Program verification

Data-flow analyses, numerical domains

Laure Gonnord and David Monniaux

University of Lyon / LIP

September 29, 2015

Context

Program Verification / Code generation:

- ▶ Variables : value range, scope, lifespan, constants, . . .
- Arrays : illicit accesses, alias discovery...
- Data Structures : memory leaks, null pointer dereferences...
- static analyses, of different kinds

Plan

Data Flow analysis

Available expressions - Recall from Compiler Course Live Variable analysis

Toward a generalisation of these analyses

Abstract Interpretation

Transition systems and invariants Computing Invariants (forward) Non-relational vs relational analyses

Linear Relation Analysis

Classical Linear Relation Analysis Some improvements Diverse use of Al

Tools

Additional Material

What for ?

Avoiding the computation of an (arithmetic) expression :

```
x:=a+b;
y:=a*b;
while(y>a+b) do
    a:=a+a;
    x:=a+b;
done
```


Some defs

Definition

An expression is **killed** in a block if any of its variables is used in the block.

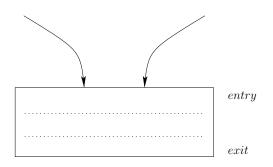
Definition

A **generated** expression is an expression evaluated in the block and none of its variables is killed in the block.

▶ Sets : $kill_{AE}(block)$ and $gen_{AE}(block)$

Data flow expressions

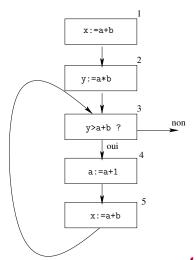
Block ℓ



$$AE_{entry}(\ell) = egin{cases} \emptyset & \text{if } \ell = \textit{init} \ igcap_{\{AE_{exit}(\ell') | (\ell',\ell) \in \textit{flow}(G)\}} \end{cases}$$
 $AE_{exit}(\ell) = (AE_{entry}(\ell) \setminus \textit{kill}_{AE}(\ell)) \cup \textit{gen}_{AE}(\ell)$

On the example - equations

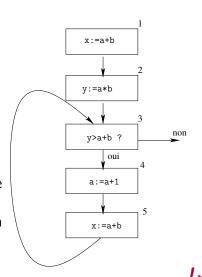
ℓ	$\mathit{kill}_{AE}(\ell)$	$gen_{AE}(\ell)$
1	Ø	$\{a+b\}$
2	Ø	{a*b}
3	Ø	{a+b}
4	${a+b, a*b, a+1}$	Ø
5	Ø	{a+b}



On the example - final solution

ℓ	$AE_{entry}(\ell)$	$AE_{exit}(\ell)$
1	Ø	{a+b}
2	{a+b}	$\{a*b, a*b\}$
3	{a+b}	{a+b}
4	{a+b}	Ø
5	Ø	{a+b}

- ▶ a+b is available on entry to the loop, not a*b
- ▶ Improvement of code generation



Another example: live ranges

```
x:=2;
y:=4;
x:=1;
if (y>x) then z:=y else z=y*y;
x:=z;
```

Definition

A variable is **live** at the exit of a block if there exists a path from the block to a use of the variable that does not redefine the variable.

Problem : determine the set of variables that *may be* live after each control point.

Data flow expressions

Definition

A variable that appears on the left hand side of an assignment is **killed** by the block. Tests do no kill variables.

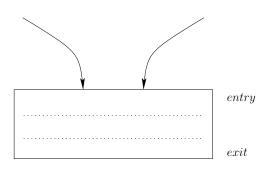
Definition

A **generated** variable is a variable that appears in the block.

ightharpoonup Sets : $kill_{LV}(block)$ and $gen_{LV}(block)$

Data flow expressions

Block ℓ



$$LV_{exit}(\ell) = \begin{cases} \emptyset & \text{if } \ell = \textit{final} \\ \bigcup \{LV_{entry}(\ell') | (\ell', \ell) \in \textit{flow}(G) \} \end{cases}$$

 $LV_{entry}(\ell) = (LV_{exit}(\ell) \setminus kill_{LV}(\ell)) \cup gen_{LV}(\ell)$

Final result and use

Backward analysis and we want the smallest sets, here is the final result : (we assume all vars are dead at the end).

