
Program verification
introduction, bounded-model checking, SAT,

symbolic model checking

Laure Gonnord David Monniaux

September 15, 2015

1 / 40

The teaching staff

▶ Laure Gonnord, associate professor, LIP laboratory,
University of Lyon
Laure.Gonnord@ens-lyon.fr

▶ David Monniaux, CNRS senior researcher, VERIMAG
laboratory, Grenoble
David.Monniaux@imag.fr

2 / 40

Laure.Gonnord@ens-lyon.fr
David.Monniaux@imag.fr

Safe software ?

▶ safety-critical software (control of vehicles e.g. airplanes
and cars, surgical robots, radiation therapy…)

▶ less critical software (flight management systems,
financial transactions, unmanned spacecraft…)

▶ general-purpose software?
▶ (hot topic) software facing the Internet, newer security

and privacy issues (e.g. 0-day vulnerabilities sold to
intelligence services; are lives at stake ?)

3 / 40

Software engineering

Considers the means of production of software:
▶ documentation imperatives
▶ organization of software development teams
▶ good programming practices
▶ use of appropriate programming languages
▶ software development environments

Try to reduce the number of errors at the source.

“Software metrics”
Use of lint-like tools or more advanced

Not covered in this course

4 / 40

Proving properties of software

▶ Basic idea: software has mathematically defined
behaviour

▶ Possible to do mathematical proofs on software

▶ Possible to automate these proofs

5 / 40

Program proofs

Proving that software truly does what it is meant to do.

behaviours ⊆ acceptable behaviours

▶ What does software do?

▶ What is it meant to do?

▶ What is a proof?

6 / 40

Semantics

A precise definition of what a program does — given for all
programs within a programming language.

Very difficult for a full industrial language e.g. C++

vs

A definition in ± vague natural language (e.g. ISO C and
C++ standards, programming language manuals…)

Imprecise, fuzzy, sometimes contradictory definitions.
Language lawyers. Endless discussions on what a program
should or should not be doing, on what a compiler has the
right to do or not.

7 / 40

Specification

What software should do
▶ informal definition in natural language
▶ formal mathematical definition

Is the specification consistent?

Difficulties in writing specifications:
▶ Are all requirements taken into account?
▶ Redundancy with implementation

8 / 40

Specification example: sort

Unix command sort

(Without the options) Simple informal specification: “sort the
lines in a file”

In more detail: complicated — e.g
▶ what is the sorting order wrt non-ASCII characters?
▶ how are equivalent lines sorted (e.g. numeric ordering)

Mathematical definition possible, but long.

9 / 40

Difficulty

behaviours ⊆ acceptable behaviours

Both sets are not well defined in general.

May need to fix
▶ language definition
▶ target compilation environment (evaluation order, size of

basic types, alignment…)
▶ precise specification

How about proofs?

10 / 40

The Halting Problem

Simple language: integers (Z), tests, loops

There is no algorithm that says, given a program,
whether this program halts. (Turing)

11 / 40

The Halting Problem, proof

Suppose we have a “magical analyzer” A: answer A(P,X) = 1
“program P terminates eventually on input X” A(P,X) = 0
otherwise

int B(Program x) {
if (A(x,x)==0) {
return 1;

} else {
while(true) {}

}
}

What is B(B)? (B applied to its own source code)

12 / 40

The Halting Problem, contradiction

int B(Program x) {
if (A(x,x)==0) {
return 1;

} else {
while(true) {}

}
}

If B(B) = 1 then A(B,B) = 0 “program B does not terminate
on input B”. Absurd!

If B(B) loops then A(B,B) = 1 “program B terminates on
input B”. Absurd!

There is no magical static analyser.
13 / 40

Workarounds

What is impossible is to check reachability

1. automatically

2. without false positives

3. without false negatives

4. on systems of unbounded state

5. with unbounded execution time

Lifting restrictions opens possibilities!

14 / 40

Starting states + transitions

State of the program / of the machine = values of variables,
registers, memories…within Σ.

Par exemple :
▶ if system state = 17 Booleans, then Σ = {0, 1}17;
▶ if system state = 3 unbounded integers, then Σ = Z3;
▶ if finite automaton, Σ is the set of states;
▶ if stack automaton, state = pair (automaton state, stack

contents), so Σ = ΣS × Σ∗
P.

