
Bounded model checking, SAT-solving,

Sudoku and Mines
introduction, bounded-model checking, SAT,

symbolic model checking

David Monniaux

CNRS / VERIMAG

September 22, 2015

1 / 39

Plan

Model-checking basics

Boolean programs

SAT-solving

SMT-solving

Practical usage

2 / 39

BDD-based model-checking

▶ Compute the set of reachable states.

▶ Explicit state: memory use proportional to |S |, S set of
reachable states. . . but |S | = 2n where n is the memory
size!

▶ Implicit state: compression of the set of states, but BDDs
can still be exponential, choice of order of
variables. . .Memory explosion.

▶ Set of states reachable in any number of steps from
initialization.

▶ Reachability is PSPACE-complete.

The state explosion problem.

3 / 39

Bounded model-checking

▶ Looks for a path of given length n from the initial
states to the undesirable states.

▶ Is NP-complete or worse (depending on kinds of data),
due exponential number of paths.

▶ Efficient SAT-based search algorithms(DPLL etc.). Do
not blow up memory.

▶ Time explosion with increased n.

Can search for bugs but not prove their absence!

4 / 39

Distinguish two kinds of applications

▶ Find bugs.

▶ Prove their absence. Must be sound: should not say
“no bugs” when bugs are present.

5 / 39

Plan

Model-checking basics

Boolean programs

SAT-solving

SMT-solving

Practical usage

6 / 39

Transition relations

Let us suppose we have a Boolean formula τ defining →:

▶ variables b1, . . . , bm for the m bits of state before
executing the computation step

▶ variables b′1, . . . , b
′
m for the m bits of state after executing

the computation step

7 / 39

Unfolding

b(k) = (b
(k)
1 , . . . , b

(k)
m) value of the variables at step k .

τ [b(k)/b,b(k+1)/b′] links b
(k)
1 , . . . , b

(k)
m to b

(k+1)
1 , . . . , b

(k+1)
m .

Reminder: τ [a/b] = τ where a is replaced by b

Unfolding the formula for n steps:

τ [b(0)/b,b(1)/b′] ∧ · · · ∧ τ [b(n−1)/b,b(n)/b′]

b(0), . . . ,b(n) is the execution trace: value of all bits in the
system at every step.

8 / 39

Looking for bugs

We impose that executions:

▶ Start in an initial state b(0) such that I [b(0)/b] is true.

▶ Ends in an initial state b(n) such that F [b(n)/b] is true.

▶ F defines the negation of a desirable property or... a
kind of bug.

I [b(0)/b]∧τ [b(0)/b,b(1)/b′]∧· · ·∧τ [b(n−1)/b,b(n)/b′]∧F [b(n)/b]

defines traces of exact length n starting in a state defined by I
and ending in a state defined by F .

9 / 39

Solving the problem

We have a Boolean formula with free variables
b
(0)
1 , . . . , b

(0)
m , . . . , b

(n)
1 , . . . , b

(n)
m .

A solution of this formula is an assignment to these variables
that makes the formula true.

Example: formula ((a ∨ b) ∧ ¬b) ∨ c has solutions

▶ (a, b, c) = (true, false, false)

▶ (a, b, c) = (false, false, true)

Try increasing values of n.

10 / 39

Solving the problem

We have a Boolean formula with free variables
b
(0)
1 , . . . , b

(0)
m , . . . , b

(n)
1 , . . . , b

(n)
m .

A solution of this formula is an assignment to these variables
that makes the formula true.

Example: formula ((a ∨ b) ∧ ¬b) ∨ c has solutions

▶ (a, b, c) = (true, false, false)

▶ (a, b, c) = (false, false, true)

Try increasing values of n.

10 / 39

Solving the problem

We have a Boolean formula with free variables
b
(0)
1 , . . . , b

(0)
m , . . . , b

(n)
1 , . . . , b

(n)
m .

A solution of this formula is an assignment to these variables
that makes the formula true.

