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Context

Program Verification / Code generation:

I Variables : value range, scope, lifespan, constants, . . .

I Arrays : illicit accesses, alias discovery. . .

I Data Structures : memory leaks, null pointer
dereferences. . .

I static analyses, of different kinds
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What for ?

Avoiding the computation of an (arithmetic) expression :

x:=a+b;

y:=a*b;

while(y>a+b) do

a:=a+a;

x:=a+b;

done
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Some defs

Definition
An expression is killed in a block if any of its variables is used
in the block.

Definition
A generated expression is an expression evaluated in the
block and none of its variables is killed in the block.

I Sets : killAE (block) and genAE (block)
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Data flow expressions

exit

entry

Block `

AEentry (`) =

{
∅ if ` = init⋂
{AEexit(`

′)|(`′, `) ∈ flow(G )}

AEexit(`) =
(
AEentry (`)\killAE (`)

)
∪ genAE (`)
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On the example - equations

` killAE (`) genAE (`)
1 ∅ {a+b}
2 ∅ {a*b}
3 ∅ {a+b}
4 {a+b, a*b, a+1} ∅
5 ∅ {a+b}

non

oui

3

2

1

4

5

x:=a+b

y:=a*b

y>a+b ?

a:=a+1

x:=a+b
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On the example - final solution

` AEentry (`) AEexit(`)
1 ∅ {a+b}
2 {a+b} {a*b, a*b}
3 {a+b} {a+b}
4 {a+b} ∅
5 ∅ {a+b}

I a+b is available on entry to the
loop, not a*b
I Improvement of code generation

non

oui

3

2

1

4

5

x:=a+b

y:=a*b

y>a+b ?

a:=a+1

x:=a+b
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Another example : live ranges

x:=2;

y:=4;

x:=1;

if (y>x) then z:=y else z=y*y ;

x:=z;

Definition
A variable is live at the exit of a block if there exists a path
from the block to a use of the variable that does not redefine
the variable.

Problem : determine the set of variables that may be live after
each control point.
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Data flow expressions

Definition
A variable that appears on the left hand side of an assignment
is killed by the block. Tests do no kill variables.

Definition
A generated variable is a variable that appears in the block.

I Sets : killLV (block) and genLV (block)
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Data flow expressions

exit

entry

Block `

LVexit(`) =

{
∅ if ` = final⋃
{LVentry (`′)|(`′, `) ∈ flow(G )}

LVentry (`) =
(
LVexit(`)\killLV (`)

)
∪ genLV (`)
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Final result and use

Backward analysis and we want the smallest sets, here is the
final result : (we assume all vars are dead at the end).
` LVentry (`) LVexit(`)
1 ∅ ∅
2 ∅ {y}
3 {y} {x , y}
4 {x , y} {y}
5 {y} {z}
5 {y} {z}
5 {z} ∅

I Use : Dead code elimination ! Note : can be improved by
computing the use-defs paths. (see Nielson/Nielson/Hankin)
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Common points

I Computing growing sets from ∅ via fixpoint iterations. (or
the dual)

I Sets of equations of the form (collecting semantics) :

SS(`) =
⋃

(`′,`)∈E

f (SS(`′))

where f is computed w.r.t. the program statements

I SS is an abstract interpretation of the program.

13 / 75



Plan
Data Flow analysis

Available expressions - Recall from Compiler Course
Live Variable analysis
Toward a generalisation of these analyses

Abstract Interpretation
Transition systems and invariants
Computing Invariants (forward)
Non-relational vs relational analyses

Linear Relation Analysis
Classical Linear Relation Analysis
Some improvements
Diverse use of AI

Tools

Additional Material

14 / 75



Goal

Propagating information about program variables
(numerical,arrays, . . . ) in order to get invariants.

I We focus on numerical variables here.
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Initial states + transitions

Program or machine state = values of variables, registers,
memories. . . within state space Σ.

Examples:

I if system state = 17-bit value, then Σ = {0, 1}17 ;

I = 3 unbounded integers, Σ = Z3 ;

I if finite automaton, Σ is the set of states ;

I if stack automaton, complete state = pair (finite state,
stack contents), thus Σ = ΣS × Σ∗P .