$LV_{exit}(\ell)$	$LV_{entry}(\ell)$	ℓ
Ø	Ø	1
{ <i>y</i> }	Ø	2
$\{x,y\}$	{ <i>y</i> }	3
{ <i>y</i> }	{ <i>x</i> , <i>y</i> }	4
{z}	{ <i>y</i> }	5
{z}	{ <i>y</i> }	5
Ø	{z}	5
$ \begin{cases} x, y \\ y \\ z \end{cases} $	$ \begin{cases} x, y \\ y \end{cases} $ $ \begin{cases} y \\ y \end{cases} $	3 4 5 5

▶ Use : Dead code elimination ! Note : can be improved by computing the use-defs paths. (see Nielson/Nielson/Hankin)

Common points

- ► Computing growing sets from ∅ via *fixpoint iterations*. (or the dual)
- Sets of equations of the form (collecting semantics) :

$$SS(\ell) = \bigcup_{(\ell',\ell) \in E} f(SS(\ell'))$$

where f is computed w.r.t. the program statements

► *SS* is an **abstract interpretation** of the program.

Plan

Data Flow analysis

Available expressions - Recall from Compiler Course Live Variable analysis

Toward a generalisation of these analyses

Abstract Interpretation

Transition systems and invariants Computing Invariants (forward) Non-relational vs relational analyses

Linear Relation Analysis

Classical Linear Relation Analysis Some improvements Diverse use of Al

Tools

Additional Material

Goal

Propagating **information** about program variables (numerical, arrays, . . .) in order to get **invariants**.

▶ We focus on **numerical variables** here.

Initial states + transitions

Program or machine state = values of variables, registers, memories. . . within state space Σ .

Examples:

- if system state = 17-bit value, then $\Sigma = \{0, 1\}^{17}$;
- ▶ = 3 unbounded integers, $\Sigma = \mathbb{Z}^3$;
- \blacktriangleright if finite automaton, Σ is the set of states;
- ▶ if stack automaton, complete state = pair (finite state, stack contents), thus $\Sigma = \Sigma_S \times \Sigma_P^*$.

Transition relation $\rightarrow x \rightarrow y =$ "if at x then can go to y at next time".

Reachable states

Let $\Sigma_0 \subseteq \Sigma$ the set of initial states of the program. The **reachable** states are obtained by successively applying the transition relation, hence σ is reachable iff :

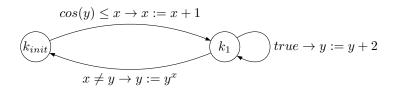
$$\exists \sigma_0 \in \Sigma_0 \ \sigma_0 \to^* \sigma$$

We also define X_n as the set of states reachable in at most n turns : $X_0 = \Sigma_0$, $X_1 = \Sigma_0 \cup R(\Sigma_0)$, $X_2 = \Sigma_0 \cup R(\Sigma_0) \cup R(R(\Sigma_0))$, etc.

with $R(X) = \{ y \in \Sigma \mid \exists x \in X \ x \to y \}.$

The sequence X_k is ascending for \subseteq . Its limit (= the union of all iterates) is the **set of reachable states**.

Reachable states for programs



Semantics of the programs as transition systems :

► A **state** is a pair (pc, Val) :

$$\mathsf{Val}: \mathsf{Var} o \mathcal{N}^d$$

- ▶ Var is $\llbracket 0, \ldots, d-1 \rrbracket$ (finite set, d vars)
- $ightharpoonup \mathcal{N}$ is \mathbb{N} , \mathbb{Z} , \mathbb{O}
- ▶ Initial states : $(pc_0, allv)$.

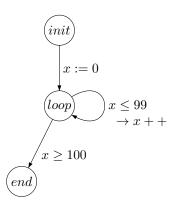
Iterative computation

Remark
$$X_{n+1} = \phi(X_n)$$
 with $\phi(X) = \Sigma_0 \cup R(X)$.

How to **compute efficiently** the X_n ? And the limit?