Example: formula ((a ∨ b) ∧ ¬b) ∨ c has solutions

▶ (a, b, c) = (true, false, false)

▶ (a, b, c) = (false, false, true)

Try increasing values of n.

10 / 39

Small example

m = 5 bits b1, . . . , bm.
Initial states: true...
Transition relation τ :

b′2 = b1 ∧ b′3 = b2 ∧ b′4 = b3 ∧ b′5 = b4 ∧ b′1 = ¬b1

In other words: b1 alternates between 0 and 1, and bits
b1 → b2 → b3 → b4 → b5.
0, 1, 0, 1, 0, 1 . . . moving.

“Buggy” final states: b4 ∧ b5.
Are they reachable within n = 10 steps?

11 / 39

Small example

m = 5 bits b1, . . . , bm.
Initial states: true...
Transition relation τ :

b′2 = b1 ∧ b′3 = b2 ∧ b′4 = b3 ∧ b′5 = b4 ∧ b′1 = ¬b1

In other words: b1 alternates between 0 and 1, and bits
b1 → b2 → b3 → b4 → b5.
0, 1, 0, 1, 0, 1 . . . moving.

“Buggy” final states: b4 ∧ b5.
Are they reachable within n = 10 steps?

11 / 39

Solution

For n = 0: formula is b
(0)
4 ∧ b

(0)
5 , solution

(b
(0)
1 , b

(0)
2 , b

(0)
3 , b

(0)
4 , b

(0)
5) = (false, false, false, true, true).

Don’t forget the initial states!

And for n = 10... solve

τ [b(0)/b,b(1)/b′] ∧ · · · ∧ τ [b(9)/b,b(10)/b′] ∧ b
(10)
4 = b

(10)
5

Our intuition is that this formula has no solution... but how to
automate this?

12 / 39

Solution

For n = 0: formula is b
(0)
4 ∧ b

(0)
5 , solution

(b
(0)
1 , b

(0)
2 , b

(0)
3 , b

(0)
4 , b

(0)
5) = (false, false, false, true, true).

Don’t forget the initial states!

And for n = 10... solve

τ [b(0)/b,b(1)/b′] ∧ · · · ∧ τ [b(9)/b,b(10)/b′] ∧ b
(10)
4 = b

(10)
5

Our intuition is that this formula has no solution... but how to
automate this?

12 / 39

Plan

Model-checking basics

Boolean programs

SAT-solving

SMT-solving

Practical usage

13 / 39

The problem

Given a Boolean formula:

▶ Test whether it has solutions.

▶ If it has solutions, give one.

Known to be NP-complete!

14 / 39

SAT in CNF

We have a formula F with nested ∧,∨,¬. . .
but most solvers accept only formulas in conjunctive normal
form (CNF).

CNF is conjunction of disjunction of literals. Ex:

(x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ z) ∧ (y ∨ z)

15 / 39

Tseiting encoding

Take as example: ((a ∨ b) ∧ ¬b) ∨ c

Add variables x = a ∨ b, y = x ∧ ¬b, z = y ∨ c .

x = a ∨ b is equivalent to

(a ⇒ x) ∧ (b ⇒ x) ∧ (x ⇒ (a ∨ b))

thus to
(¬a ∨ x) ∧ (¬b ∨ x) ∧ (¬x ∨ a ∨ b)

16 / 39

Constraint solving: unit propagation

Each conjunct is a constraint on variables. We must satisfy
them all!

Work with partial assignments: give values to some of the
variables.
“Try a = false, b = false and see what happens.”

We must satisfy ¬x ∨ a ∨ b: if a = b = false, then ¬x must be
true, thus x = false. Unit propagation.

17 / 39

Practical example

Is there a mine at the light blue square?

18 / 39

Practical example

The pink square imposes a constraint: total number of mines
in neighbourhood is exactly 1. Since there is already one mine,
the light blue square cannot contain one.

19 / 39

Unit propagation

▶ You have already made a number of choices on some
variables.

▶ These choices, through constraints, impose values to
other variables.