Transition relation → x → y = “if at x then can go to y at
next time”.
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Reachable states

Let Σ0 ⊆ Σ the set of initial states of the program.
The reachable states are obtained by successively applying
the transition relation, hence σ is reachable iff :

∃σ0 ∈ Σ0 σ0 →∗ σ

We also define Xn as the set of states reachable in at most n
turns : X0 = Σ0, X1 = Σ0 ∪ R(Σ0),
X2 = Σ0 ∪ R(Σ0) ∪ R(R(Σ0)), etc.

with R(X ) = {y ∈ Σ | ∃x ∈ X x → y}.
The sequence Xk is ascending for ⊆. Its limit (= the union of
all iterates) is the set of reachable states.
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Reachable states for programs

kinit k1

cos(y) ≤ x → x := x+ 1

x 6= y → y := yx

true → y := y + 2

Semantics of the programs as transition systems :

I A state is a pair (pc ,Val) :

Val : Var→ N d

I Var is [[0, . . . , d − 1]] (finite set, d vars)
I N is N, Z, Q

I Initial states : (pc0, allv).
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Iterative computation

Remark Xn+1 = φ(Xn) with φ(X ) = Σ0 ∪ R(X ).

How to compute efficiently the Xn? And the limit?

I Explicit representations of Xn (list all states) : If Σ finite,
Xn converges in at most |Σ| iterations.

I else, we have to cope with two problems :
I Representing the Xi s and computing R(Xi ).
I Computing the limit ?

I X∞ = ∪φn(X0) is the strongest invariant of the program
I Looking for overapproximations : X∞ ⊆ Xresult also called
invariant.
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Invariants for programs

init

loop

end

x := 0

x ≥ 100

x ≤ 99

→ x++

I {x ∈ N, 0 ≤ x ≤ 100} is the most precise invariant in
control point loop.
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Back to our problem

Given a program (or an interpreted automaton), find inductive
invariants for each control point : Recall : a state is a pair

(pc ,Val) :
Val : Var→ N d

I We want to compute lfp(φ) with

φ(X ) = X0 ∪ {y ∈ Σ | ∃x ∈ X x → y}

and → entails the actions of the program.
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Representing sets of valuations

First problem to cope with : represent sets of valuations

Val : Var→ N d

I Var is [[0, . . . , d − 1]] (finite set, d vars)

I N is N, Z, Q

I Find a finite representation !

22 / 75



Computing R

Second problem to cope with : computing the transition
relation

R(pc ,X ) = {(pc ′, x ′)|∃x ∈ X and (pc , x)→ (pc ′, x ′)}

I X is a (representation of a) set of valuations

I → is the program transition function.

I Let’s try intervals (easy storage, easy computation) !
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A first example

Try to compute an interval for each variable at each program
point using interval arithmetic :

assume ( x >= 0 && x<= 1 ) ;
assume ( y >= 2 && y= 3 ) ;
assume ( z >= 3 && z= 4 ) ;
t = ( x+y ) ∗ z ;

Interval for z? [6, 16]
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Loops?

Push intervals / polyhedra forward. . .

i n t x =0;
while ( x<1000) {

x=x +1;
}

Loop iterations [0, 0], [0, 1], [0, 2], [0, 3],. . .

How? φ(X ) = Initial state t R(X ), thus
φ([a, b]) = {0} t [a + 1,min(b, 999) + 1]

I Stricly growing interval during 1000 iterations, then
stabilizes : [0, 1000] is an invariant.
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Termination Problem

Third problem to cope with : stopping the computation :

I Too many computations

I unbounded loops
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One solution. . .

Extrapolation!

[0, 0], [0, 1], [0, 2], [0, 3] → [0,+∞)

Push interval:

i n t x =0; /∗ [ 0 , 0 ] ∗/
while /∗ [ 0 , +i n f t y ) ∗/ ( x<1000) {

/∗ [ 0 , 9 9 9 ] ∗/
x=x +1;
/∗ [ 1 , 1 0 0 0 ] ∗/

}

Yes! [0,∞[ is stable!
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Computing inductive invariants as intervals

I Representation : intervals. The union leads to an
overapproximation.

I We don’t know how to compute R(P) with P interval
(The statements may be too complex, . . . )
I Replace computation by simpler over-approximation
R(X ) ⊆ R ](X ).

I The convergence is ensured by extrapolation/widening.

I We always compute φ](X ) with : φ(X ) ⊆ φ](X )
In the end, over-approximation of the least fixed point of φ.
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Computing inductive invariants as intervals - 2

Interval operations :

I +,−,× on intervals : interval arithmetic

I union : [a, b] ∪ [c , d ] : loosing info !