- Explicit representations of X_n (list all states) : If Σ finite, X_n converges in at most $|\Sigma|$ iterations.
- else, we have to cope with two problems :
 - ▶ Representing the X_i s and computing $R(X_i)$.
 - Computing the limit ?
- $ightharpoonup X_{\infty} = \cup \phi^n(X_0)$ is the strongest **invariant** of the program
- ▶ Looking for overapproximations : $X_{\infty} \subseteq X_{result}$ also called **invariant**.

Invariants for programs



▶ $\{x \in \mathbb{N}, 0 \le x \le 100\}$ is the most precise invariant in control point loop.

Back to our problem

Given a program (or an interpreted automaton), find inductive invariants for each control point : Recall : a **state** is a pair (pc, Val) :

$$\mathsf{Val}: \mathsf{Var} o \mathcal{N}^d$$

▶ We want to compute $\mathit{lfp}(\phi)$ with

$$\phi(X) = X_0 \cup \{ y \in \Sigma \mid \exists x \in X \ x \to y \}$$

and \rightarrow entails the **actions** of the program.

Representing sets of valuations

First problem to cope with: represent sets of valuations

$$\mathsf{Val}: \mathsf{Var} o \mathcal{N}^d$$

- ▶ Var is [0, ..., d-1] (finite set, d vars)
- $ightharpoonup \mathcal{N}$ is \mathbb{N} , \mathbb{Z} , \mathbb{Q}
- ▶ Find a finite representation !

Computing R

Second problem to cope with : **computing** the transition relation

$$R(pc,X) = \{(pc',x') | \exists x \in X \text{ and } (pc,x) \to (pc',x')\}$$

- ▶ X is a (representation of a) set of valuations
- ightharpoonup is the program transition function.
- ▶ Let's try **intervals** (easy storage, easy computation)!

A first example

Try to compute an **interval** for each variable at each program point using **interval arithmetic**:

```
assume(x >= 0 && x<= 1);
assume(y >= 2 && y= 3);
assume(z >= 3 && z= 4);
t = (x+y) * z;
Interval for z? [6,16]
```

Loops?

```
Push intervals / polyhedra forward... int x=0; while (x<1000) {    x=x+1; } Loop iterations [0,0], [0,1], [0,2], [0,3],... How? \phi(X) = \text{Initial state} \sqcup R(X), thus \phi([a,b]) = \{0\} \sqcup [a+1,\min(b,999)+1]
```

► Stricly growing interval during 1000 iterations, then stabilizes : [0, 1000] is an **invariant**.

Termination Problem

Third problem to cope with: **stopping the computation**:

- ► Too many computations
- unbounded loops

One solution...

Extrapolation!

```
[0,0], [0,1], [0,2], [0,3] \rightarrow [0,+\infty)
Push interval:
int x=0; /* [0, 0] */
while /* [0, +infty)*/(x<1000) {
  /* [0, 999] */
  x = x + 1:
/* [1, 1000] */
Yes! [0, \infty[ is stable!
```

Computing inductive invariants as intervals

- Representation : intervals. The union leads to an overapproximation.
- We don't know how to compute R(P) with P interval (The statements may be too complex, ...)
 - ▶ Replace computation by simpler over-approximation $R(X) \subseteq R^{\sharp}(X)$.
- ► The convergence is ensured by **extrapolation/widening**.
- ▶ We always compute $\phi^{\sharp}(X)$ with : $\phi(X) \subseteq \phi^{\sharp}(X)$ In the end, **over-approximation** of the least fixed point of ϕ .

Computing inductive invariants as intervals - 2

Interval operations:

- \triangleright +, -, \times on intervals : interval arithmetic
- ▶ union : $[a, b] \cup [c, d]$: loosing info!
- ▶ widening : $(I_1 \nabla I_2 \text{ with } I_1 \subseteq I_2)$

$$oxed{oxed} oxed{oxed} oxed{oxed} I = I$$
 $[a,b]
abla [c,d] = [ext{if } c < a ext{ then } -\infty ext{ else } a,$ $ext{if } d > b ext{ then } +\infty ext{ else } b]$

The idea is to infer the dynamic of the intervals thanks to the first terms.