Transition relation→ : x → y = “if I’m at x I can go to y at
the next step”

15 / 40

Safety properties

(A more general definition exists. Consider the simplest case.)

Show that a program cannot reach a “bad state” (crash,
out-of-specification).
Set W of bad states.

Show that there is no n ≥ 0 and σ0 → σ1 → . . . σn, σ0 initial
state (= reset), σn ∈ W (trace of n steps leading to a bad state).

Otherwise said: σ0 →∗ σn ∈ W. →∗ reflexive transitive
closure of →.

16 / 40

Reachable states

Let Σ0 ⊆ Σ be the initial states.
The set A of reachable states is the set of states σ such that
TODO

∃σ0 ∈ Σ0 σ0 →∗ σ (1)

On veut montrer que A ∩W = ∅.

17 / 40

Bounding the state space

Restrict to a finite number of variables of a finite type.

Finite state space =⇒ “it’s just a big finite automaton!”

Everything is decidable!

18 / 40

Explicit-state model checking

Given a transition relation τ

▶ Set R := {initialstate}
▶ For each state x in R, add all x′ such that (x, x′) |= τ

▶ Do it until R is saturated (no new states are added)

▶ Then R is the set of reachable states.

Then test whether R contains undesirable states.

19 / 40

Implementation issues

If state = n Boolean variables, 2n possible states.

Memory usage linear in number of reachable states.

Store states in hash table.
Store states in distributed hash table.

Tool example: CADP (INRIA Grenoble)

20 / 40

Explicit state model checking, a weakness

Representation expensive even if the set of reachable states is
“simple”.
e.g. {0, 1}n “everything reachable” needs Θ(2n) memory

Try to compress sets of states by symbolic representation.

21 / 40

Reachable states as a limit

Xn is the set of states reachable within n steps of →: X0 = Σ0,
X1 = Σ0 ∪ R(Σ0), X2 = Σ0 ∪ R(Σ0) ∪ R(R(Σ0)), etc.

with R(X) = {y ∈ Σ | ∃x ∈ X x → y}.

Xk grows wrt ⊆.
Its limit (= union of all terms) is the set of reachable states.

22 / 40

Iterative computation

Remark Xn+1 = Σ0 ∪ R(Xn).

Intuition: to reach in at most n+ 1 steps
▶ either in 0 steps = initial states Σ0

▶ either in 0 < k ≤ n+ 1 steps, thus in at most n steps (Xn)
followed by another step

But how to efficiently represent the Xn and compute over
them?

23 / 40

The problem

Representing compactly sets of Boolean states

A set of vector n Booleans = a function from {0, 1}n into
{0, 1}.

Example: {(0, 0, 0), (1, 1, 0)} represented by (0, 0, 0) 7→ 1,
(1, 1, 0) 7→ 1 and 0 elsewhere.

24 / 40

Expanded BDD

Binary decision diagrams

Given ordered Boolean variables (a, b, c), represent
(a ∧ c) ∨ (b ∧ c) :

a

bb

c c c c

0 1 100 0 10

0 1

25 / 40

Removing useless nodes

Silly to keep two identical subtrees:

a

bb

c c c c

0 1 100 0 10

0 1

identiques
identiques

26 / 40

Compression

c

10

a

b

c

0 1

0 1

0

identiques

27 / 40

Reduced BDD

a

b

c

0 1

0

0

1

Idea: turn the original tree into a DAG with maximal
sharing.

Two different but isomorphic subtrees are never created.
Canonicity: a given example is always encoded by the same
DAG.

28 / 40

Implementation: hash-consing

Important: implementation technique that you may use in
other contexts

“Consing” from “constructor” (cf Lisp : cons).

Keep a hash table of all nodes created, with hashcode H(x)
computed quickly.
If node = (v, b0, b1) compute H from v and unique identifiers
of b0 and b1
Unique identifier = address (if unmovable) or serial number

If an object matching (v, b0, b1) already exists in the table,
return it

How to collect garbage nodes? (unreachable)

29 / 40

Garbage collection in hash consing

Needs weak pointers: the pointer from the hash table should
be ignored by the GC when it computes reachable objects

▶ Java WeakHashMap
▶ OCaml Weak

(Other use of weak pointers: caching recent computations.)

