Bounded model checking, SAT-solving,
Sudoku and Mines

introduction, bounded-model checking, SAT,
symbolic model checking

David Monniaux

CNRS / VERIMAG

September 22, 2015

\4mas

1/39

Plan

Model-checking basics

2/39

BDD-based model-checking

>

Compute the set of reachable states.

Explicit state: memory use proportional to |S|, S set of
reachable states. .. but |S| = 2" where n is the memory
size!

Implicit state: compression of the set of states, but BDDs
can still be exponential, choice of order of

variables. .. Memory explosion.

Set of states reachable in any number of steps from
initialization.

Reachability is PSPACE-complete.

The state explosion problem.

\/m

3/39

Bounded model-checking

» Looks for a path of given length n from the initial
states to the undesirable states.

» Is NP-complete or worse (depending on kinds of data),
due exponential number of paths.

» Efficient SAT-based search algorithms(DPLL etc.). Do
not blow up memory.

» Time explosion with increased n.

Can search for bugs but not prove their absence!

\/m

4 /39

Distinguish two kinds of applications

» Find bugs.

» Prove their absence. Must be sound: should not say
“no bugs” when bugs are present.

\/m

5/39

Plan

Boolean programs

6/39

Transition relations

Let us suppose we have a Boolean formula 7 defining —-:

» variables by, ..., b, for the m bits of state before
executing the computation step

» variables bf, ..., bl for the m bits of state after executing
the computation step

\/m

7/39

Unfolding

b(*) = (b, .. b)) value of the variables at step k.
7[b® /b, b*+1) /b'] links b . %) to BT bkt

Reminder: 7[a/b] = T where a is replaced by b

?

Unfolding the formula for n steps:

76 /b, b /b A - AT[b"V /b b(" /1]

b©. ... b(" is the execution trace: value of all bits in the
system at every step.

\/m

8/39

Looking for bugs

We impose that executions:
» Start in an initial state b(®) such that /[b(®) /b] is true.
» Ends in an initial state b(") such that F[b(" /b] is true.

» F defines the negation of a desirable property or... a
kind of bug.

11 /b]AT[bO /b, bM /BA- - -AT[bV) /b, b /b |AF b /b]

defines traces of exact length n starting in a state defined by /
and ending in a state defined by F.

\/m

9/39

Solving the problem

We have a Boolean formula with free variables
pO b b,

A solution of this formula is an assignment to these variables
that makes the formula true.

Example: formula ((a vV b) A =b) V ¢ has solutions

\/m

10/39

Solving the problem

We have a Boolean formula with free variables
pO b b,

A solution of this formula is an assignment to these variables
that makes the formula true.

Example: formula ((a vV b) A =b) V ¢ has solutions
» (a, b, c) = (true, false, false)

\/m

10/39

Solving the problem

We have a Boolean formula with free variables
I N RS-

A solution of this formula is an assignment to these variables
that makes the formula true.

Example: formula ((a vV b) A =b) V ¢ has solutions
» (a, b, c) = (true, false, false)
» (a, b, c) = (false, false, true)

Try increasing values of n.

\/m

10/39

Small example

m =5 bits by, ..., bn.
Initial states: true...
Transition relation 7:

by =by ANby=by ANby =bs A\ by =by A\ by =—b

\/m

11/39

Small example

m =5 bits by, ..., bn.
Initial states: true...
Transition relation 7:

by =by ANby=by ANby =bs A\ by =by A\ by =—b

In other words: b; alternates between 0 and 1, and bits
by — by — b3 — by — bs.

0,1,0,1,0,1... moving.

“Buggy"” final states: by A bs.

Are they reachable within n = 10 steps?

\/m

11/39

Solution

For n = 0: formula is b£0) A béo), solution
(bgo), 50), bgo), bfﬂ’, béo)) = (false, false, false, true, true).

Don't forget the initial states!