Computing inductive invariants as intervals - 3

The widening operator being designed, we compute $(x \subseteq F(x))$

$$\Sigma_0, Y_1 = \Sigma_0 \nabla F(\Sigma_0), Y_2 = Y_1 \nabla F(Y_1) \dots$$

finite computation instead of:

$$\Sigma_0, F(\Sigma_0), F^2(\Sigma_0), \dots$$

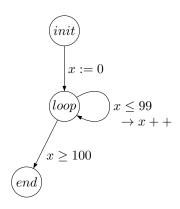
which can be infinite.

Theorem

(Cousot/Cousot 77) Iteratively computing the reachable states from the entry point with the interval operators and applying widening at entry nodes of loops converges in a finite number of steps to a overapproximation of the least invariant (aka postfixpoint).

► The widening operators must satisfy the non ascending chain condition (see Cousot/Cousot 1977).

Invariants for programs - ex 1



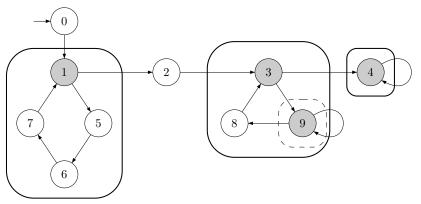
 $\triangleright x \in [0, +\infty]$ in loop.

Computing inductive invariants as intervals - ex 2

```
x = random(0,7);
y = cos(x)+x
while (y<=100) {
  if (x>2) x--;
  else {
    y = -4;
    x--;
  }
}
```


Nested loops / Several loops

(Bourdoncle, 1992) Computing strongly connected subcomponents and iterate inside each :



Gray nodes are widening nodes

Improving precision after convergence - $1\,$

```
int x=0; /* [0, 0] */
while /* [0, +infty)*/ (x<1000) {
   /* [0, 999] */
   x=x+1;
   /* [1, 1000] */
}</pre>
```

we got $[0, +\infty)$ instead of [0, 999]. Run one more iteration of the loop: $\{0\} \sqcup [1, 1000] = [0, 1000]$. Check if [0, 1000] is an inductive invariant? **YES**

ightharpoonup This is called **narrowing** or descending sequence : ends when we have an inductive invariant or after k applications of the transition function.

Improving precision after convergence - 2

Let \hat{x} be the result of the computation

Result

The descending sequence always improves precision.

Proof : $lfp(F) \subseteq \hat{x}$, then $F(lfp(F)) = lfp(F) \subseteq F(\hat{x})$, and $F(\hat{x})$ is again a correct invariant. If \hat{x} is not a fixpoint, then $F(\hat{x}) \subset \hat{x}$, so is a strictly better invariant.

Best invariant in domain not computable

```
P();
x=0;
```

Best invariant at end of program, as interval?

```
[0, 0] iff P() terminates \emptyset iff P() does not terminate
```

Entails solving the **halting problem**.

When intervals are not sufficient

```
assume(x \ge 0 \&\& x \le 1);

y = x;

z = x-y;
```

- ► The human (intelligent) sees z = 0 thus interval [0, 0], taking into account y = x.
- Interval arithmetic does not see z = 0 because it does not take y = x into account.

How to track relations

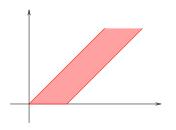
Using relational domains.

E.g.: keep

- for each variable an interval
- ▶ for each pair of variables (x, y) an information $x y \le C$.
- (One obtains x = y by $x y \le 0$ and $y x \le 0$.)

How to **compute** on that?

Bounds on differences: practical example



Suppose $x - y \le 4$, computation is z = x + 3, then we know $z - y \le 7$.

Suppose $x-z \le 20$, that $x-y \le 4$ and that $y-z \le 6$, then we know $x-z \le 10$.

We know how to **compute** on these relations (transitive closure / shortest path). On our example, obtain z = 0.

Why this is useful

Let $t(0..\mathbf{n})$ an array in the program.

The program writes t(i).

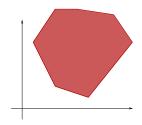
Need to know whether $0 \le i \le n$, otherwise said find bounds on i and on n - i...