30 / 40

http://java.sun.com/javase/6/docs/api/java/util/WeakHashMap.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Weak.html

Garbage collection in hash consing

Needs weak pointers: the pointer from the hash table should
be ignored by the GC when it computes reachable objects

▶ Java WeakHashMap
▶ OCaml Weak

(Other use of weak pointers: caching recent computations.)

30 / 40

http://java.sun.com/javase/6/docs/api/java/util/WeakHashMap.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Weak.html

Hash-consing is magical

Ensures:
▶ maximal sharing: never two identical objects in two ̸=

locations in memory
▶ ultra-fast equality test: sufficient to compare pointers

(or unique identifiers)

And once we have it, BDDs are easy.

31 / 40

BDD operations

Once a variable ordering is chosen:
▶ Create BDD false, true(1-node constants).
▶ Create BDD for v, for v any variable.
▶ Operations ∧, ∨, etc.

32 / 40

Binary BDD operations

Operations ∧, ∨: recursive descent on both subtrees, with
dynamic programming:

▶ store values of f(a, b) already computed in a hash table
▶ index the table by the unique identifiers of a and b

Complexity with and without dynamic programming?

▶ without dynamic programming: unfolds DAG into tree
⇒ exponential

▶ with dynamic programming O(|a|.|b|) where |x| the size
of DAG x

33 / 40

Binary BDD operations

Operations ∧, ∨: recursive descent on both subtrees, with
dynamic programming:

▶ store values of f(a, b) already computed in a hash table
▶ index the table by the unique identifiers of a and b

Complexity with and without dynamic programming?

▶ without dynamic programming: unfolds DAG into tree
⇒ exponential

▶ with dynamic programming O(|a|.|b|) where |x| the size
of DAG x

33 / 40

Quantifiers

BDD for formula F over variables x, y, z.
Want a BDD for formula ∃x F over variables y et z.
[∃x F](y, z) ≡ F(0, y, z) ∨ F(1, y, z): compute F[0/x] ∨ F[1/x]
(F[b/x] is F where x has been replaced by b).

Same for ∀ but with ∧.

Otherwise said quantifier elimination.

34 / 40

Back to transition systems

▶ The set Σ0 of initial states is defined by a formula over
x1, . . . , xn ⇒ a BDD over n variables.

▶ The transition relation T over Boolean variables
x1, . . . , xn, x′1, . . . , x

′
n (x′ = updated x) ⇒ a BDD over 2n

variables.

Recall ϕ(X) = Σ0 ∪ R(X), in formulas:

ϕ(X) = Σ0 ∨ (∃x1, . . . , xn(X ∧ T))[x′1/x1, . . . , x
′
n/xn] (2)

All operations doable on BDDs!

35 / 40

Iterative computations over BDDs

Compute sequence X0, . . . with X0 = Σ0 and Xn+1 = ϕ(Xn),
stop when Xn = Xn+1 (recall: ultra-fast equality test!)

(Or stop when Xi intersects bad states.)

Sounds very simple
but many possible optimizations and variants (e.g. signed
BDDs), much work needed

In practice, need other operators (e.g. “constrain”, “restrict”…)

36 / 40

Backward analysis

TODO

▶ Forward: compute reachable states by → from initial
states Σ0, test intersection with bad states W

▶ Backward: compute co-reachable states from W, test
intersection with initial states Σ0

37 / 40

A glimpse into the next weeks

The set X of reachable states satisfies X = ϕ(X).
It is the least set wrt ⊆ that satisfies ϕ(X) ⊆ X
ϕ(X) = “next states from X and add initial states”

Search for X satisfying ϕ(X) ⊆ X (inductive invariant).

If any inductive invariant does not intersect W, W
unreachable.

38 / 40

Industrial use: hardware

Clocked hardware ≃ reset state + transition relation

Checking properties of circuits during conception (building
prototypes is very expensive)

Tools such as Cadence-SMV

39 / 40

Bounded model checking

BDDs are too costly (worst-case exponential time and space)

Unbounded reachability in Boolean circuits is
PSPACE-complete

Idea: limit search to n steps, “only” NP-complete

40 / 40