I widening : (I1∇I2 with I1 ⊆ I2)

⊥∇I = I

[a, b]∇[c , d ] = [if c < a then −∞ else a,

if d > b then +∞ else b]

The idea is to infer the dynamic of the intervals thanks to the
first terms.
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Computing inductive invariants as intervals - 3
The widening operator being designed, we compute
(x ⊆ F (x))

Σ0,Y1 = Σ0∇F (Σ0),Y2 = Y1∇F (Y1) . . .

finite computation instead of :

Σ0,F (Σ0),F 2(Σ0), . . .

which can be infinite.

Theorem
(Cousot/Cousot 77) Iteratively computing the reachable states
from the entry point with the interval operators and applying
widening at entry nodes of loops converges in a finite number
of steps to a overapproximation of the least invariant (aka
postfixpoint).

I The widening operators must satisfy the non ascending
chain condition (see Cousot/Cousot 1977).
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Invariants for programs - ex 1

init

loop

end

x := 0

x ≥ 100

x ≤ 99

→ x++

I x ∈ [0,+∞] in loop.
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Computing inductive invariants as intervals - ex 2

x = random ( 0 , 7 ) ;
y = c os ( x)+x
while ( y<=100) {

i f ( x>2) x−−;
e l s e {

y = −4;
x−−;

}
}
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Nested loops / Several loops

(Bourdoncle, 1992) Computing strongly connected
subcomponents and iterate inside each :

0

1 2 3 4

7 5 8 9

6

Gray nodes are widening nodes
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Improving precision after convergence - 1

i n t x =0; /∗ [ 0 , 0 ] ∗/
while /∗ [ 0 , +i n f t y ) ∗/ ( x<1000) {

/∗ [ 0 , 9 9 9 ] ∗/
x=x +1;
/∗ [ 1 , 1 0 0 0 ] ∗/

}

we got [0,+∞) instead of [0, 999]. Run one more iteration of
the loop: {0} t [1, 1000] = [0, 1000]. Check if [0, 1000] is an
inductive invariant ? YES
I This is called narrowing or descending sequence : ends
when we have an inductive invariant or after k applications of
the transition function.
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Improving precision after convergence - 2

Let x̂ be the result of the computation

Result
The descending sequence always improves precision.

Proof : lfp(F ) ⊆ x̂ , then F (lfp(F )) = lfp(F ) ⊆ F (x̂), and
F (x̂) is again a correct invariant. If x̂ is not a fixpoint, then
F (x̂) ⊂ x̂ , so is a strictly better invariant.
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Best invariant in domain not computable

P ( ) ;
x =0;

Best invariant at end of program, as interval?

[0, 0] iff P() terminates
∅ iff P() does not terminate

Entails solving the halting problem.
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When intervals are not sufficient

assume ( x >= 0 && x <= 1 ) ;
y = x ;
z = x−y ;

I The human (intelligent) sees z = 0 thus interval [0, 0],
taking into account y = x .

I Interval arithmetic does not see z = 0 because it does not
take y = x into account.
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How to track relations

Using relational domains.

E.g.: keep

I for each variable an interval

I for each pair of variables (x , y) an information x − y ≤ C .

I (One obtains x = y by x − y ≤ 0 and y − x ≤ 0.)

How to compute on that?
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Bounds on differences : practical example

Suppose x − y ≤ 4, computation is z = x + 3, then we know
z − y ≤ 7.

Suppose x − z ≤ 20, that x − y ≤ 4 and that y − z ≤ 6, then
we know x − z ≤ 10.

We know how to compute on these relations (transitive
closure / shortest path).
On our example, obtain z = 0.
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Why this is useful

Let t(0..n) an array in the program.
The program writes t(i).

Need to know whether 0 ≤ i ≤ n, otherwise said find bounds
on i and on n − i . . .
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Can we do better?

How about tracking relations such as 2x + 3y ≤ 6?

At a given program point, a set of linear inequalities.

In other words, a convex polyhedron.
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Intro

(Halbwachs/Cousot 1979)

I Abstract Interpretation in the Polyhedral domain

I Infinite Domain with many particularities

I Discover affine relations on variables

I Classically used in verification problems.
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The polyhedral domain (1)

Convex polyhedra representation :

I Effective and efficient algorithmic (emptyness test, union,
affine transformation . . . )
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The polyhedral domain(2)

I Intersection, emptyness

I Affine Transformation : a(P) = {CX + D | X ∈ P}.
I Convex hull (loss of precision)
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The Polyhedral domain (3)

Widening : P∇Q : limit extrapolation.
P∇Q constraints : take Q constraints and remove those
which are not saturated by P .