Can we do better?

How about tracking relations such as $2x + 3y \le 6$?

At a given program point, a set of linear inequalities.

In other words, a convex polyhedron.



Plan

Data Flow analysis

Available expressions - Recall from Compiler Course Live Variable analysis

Toward a generalisation of these analyses

Abstract Interpretation

Transition systems and invariants Computing Invariants (forward) Non-relational vs relational analyse

Linear Relation Analysis

Classical Linear Relation Analysis Some improvements Diverse use of Al

Tools

Additional Material

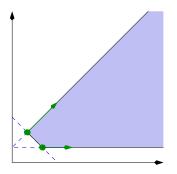
Intro

(Halbwachs/Cousot 1979)

- Abstract Interpretation in the Polyhedral domain
- Infinite Domain with many particularities
- Discover affine relations on variables
- Classically used in verification problems.

The polyhedral domain (1)

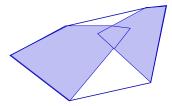
Convex polyhedra representation:



 \blacktriangleright Effective and efficient algorithmic (emptyness test, union, affine transformation . . .)

The polyhedral domain(2)

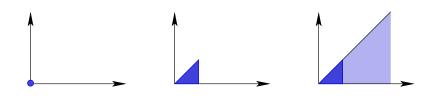
- ► Intersection, emptyness
- ▶ Affine Transformation : $a(P) = \{CX + D \mid X \in P\}$.
- Convex hull (loss of precision)



The Polyhedral domain (3)

Widening : $P\nabla Q$: limit extrapolation.

 $P\nabla Q$ constraints : take Q constraints and remove those which are not saturated by P.

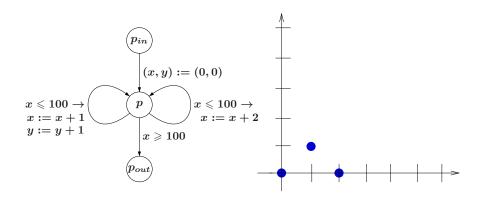


Trick (!):
$$\{x = y = 0\} = \{0 \le y \le x \le 0\}$$

Analysis example - 1

```
x := 0; y := 0
while (x \le 100) do
   read(b);
   if b then
                                                        (x,y) := (0,0)
              x := x+2
                             x\leqslant 100
ightarrow
                                                       \boldsymbol{p}
                                                                    x \leqslant 100 \rightarrow
           else begin
                                                                     x := x + 2
                              x := x + 1
              x := x+1;
                              y := y + 1
                                                        x\geqslant 100
              y := y+1;
           end;
   endif
endwhile
```


Example - 2



Linear Relation Analysis - Problems

Complexity increases with:

- number of control points
- number of numerical variables

Approximation is due to:

- Convex hulls
- Widening

(credits for these slides : Nicolas Halbwachs)

Complexity

(In general) The more precise we are, the higher the costs.

- ▶ Intervals: algorithms O(n), n number of variables.
- ▶ Differences $x y \le C$: algorithms $O(n^3)$
- ▶ Octagons $\pm x \pm y \le C$ (Miné) : algorithms $O(n^3)$
- ▶ Polyhedra (Cousot / Halbwachs): algorithms often $O(2^n)$.

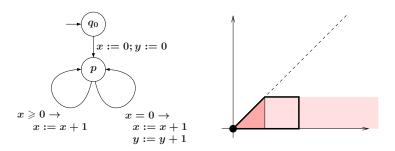
Delaying widening - 1

Halbwachs 1993 / Goubault 2001 / Blanchet et al. 2003 Fix k and compute :

$$X_n = egin{cases} oxed{oxed{oxed{oxed{oxed{oxed} F(X_{n-1})}}} & ext{if } n = 0 \ F(X_{n-1}) & ext{if } n < k \ X_{n-1}
abla F(X_{n-1}) & ext{else.} \end{cases}$$

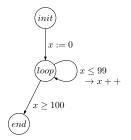
► Similar to unrolling loops, costly but useful (regular behaviour after a constant number of iterations).

