40

The Halting Problem, proof

Suppose we have a “magical analyzer” A: answer A(P, X) = 1
“program P terminates eventually on input X" A(P,X) =0
otherwise

int B(Program x) {
if (A(x,x)==0) {
return 1;
} else {
while(true) {}
}
+

What is B(B)? (B applied to its own source code) \/

12/40

The Halting Problem, contradiction

int B(Program x) {
if (A(x,x)==0) {
return 1;
} else {
while(true) {}
}
+

If B(B) = 1 then A(B, B) = 0 “program B does not terminate
on input B”. Absurd!

If B(B) loops then A(B, B) = 1 “program B terminates on
input B”. Absurd!

\/m

13/40

There is no magical static analyser.

Workarounds

What is impossible is to check reachability

1.

automatically

2. without false positives
3. without false negatives
4.
5

. with unbounded execution time

on systems of unbounded state

Lifting restrictions opens possibilities!

\/m

14/40

Starting states + transitions

State of the program / of the machine = values of variables,
registers, memories...within .

Par exemple :
» if system state = 17 Booleans, then & = {0, 1}'7;
» if system state = 3 unbounded integers, then ¥ = Z3;
» if finite automaton, X is the set of states;

» if stack automaton, state = pair (automaton state, stack
contents), so ¥ = X X X}

Transition relation — : x — y = “if ’'m at x| can go to y at
the next step”

\/m

15/40

Safety properties

(A more general definition exists. Consider the simplest case.)

Show that a program cannot reach a “bad state” (crash,
out-of-specification).
Set W of bad states.

Show that thereisnon> 0 and o9 — 01 — ... 0,, 0y initial
state (= reset), o, € W (trace of nsteps leading to a bad state).

Otherwise said: 0y —* 0, € W. —* reflexive transitive
closure of —.

\/m

16/40

Reachable states

Let 39 C X be the initial states.
The set A of reachable states is the set of states o such that

TODO
300 c Eo oo —* 0o (])

On veut montrer que AN W = ().

\/m

17/40

Bounding the state space

Restrict to a finite number of variables of a finite type.
!”

Finite state space = “it’s just a big finite automaton

Everything is decidable!

\/m

18/40

Explicit-state model checking

Given a transition relation 7

» Set R := {initialstate}
» For each state xin R, add all ¥ such that (x,xX) =7

» Do it until Ris saturated (no new states are added)

» Then R is the set of reachable states.

Then test whether R contains undesirable states.

\/m

19/40

Implementation issues

If state = n Boolean variables, 2" possible states.
Memory usage linear in number of reachable states.

Store states in hash table.
Store states in distributed hash table.

Tool example: CADP (INRIA Grenoble)

\/m

20/40

Explicit state model checking, a weakness

Representation expensive even if the set of reachable states is
“simple”.
e.g. {0,1}" “everything reachable” needs ©(2") memory

Try to compress sets of states by symbolic representation.

\/m

21/40

Reachable states as a limit

X, is the set of states reachable within n steps of —: Xy = ¥,
X1 = ZO U R(Z()), X2 = EO U R(Eo) U R(R(Eo)), etc.

with R(X) = {y e ¥ | Ixe Xx— y}.

X grows wrt C.
Its limit (= union of all terms) is the set of reachable states.

\/m

22/40

[terative computation

Remark X, 1 = X U R(X,).

Intuition: to reach in at most n+ 1 steps
» either in 0 steps = initial states X

» either in 0 < k < n+ 1 steps, thus in at most n steps (X,)
followed by another step

But how to efficiently represent the X, and compute over
them?

\/m

23/40

The problem

Representing compactly sets of Boolean states

A set of vector n Booleans = a function from {0, 1}" into

{01},

Example: {(0,0,0),(1,1,0)} represented by (0,0,0) — 1,
(1,1,0) — 1 and 0 elsewhere.

\/m

24/40

Expanded BDD

Binary decision diagrams

Given ordered Boolean variables (a, b, c), represent
(anc)V(bAc):

0 0 0 1 0 1 0 1

25/40

Removing useless nodes

Silly to keep two identical subtrees:

b b

c ¢ ¢ y
0 0 0 1 0 1 0 1
identiques identiques

26/40

Compression

identiques

27/40

Reduced BDD

Idea: turn the original tree into a DAG with maximal
sharing.