▶ Valid for SAT as well as for Mines or Sudoku.

20 / 39

Branching

Sometimes, unit propagation does not suffice. One must
“work on a hypothesis”.
Is there a mine on the light blue square?

21 / 39

Method

Search with backtracking:

▶ Make a “work hypothesis”.

▶ Propagate the consequences (unit propagation).

▶ If encountering an absurdity, backtrack.

When solving Sudoku

▶ If the problem is “easy”, unit propagation suffices.

▶ The more difficult the problem is, the more one has to
make choices and backtrack.

22 / 39

Method

Search with backtracking:

▶ Make a “work hypothesis”.

▶ Propagate the consequences (unit propagation).

▶ If encountering an absurdity, backtrack.

When solving Sudoku

▶ If the problem is “easy”, unit propagation suffices.

▶ The more difficult the problem is, the more one has to
make choices and backtrack.

22 / 39

DPLL algorithm

▶ Unit propagation.

▶ Make choices: select a variable, assign it to true or false.

▶ If reaching a contradiction: the last assignment was
absurd; backtrack and replace last assignment by its
negation.

Time complexity?

Still exponential, of course!

23 / 39

DPLL algorithm

▶ Unit propagation.

▶ Make choices: select a variable, assign it to true or false.

▶ If reaching a contradiction: the last assignment was
absurd; backtrack and replace last assignment by its
negation.

Time complexity? Still exponential, of course!

23 / 39

DPLL with learning

(a ∨ b ∨ c ∨ ¬d) ∧ (¬a ∨ ¬b ∨ ¬c ∨ ¬d) ∧ (¬b ∨ c)

Choose d = true. Constraints become:

(a ∨ b ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c) ∧ (¬b ∨ c)

Choose a = true. Constraints become:

(¬b ∨ ¬c) ∧ (¬b ∨ c)

Choose b = true. The formula becomes (¬c) ∧ c .
Contradiction!
Thus F ∧ a ∧ b unsat. In other words, F ⇒ (¬a ∨ ¬b).

Thus I can add ¬a ∨ ¬b to the original problem without
changing solutions!

24 / 39

Modern SAT solving

DIMACS standardized file format.

Advanced technology.

▶ Solvers zChaff, MiniSAT etc.

▶ Many improvements, heuristics. . .

▶ Very clever implementation techniques.

▶ Mass industrial use.

25 / 39

Mass industrial use of SAT solving

In EDA (electronic design automation).
Prove that two circuit designs (without memory) are
equivalent: F (b1, . . . , bm) and G (b1, . . . , bm) equivalent iff
∀b1, . . . , bm F (b1, . . . , bm) = G (b1, . . . , bm).
How?

Show that F (b1, . . . , bm) ̸= G (b1, . . . , bm) is unsat.

NB: (x1, x2, x3, xm′) ̸= (y1, y2, y3, ym′) iff
(x1 ⊕ y1) ∨ · · · ∨ (xm′ ⊕ ym′), where ⊕ is exclusive-or (XOR).

26 / 39

Mass industrial use of SAT solving

In EDA (electronic design automation).
Prove that two circuit designs (without memory) are
equivalent: F (b1, . . . , bm) and G (b1, . . . , bm) equivalent iff
∀b1, . . . , bm F (b1, . . . , bm) = G (b1, . . . , bm).
How?

Show that F (b1, . . . , bm) ̸= G (b1, . . . , bm) is unsat.

NB: (x1, x2, x3, xm′) ̸= (y1, y2, y3, ym′) iff
(x1 ⊕ y1) ∨ · · · ∨ (xm′ ⊕ ym′), where ⊕ is exclusive-or (XOR).

26 / 39

For circuits with memory

Unroll execution traces, as seen before!