Delaying widening - 2 - ex



Improving the widening operator

While applying $P\nabla Q$, intersect with constraints that are satisfied by bith P and Q. The constraints must be precomputed.



Here, with " $x \le 100$ " in the pool of constraints, it avoids narrowing.

► Warning widening is not monotone, so improving locally is not necessarily a good idea!

Local improvement with acceleration

(Gonnord/Halbwachs 2006, Schrammel 2012) Idea: Sometimes, a fixpoint of a loop can be easily computed without any fixpoint iteration.

More details here

Good path heuristic

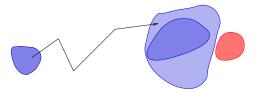
(Gonnord/Monniaux 2011)

Idea: find interesting paths by means of smt-queries

More details here

Applications

- Bounds on iterators of arrays (intervals, differences on bounds)
- ▶ Dead code elimination (all domains) especially when the code has been automatically generated / asserts
- Vectorization : computations that can be permuted
- Memory optimisation : this int can be encoded in 16 bits ?
- Preconditions for code specialization (on going work with F. Rastello)
- Safety analysis



Plan

Data Flow analysis

Available expressions - Recall from Compiler Course Live Variable analysis

Toward a generalisation of these analyses

Abstract Interpretation

Transition systems and invariants

Computing Invariants (forward)

Non-relational vs relational analyses

Linear Relation Analysis

Classical Linear Relation Analysis

Some improvements

Diverse use of Al

Tools

Additional Material

Tools - Academic

ASPIC : Accelerated Symbolic Polyhedral Invariant Computation

Aspic is an invariant generator :

- From counter automata with numerical variables.
- Invariants are polyhedra.

C2fsm is a C parser:

- ► From a source file in (a subset of) C into Aspic input language (fast).
- ► **Safe** abstractions of non numerical variables, structures, behaviors.
- ▶ http://laure.gonnord.org/pro/aspic/aspic.html

Tools - More robust

- Frama-C : analysing/ proving correction of C programs
 (see http://frama-c.com/
- Apron : numerical domain interface
 (http://apron.cri.ensmp.fr/library/)
- Interproc: IA analyser connected to Apron (see http://pop-art.inrialpes.fr/interproc/ interprocweb.cgi
- ▶ Rose / LLVM : C (and more) parsers and API for manipulating C programs. Rose is more decidated to program transformation, LLVM to compiler construction(http://www.rosecompiler.org/ and http://llvm.org/.

Industrial succes stories

- ► Polyspace
- Astree
- ► See later for anecdotes.

Plan

Data Flow analysis

Available expressions - Recall from Compiler Course Live Variable analysis

Toward a generalisation of these analyses

Abstract Interpretation

Transition systems and invariants

Computing Invariants (forward)

Non-relational vs relational analyses

Linear Relation Analysis

Classical Linear Relation Analysis

Some improvements

Diverse use of Al

Tools

Additional Material

LRA and acceleration

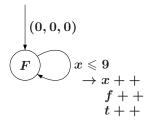
(Gonnord/Halbwachs 2006, Gonnord/Schrammel 2012, Schrammel/Jeannet 2014)

Combination LRA and acceleration techniques [Finkel/Sutre/Leroux/...]

- Abstract acceleration notion :
 - low-cost overapproximations;
 - inside LRA, combination with widening.
- Classification of accelerable loops.
- Prototype : ASPIC

Acceleration - accelerable loops

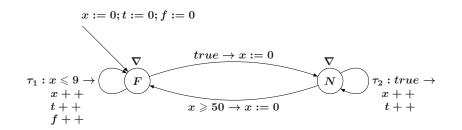
An easy case



- ▶ exact effect : $\exists i \in \mathbb{N}, x = f = t = i, 0 \le i \le 10$
- exact effect in the abstract domain :