Trick (!) : {x = y = 0} = {0 ≤ y ≤ x ≤ 0}
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Analysis example - 1

x:=0;y:=0

while (x<=100) do

read(b);

if b then

x:=x+2

else begin

x:=x+1;

y:=y+1;

end;

endif

endwhile

p

pin

x 6 100 →

x := x + 1
y := y + 1

x 6 100 →

x := x + 2

(x, y) := (0, 0)

pout

x > 100
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Example - 2

p

pin

x 6 100 →

x := x + 1
y := y + 1

x 6 100 →

x := x + 2

(x, y) := (0, 0)

pout

x > 100
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Linear Relation Analysis - Problems

Complexity increases with :

I number of control points

I number of numerical variables

Approximation is due to :

I Convex hulls

I Widening

(credits for these slides : Nicolas Halbwachs)
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Complexity

(In general) The more precise we are, the higher the costs.

I Intervals: algorithms O(n), n number of variables.

I Differences x − y ≤ C : algorithms O(n3)

I Octagons ±x ± y ≤ C (Miné) : algorithms O(n3)

I Polyhedra (Cousot / Halbwachs): algorithms often O(2n).
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Delaying widening - 1

Halbwachs 1993 / Goubault 2001 / Blanchet et al. 2003

Fix k and compute :

Xn =


⊥ if n = 0

F (Xn−1) if n < k

Xn−1∇F (Xn−1) else.

I Similar to unrolling loops, costly but useful (regular
behaviour after a constant number of iterations).
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Delaying widening - 2 - ex

p

q0

x > 0 →

x := x + 1

x = 0 →

x := x + 1

y := y + 1

x := 0; y := 0
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Improving the widening operator
While applying P∇Q, intersect with constraints that are
satisfied by bith P and Q. The constraints must be
precomputed.

init

loop

end

x := 0

x ≥ 100

x ≤ 99

→ x++

Here, with “x ≤ 100” in the pool of constraints, it avoids
narrowing.
I Warning widening is not monotone, so improving locally
is not necessarily a good idea !
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Local improvement with acceleration

(Gonnord/Halbwachs 2006, Schrammel 2012)
Idea : Sometimes, a fixpoint of a loop can be easily computed
without any fixpoint iteration.
More details here
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Good path heuristic

(Gonnord/Monniaux 2011)
Idea : find interesting paths by means of smt-queries
More details here
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Applications
I Bounds on iterators of arrays (intervals, differences on

bounds)
I Dead code elimination (all domains) - especially when the

code has been automatically generated / asserts
I Vectorization : computations that can be permuted
I Memory optimisation : this int can be encoded in 16 bits

?
I Preconditions for code specialization (on going work with

F. Rastello)
I Safety analysis
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Tools - Academic

ASPIC : Accelerated Symbolic Polyhedral Invariant
Computation
Aspic is an invariant generator :

I From counter automata with numerical variables.

I Invariants are polyhedra.

C2fsm is a C parser :

I From a source file in (a subset of) C into Aspic input
language (fast).

I Safe abstractions of non numerical variables, structures,
behaviors.

I http://laure.gonnord.org/pro/aspic/aspic.html
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Tools - More robust

I Frama-C : analysing/ proving correction of C programs
(see http://frama-c.com/

I Apron : numerical domain interface
(http://apron.cri.ensmp.fr/library/)

I Interproc : IA analyser connected to Apron (see
http://pop-art.inrialpes.fr/interproc/

interprocweb.cgi

I Rose / LLVM : C (and more) parsers and API for
manipulating C programs. Rose is more decidated to
program transformation, LLVM to compiler
construction(http://www.rosecompiler.org/ and
http://llvm.org/.
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Industrial succes stories

I Polyspace

I Astree

I See later for anecdotes.
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LRA and acceleration

(Gonnord/Halbwachs 2006, Gonnord/Schrammel 2012,
Schrammel/Jeannet 2014)

Combination LRA and acceleration techniques
[Finkel/Sutre/Leroux/...]

I Abstract acceleration notion :
I low-cost overapproximations;
I inside LRA, combination with widening.

I Classification of accelerable loops.