\/m

12/39

Solution

For n = 0: formula is b£0) A béo), solution
(b§°), b§°>, bgo), bflo), béo)) = (false, false, false, true, true).

Don't forget the initial states!
And for n = 10... solve
716 /b, bD /A - A7) /b, b1 /b A B = b(H

Our intuition is that this formula has no solution... but how to
automate this?

Plan

SAT-solving

13/39

The problem

Given a Boolean formula:

» Test whether it has solutions.

» If it has solutions, give one.

Known to be NP-complete!

\/m

14 /39

SAT in CNF

We have a formula F with nested A, V,—. ..

but most solvers accept only formulas in conjunctive normal
form (CNF).

CNF is conjunction of disjunction of literals. Ex:

(xV-oyVz)A(—xVyVz)A(yVz)

\/m

15/39

Tseiting encoding

Take as example: ((aV b) A—b) V¢

Add variables x =aV b, y =xA—-b, z=y Vc.

x = aV b is equivalent to
(a=x)AN(b=x)N(x=(aV b))

thus to
(maVXx)A(=bVXx)A(-xVaVb)

\/m

16 /39

Constraint solving: unit propagation

Each conjunct is a constraint on variables. We must satisfy
them all!

Work with partial assignments: give values to some of the

variables.
“Try a = false, b = false and see what happens.”

We must satisfy —x V a Vv b: if a = b = false, then —x must be
true, thus x = false. Unit propagation.

\/m

17 /39

Practical example

Is there a mine at the light blue square?

Practical example

The pink square imposes a constraint: total number of mines
in neighbourhood is exactly 1. Since there is already one mine,
the light blue square cannot contain one.

19/39

Unit propagation

» You have already made a number of choices on some
variables.

» These choices, through constraints, impose values to
other variables.

» Valid for SAT as well as for Mines or Sudoku.

\/m

20/39

Branching

Sometimes, unit propagation does not suffice. One must
“work on a hypothesis”.
Is there a mine on the light blue square?

21/39

Method

Search with backtracking:
» Make a “work hypothesis”.
» Propagate the consequences (unit propagation).

» If encountering an absurdity, backtrack.

\/m

22 /39

Method

Search with backtracking:
» Make a “work hypothesis”.
» Propagate the consequences (unit propagation).

» If encountering an absurdity, backtrack.

When solving Sudoku
» |If the problem is “easy”, unit propagation suffices.

» The more difficult the problem is, the more one has to
make choices and backtrack.

\/m

22 /39

DPLL algorithm

» Unit propagation.
» Make choices: select a variable, assign it to true or false.

» If reaching a contradiction: the last assignment was
absurd; backtrack and replace last assignment by its
negation.

Time complexity?

\/m

23 /39

DPLL algorithm

» Unit propagation.
» Make choices: select a variable, assign it to true or false.

» If reaching a contradiction: the last assignment was
absurd; backtrack and replace last assignment by its
negation.

Time complexity? Still exponential, of course!

\/m

23 /39

DPLL with learning

(avbVeV-d)A(—aV-bV-cV-d)A(=bVc)
Choose d = true. Constraints become:
(avbVec)A(—aV-bV-—c)A(—bVc)
Choose a = true. Constraints become:
(mbV =) A (=bV <)

Choose b = true. The formula becomes (—c) A c.
Contradiction!
Thus F A aA b unsat. In other words, F = (—aV —b).

Thus | can add —a Vv —b to the original problem without \/
changing solutions! erimac

24 /39

Modern SAT solving

DIMACS standardized file format.

Advanced technology.
» Solvers zChaff, MiniSAT etc.
» Many improvements, heuristics. . .
» Very clever implementation techniques.
» Mass industrial use.

\/m

25 /39

Mass industrial use of SAT solving

In EDA (electronic design automation).

Prove that two circuit designs (without memory) are
equivalent: F(by,...,by) and G(by, ..., by) equivalent iff
Vbi, ... by F(b,...,bn) = G(bi,..., by).