27 / 39

Plan

Model-checking basics

Boolean programs

SAT-solving

SMT-solving

Practical usage

28 / 39

How about numbers?

i n t x , y , z ;
assume (0 >= x && x <= 2 | | x >= 4 && x <= 6) ;
assume (0 >= y && y <= 5) ;
z = x + y ;
assert (x + y <= 12) ;

How can we prove unsat:

((0 ≤ x ≤ 2)∨(4 ≤ x ≤ 6))∧ (0 ≤ y ≤ 5)∧ (z = x+y)∧ (x+y > 12)

29 / 39

Bit-blasting

Assume int is 32-bit.
Expand 0 ≥ x , z = x + y ... into Boolean gates using adders,
comparators, etc.
Obtain a pure Boolean circuit.
(Same as C-to-hardware compilation.)

Apply SAT-solving!

30 / 39

DPLL(T)

Add Boolean variables:

((0 ≤ x ≤ 2)∨ (4 ≤ x ≤ 6))∧ (0 ≤ y ≤ 5)∧ (x = x+y)∧ (x+y > 12)
(1)

with a
△
= 0 ≥ x , b

△
= x ≤ 5, c

△
= 0 ≥ y , d

△
= y ≤ 5,

e
△
= x = x + y , f

△
= x + y > 12, g

△
= x ≥ 4, h

△
= x ≤ 6.

Formula 1 becomes

((a ∧ b) ∨ (g ∧ h)) ∧ c ∧ d ∧ e ∧ f (2)

31 / 39

DPLL(T) suite

((a ∧ b) ∨ (g ∧ h)) ∧ c ∧ d ∧ e ∧ f (3)

Solution: every variable to true!

But this means b
△
= x ≤ 2 and g

△
= g ≥ 4 both true! This is

impossible with respect to integer arithmetic!

Add ¬(b ∧ g) (¬b ∨ ¬g) to the Boolean constraints, and start
again.

32 / 39

DPLL(T) explained

▶ Find a Boolean solution using DPLL.

▶ Check if feasible with respect to arithmetic.

▶ If not, add a Boolean constraint and restart.

In practice: DPLL interleaved with arithmetic (theory) solving.

Linear arithmetic over reals/rationals: simplex algorithm.

33 / 39

Tools

Industrial:

▶ Microsoft Z3

▶ SRI Yices

Academic:

▶ VeriT (Nancy)

▶ MathSAT

▶ OpenSMT

▶ CVC3. . .

34 / 39

Plan

Model-checking basics

Boolean programs

SAT-solving

SMT-solving

Practical usage

35 / 39

From program to SMT

i f (x < 5) {
y = x+3;

} e l se {
y = x+2;

}

(x < 5 ∧ y ′ = x + 3) ∨ (x ≥ 5 ∧ y ′ = x + 2)

36 / 39

From program to SMT

i f (x < 5) {
y = x+3;

} e l se {
y = x+2;

}

(x < 5 ∧ y ′ = x + 3) ∨ (x ≥ 5 ∧ y ′ = x + 2)

36 / 39

Conversion from program to SMT

▶ Conversion looks like compilation into SSA-form
(intermediate representation in compilers e.g. modern gcc
and LLVM).

▶ Loops are unrolled into nested if-then-else.

▶ If-then-else’s in source code introduce ∨ in formulas (or
“if then else” Boolean operators).

▶ ∨ introduce exponential complexity in SAT/SMT solving.

▶ Thus cost may be exponential in loop unrolling.

37 / 39

Example of tools

CBMC http://www.cprover.org/cbmc/

Bounded Model Checking for ANSI-C

38 / 39

http://www.cprover.org/cbmc/

Another example: Sage

▶ Fuzzing = throw random data at programs and see if
they crash.

▶ Better fuzzing: solve SMT-formulas for obtaining inputs
that exerce certain program paths.

▶ Combines binary analysis (disassembling) and
SMT-solving.

▶ Patrice Godefroid @Microsoft Research.

▶ Industrial use for detecting security bugs in file format
and protocol parsers.

▶ (Not sound: can fail to detect problems.)

39 / 39

	Model-checking basics
	Boolean programs
	SAT-solving
	SMT-solving
	Practical usage