Two different but isomorphic subtrees are never created.
Canonicity: a given example is always encoded by the same
DAG.

erimac

28/40

Implementation: hash-consing

Important: implementation technique that you may use in
other contexts

“Consing” from “constructor” (cf Lisp : cons).

Keep a hash table of all nodes created, with hashcode H(x)
computed quickly.
If node = (v, by, b;) compute H from v and unique identifiers

of by and b;
Unique identifier = address (if unmovable) or serial number

If an object matching (v, by, by) already exists in the table,
return it

How to collect garbage nodes? (unreachable) \4"‘“

29/40

Garbage collection in hash consing

Needs weak pointers: the pointer from the hash table should
be ignored by the GC when it computes reachable objects

» Java WeakHashMap
» OCaml Weak

\/m

30/40

http://java.sun.com/javase/6/docs/api/java/util/WeakHashMap.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Weak.html

Garbage collection in hash consing

Needs weak pointers: the pointer from the hash table should
be ignored by the GC when it computes reachable objects

» Java WeakHashMap
» OCaml Weak

(Other use of weak pointers: caching recent computations.)

\/m

30/40

http://java.sun.com/javase/6/docs/api/java/util/WeakHashMap.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Weak.html

Hash-consing is magical

Ensures:

» maximal sharing: never two identical objects in two #
locations in memory

» ultra-fast equality test: sufficient to compare pointers
(or unique identifiers)

And once we have it, BDDs are easy.

\/m

31/40

BDD operations

Once a variable ordering is chosen:
» Create BDD false, true(1-node constants).
» Create BDD for v, for vany variable.

» Operations A, V, etc.

\/m

32/40

Binary BDD operations

Operations A, V: recursive descent on both subtrees, with
dynamic programming;:
» store values of f(a, b) already computed in a hash table

» index the table by the unique identifiers of aand b

Complexity with and without dynamic programming?

\/m

33/40

Binary BDD operations

Operations A, V: recursive descent on both subtrees, with
dynamic programming;:
» store values of f(a, b) already computed in a hash table

» index the table by the unique identifiers of aand b

Complexity with and without dynamic programming?

» without dynamic programming: unfolds DAG into tree
= exponential

» with dynamic programming O(|al.|b|) where |x]| the size
of DAG x

\/m

33/40

Quantifiers

BDD for formula F over variables x, y, z.
Want a BDD for formula dx Fover variables y et z

[3x F(y,z) = F0,y,2) V F(1,y, z): compute Fl0/x] V F[1/x]
(F[b/x] is F where x has been replaced by b).

Same for V but with A.

Otherwise said quantifier elimination.

\/m

34/40

Back to transition systems

» The set Y of initial states is defined by a formula over
Xy, ..., X, = a BDD over nvariables.

» The transition relation T over Boolean variables
Xiy .oy Xny Xy, .., X, (X = updated x) = a BDD over 2n
variables.

Recall ¢(X) = Xy U R(X), in formulas:

HX) =XV (Ixt, .., xa(XA T [X /X1, X, /x0) (2)

All operations doable on BDDs!

\/m

35/40

Iterative computations over BDDs

Compute sequence Xy, ... with Xo = X and X,.1 = &(X,),
stop when X, = X, (recall: ultra-fast equality test!)

(Or stop when X; intersects bad states.)

Sounds very simple
but many possible optimizations and variants (e.g. signed
BDDs), much work needed

In practice, need other operators (e.g. “constrain”, “restrict”...)

\/m

36/40

Backward analysis

TODO

» Forward: compute reachable states by — from initial
states Yo, test intersection with bad states W

» Backward: compute co-reachable states from W, test
intersection with initial states >

\/m

37/40

A glimpse into the next weeks

The set X of reachable states satisfies X = ¢(X).
It is the least set wrt C that satisfies ¢(X) C X
#(X) = “next states from X and add initial states”

Search for X satisfying ¢(X) C X (inductive invariant).

If any inductive invariant does not intersect W, W
unreachable.

\/m

38/40

Industrial use: hardware

Clocked hardware ~ reset state + transition relation

Checking properties of circuits during conception (building
prototypes is very expensive)

Tools such as Cadence-SMV

\/m

39/40

Bounded model checking

BDDs are too costly (worst-case exponential time and space)

Unbounded reachability in Boolean circuits is
PSPACE-complete

Idea: limit search to n steps, “only” NP-complete

\/m

40/40