How?

\/m

26 /39

Mass industrial use of SAT solving

In EDA (electronic design automation).

Prove that two circuit designs (without memory) are
equivalent: F(by,...,by) and G(by, ..., by) equivalent iff
Vbi, ... by F(b,...,bn) = G(bi,..., by).

How?

Show that F(by,...,bn) # G(b,..., by) is unsat.

NB: (X17X27X37Xm’) ?é (}/17)/2;Y37}/m’) IfF
(1B y1) V-V Xy ® Yar), Where @ is exclusive-or (XOR).

\/m

26 /39

For circuits with memory

Unroll execution traces, as seen before!

\/m

27/39

Plan

SMT-solving

28/39

How about numbers?

int x, y, z;

assume(0 >= x && x <=2 || x >= 4 && x <= 6);
assume(0 >=y && y <= 5);

z =x+y;

assert(x + y <= 12);

How can we prove unsat:

(0<x<2)VEA < x<B)A(0 <y <BA(z=x+y)A (x+y > 12

\/m

29 /39

Bit-blasting

Assume int is 32-bit.

Expand 0 > x, z = x + y... into Boolean gates using adders,
comparators, etc.

Obtain a pure Boolean circuit.

(Same as C-to-hardware compilation.)

Apply SAT-solving!

\/m

30/39

DPLL(T)

Add Boolean variables:

(0<x<2V(4<x<6))A(0<y <B)A (x = x+y)A (x+y > 1

(1)
withaéOZX,béXSS,céozy,déyg&

A A A A
e=x=x+y, f=x+y>12, g=x>4, h=x<6.
Formula 1 becomes

((anb)V(gAh)ANcANdAeNf (2)

\/m

31/39

DPLL(T) suite

((anb)V(gAh)ANcAdANeNf (3)

Solution: every variable to true!

But this means b 2 x<2and g 2 g > 4 both true! This is
impossible with respect to integer arithmetic!

Add (b A g) (=bV —g) to the Boolean constraints, and start
again.

\/m

32/39

DPLL(T) explained

» Find a Boolean solution using DPLL.
» Check if feasible with respect to arithmetic.
» If not, add a Boolean constraint and restart.

In practice: DPLL interleaved with arithmetic (theory) solving.

Linear arithmetic over reals/rationals: simplex algorithm.

\/m

33/39

Tools

Industrial:
» Microsoft Z3
» SRI Yices
Academic:
VeriT (Nancy)
MathSAT
OpenSMT
» CVC3...

v

v

v

\/m

34 /39

Plan

Practical usage

35/39

From program to SMT

if (x <5) {
y = x+3;

} else {
y = x+42;

From program to SMT

if (x <5){
y = x+3;

} else {
y = x+2;

}

(x<B5AY =x+3)V(x>5Ay =x+2)

Conversion from program to SMT

» Conversion looks like compilation into SSA-form

(intermediate representation in compilers e.g. modern gcc
and LLVM).

» Loops are unrolled into nested if-then-else.

v

If-then-else's in source code introduce V in formulas (or
“if then else” Boolean operators).

v

V introduce exponential complexity in SAT /SMT solving.

v

Thus cost may be exponential in loop unrolling.

\/m

37/39

Example of tools

CBMC http://www.cprover.org/cbmc/
Bounded Model Checking for ANSI-C

\/m

38/39

http://www.cprover.org/cbmc/

Another example: Sage

v

Fuzzing = throw random data at programs and see if
they crash.

Better fuzzing: solve SMT-formulas for obtaining inputs
that exerce certain program paths.

Combines binary analysis (disassembling) and
SMT-solving.

Patrice Godefroid @Microsoft Research.

Industrial use for detecting security bugs in file format
and protocol parsers.

(Not sound: can fail to detect problems.)

\/m

39/39

	Model-checking basics
	Boolean programs
	SAT-solving
	SMT-solving
	Practical usage