I Prototype : ASPIC
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Acceleration - accelerable loops

An easy case

F

(0, 0, 0)

x 6 9
→ x + +

f + +
t + +

I exact effect : ∃i ∈ N, x = f = t = i , 0 ≤ i ≤ 10
I exact effect in the abstract domain :
{x = f = t, 0 ≤ t ≤ 10}
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Gas Burner example - 1

F

∇

x := 0; t := 0; f := 0

τ1 : x 6 9 → N

∇

τ2 : true →

true → x := 0

x > 50 → x := 0

x + +

t + +

x + +

t + +

f + +

I f global leaking time

I t global time

I x local variable
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Gas burner 2 - Real Behaviour

F

∇

x := 0; t := 0; f := 0

τ1 : x 6 9 → N

∇

τ2 : true →

true → x := 0

x > 50 → x := 0

x + +

t + +

x + +

t + +

f + +
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Gas burner 3 - with LRA

F

∇

x := 0; t := 0; f := 0

τ1 : x 6 9 → N

∇

τ2 : true →

true → x := 0

x > 50 → x := 0

x + +

t + +

x + +

t + +

f + +

t : temps t : temps

État Ff : fuite f : fuite État N

I Loss of precision
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Gas burner - desired invariant

F

∇

x := 0; t := 0; f := 0

τ1 : x 6 9 → N

∇

τ2 : true →

true → x := 0

x > 50 → x := 0

x + +

t + +

x + +

t + +

f + +

6f ≤ t+ 50f : temps de fuite

t: temps60 7010

67 / 75



Accelerating the gas burner - 1

(mini-)loops are replaced (τi : gi → ai)

F

∇

F ′

x := 0; t := 0; f := 0

τ
⊗
1

N

N ′

τ
⊗
2

true → x := 0

x > 50 → x := 0

I τ⊗i summarizes the effect of any application of τi (unfixed
number of iterations).
I Outer loop is widened.
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Accelerated Gas Burner - 2 back

F

∇

F ′

x := 0; t := 0; f := 0

τ
⊗
1

N

N ′

τ
⊗
2

true → x := 0

x > 50 → x := 0
I τ⊗1 = “add ray (1, 1, 1)

while x ≤ 10”

I τ⊗2 = “add ray (1, 0, 1)”

6f ≤ t+
50

6f ≤ t+
50

6f ≤ t

50

10

1010

10

f : fuite

t : tempst : temps

t : temps t : temps

f : fuite

f : fuite

État F

f : fuite

État N’

État NÉtat F’
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SMT+LRA, Motivation : example 1

Some properties cannot be expressed in convex abstract
domains:

i f ( x >= 0) { xabs = x ; }
e l s e { xabs = −x ; }

i f ( xabs >= 0 .01 ) {
y = ( s i n ( x ) / x) − 1 ;

} e l s e {
xsq = x∗x ;

y = xsq ∗(−1/6. + xsq / 1 2 0 . ) ;
}

if1

if2

end

I Store the fact that x = xabs ∨ x = −xabs at node if 2
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SMT+ LRA, Motivation : example 2

The widening operator can be too coarse:

i n t x = 0 ;
w h i l e ( t r u e ) {

i f ( nondet ( ) ) {
x = x+1;
i f ( x >= 100) x = 0 ;

} }

p1

p2

p3

x := 0

x := x + 1
x ≥ 100
x := 0

x < 100

I The analysis (interval domain) gives [0,+∞), not improved
by narrowing !

71 / 75



Two ideas

I First idea : do not compute the convex hull on
“diamonds”.

I Second idea : consider all paths and analyse them
separately.

I Advantage : precision

I Drawback : combinatorial explosion

I Our method will implement these two ideas without
computing all the program paths explicitely.
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Invariants

p1

p2

p3

x := 0

x := x + 1
x ≥ 100
x := 0

x < 100

Is x = 0 an invariant in p2 ?

I No ! Because it’s not stable.
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Our method on example 2

Focus on the red path !

p1

p2

p3

x := 0

x := x + 1
x ≥ 100
x := 0

x < 100

I Its least inductive invariant (for p2) is x ∈ [0, 99], which is
also an invariant while considering the whole graph.
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How to detect paths ? back

We delegate the search for new paths to an SMT solver.
The problem is encoded into an SMT-problem thanks to the
use of an internal structure:

I compact; (complexity reasons)

I acyclic; (to reason about loops as for paths)

I all variables are assigned once (to reason about unique
variable values).

I Preprocessing : computing this structure.
(SAS 2011 for technical details)
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