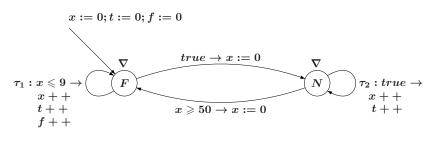
$${x = f = t, 0 \le t \le 10}$$

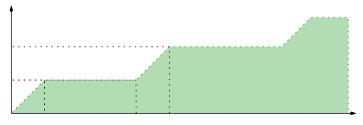
Gas Burner example - 1



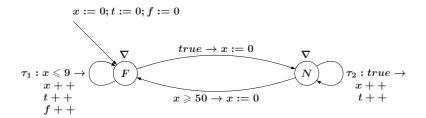
- ▶ f global leaking time
- ▶ t global time
- ▶ x local variable

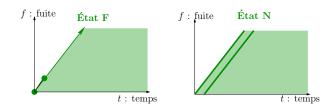
Gas burner 2 - Real Behaviour





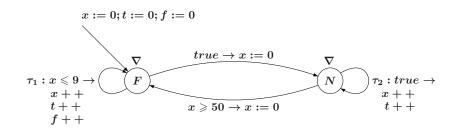
Gas burner 3 - with LRA

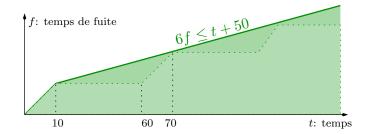




► Loss of precision

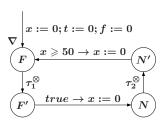
Gas burner - desired invariant





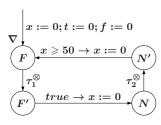
Accelerating the gas burner - 1

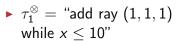
(mini-)loops are replaced $(\tau_i:g_i\to a_i)$

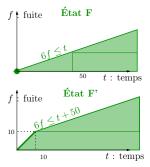


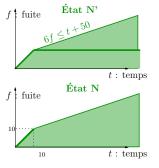
- $ightharpoonup au_i^{\otimes}$ summarizes the effect of any application of au_i (unfixed number of iterations).
- ► Outer loop is **widened**.

Accelerated Gas Burner - 2 back









SMT+LRA, Motivation: example 1

Some properties cannot be expressed in convex abstract domains:

 if_1

 if_2

ena

```
if (x >= 0) { xabs = x; }
  else { xabs = -x; }
if (xabs >= 0.01) {
  y = (sin(x) / x) - 1;
} else {
  xsq = x*x;
y = xsq*(-1/6. + xsq/120.);
}
```

▶ Store the fact that $x = xabs \lor x = -xabs$ at node if 2

SMT+ LRA, Motivation: example 2

The widening operator can be too coarse:

```
int x = 0;

while (true) {

if (nondet()) {

x = x+1;

if (x >= 100) \times = 0; x \ge 100

x := x + 1

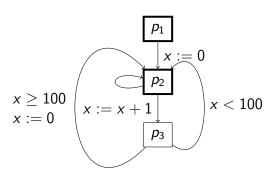
x := 0
x < 100
```

▶ The analysis (interval domain) gives $[0, +\infty)$, not improved by narrowing !

Two ideas

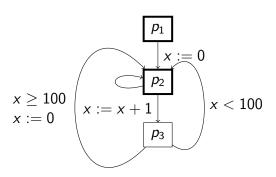
- First idea : do not compute the convex hull on "diamonds".
- Second idea : consider all paths and analyse them separately.
- Advantage : precision
- Drawback : combinatorial explosion
- ▶ Our method will implement these two ideas without computing all the program paths explicitely.

Invariants



Is x = 0 an invariant in p_2 ?

Invariants

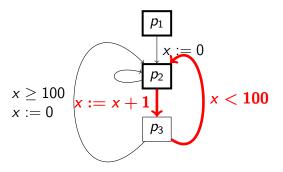


Is x = 0 an invariant in p_2 ?

▶ No! Because it's not stable.

Our method on example 2

Focus on the red path!



▶ Its least inductive invariant (for p_2) is $x \in [0, 99]$, which is also an invariant while considering the whole graph.

How to detect paths? back

We delegate the search for new paths to an SMT solver. The problem is encoded into an SMT-problem thanks to the use of an internal **structure**:

- compact; (complexity reasons)
- acyclic; (to reason about loops as for paths)
- ▶ all variables are assigned once (to reason about unique variable values).
- ► Preprocessing : computing this structure. (SAS 2011 for technical details)

