
Program verification
Data-flow analyses, numerical domains

Laure Gonnord and David Monniaux

University of Lyon / LIP

September 29, 2015

1 / 75

Context

Program Verification / Code generation:

I Variables : value range, scope, lifespan, constants, . . .

I Arrays : illicit accesses, alias discovery. . .

I Data Structures : memory leaks, null pointer
dereferences. . .

I static analyses, of different kinds

2 / 75

Plan
Data Flow analysis

Available expressions - Recall from Compiler Course
Live Variable analysis
Toward a generalisation of these analyses

Abstract Interpretation
Transition systems and invariants
Computing Invariants (forward)
Non-relational vs relational analyses

Linear Relation Analysis
Classical Linear Relation Analysis
Some improvements
Diverse use of AI

Tools

Additional Material

3 / 75

What for ?

Avoiding the computation of an (arithmetic) expression :

x:=a+b;

y:=a*b;

while(y>a+b) do

a:=a+a;

x:=a+b;

done

4 / 75

Some defs

Definition
An expression is killed in a block if any of its variables is used
in the block.

Definition
A generated expression is an expression evaluated in the
block and none of its variables is killed in the block.

I Sets : killAE (block) and genAE (block)

5 / 75

Data flow expressions

exit

entry

Block `

AEentry (`) =

{
∅ if ` = init⋂
{AEexit(`

′)|(`′, `) ∈ flow(G)}

AEexit(`) =
(
AEentry (`)\killAE (`)

)
∪ genAE (`)

6 / 75

On the example - equations

` killAE (`) genAE (`)
1 ∅ {a+b}
2 ∅ {a*b}
3 ∅ {a+b}
4 {a+b, a*b, a+1} ∅
5 ∅ {a+b}

non

oui

3

2

1

4

5

x:=a+b

y:=a*b

y>a+b ?

a:=a+1

x:=a+b

7 / 75

On the example - final solution

` AEentry (`) AEexit(`)
1 ∅ {a+b}
2 {a+b} {a*b, a*b}
3 {a+b} {a+b}
4 {a+b} ∅
5 ∅ {a+b}

I a+b is available on entry to the
loop, not a*b
I Improvement of code generation

non

oui

3

2

1

4

5

x:=a+b

y:=a*b

y>a+b ?

a:=a+1

x:=a+b

8 / 75

Another example : live ranges

x:=2;

y:=4;

x:=1;

if (y>x) then z:=y else z=y*y ;

x:=z;

Definition
A variable is live at the exit of a block if there exists a path
from the block to a use of the variable that does not redefine
the variable.

Problem : determine the set of variables that may be live after
each control point.

9 / 75

Data flow expressions

Definition
A variable that appears on the left hand side of an assignment
is killed by the block. Tests do no kill variables.

Definition
A generated variable is a variable that appears in the block.

I Sets : killLV (block) and genLV (block)

10 / 75

Data flow expressions

exit

entry

Block `

LVexit(`) =

{
∅ if ` = final⋃
{LVentry (`′)|(`′, `) ∈ flow(G)}

LVentry (`) =
(
LVexit(`)\killLV (`)

)
∪ genLV (`)

11 / 75

Final result and use

Backward analysis and we want the smallest sets, here is the
final result : (we assume all vars are dead at the end).
` LVentry (`) LVexit(`)
1 ∅ ∅
2 ∅ {y}
3 {y} {x , y}
4 {x , y} {y}
5 {y} {z}
5 {y} {z}
5 {z} ∅

I Use : Dead code elimination ! Note : can be improved by
computing the use-defs paths. (see Nielson/Nielson/Hankin)

12 / 75

Common points

I Computing growing sets from ∅ via fixpoint iterations. (or
the dual)

I Sets of equations of the form (collecting semantics) :

SS(`) =
⋃

(`′,`)∈E

f (SS(`′))

where f is computed w.r.t. the program statements

I SS is an abstract interpretation of the program.

13 / 75

Plan
Data Flow analysis

Available expressions - Recall from Compiler Course
Live Variable analysis
Toward a generalisation of these analyses

Abstract Interpretation
Transition systems and invariants
Computing Invariants (forward)
Non-relational vs relational analyses

Linear Relation Analysis
Classical Linear Relation Analysis
Some improvements
Diverse use of AI

Tools

Additional Material

14 / 75

Goal

Propagating information about program variables
(numerical,arrays, . . .) in order to get invariants.

I We focus on numerical variables here.

15 / 75

Initial states + transitions

Program or machine state = values of variables, registers,
memories. . . within state space Σ.

Examples:

I if system state = 17-bit value, then Σ = {0, 1}17 ;

I = 3 unbounded integers, Σ = Z3 ;

I if finite automaton, Σ is the set of states ;

I if stack automaton, complete state = pair (finite state,
stack contents), thus Σ = ΣS × Σ∗P .

Transition relation → x → y = “if at x then can go to y at
next time”.

16 / 75

Reachable states

Let Σ0 ⊆ Σ the set of initial states of the program.
The reachable states are obtained by successively applying
the transition relation, hence σ is reachable iff :

∃σ0 ∈ Σ0 σ0 →∗ σ

We also define Xn as the set of states reachable in at most n
turns : X0 = Σ0, X1 = Σ0 ∪ R(Σ0),
X2 = Σ0 ∪ R(Σ0) ∪ R(R(Σ0)), etc.

with R(X) = {y ∈ Σ | ∃x ∈ X x → y}.
The sequence Xk is ascending for ⊆. Its limit (= the union of
all iterates) is the set of reachable states.

17 / 75

Reachable states for programs

kinit k1

cos(y) ≤ x → x := x+ 1

x 6= y → y := yx

true → y := y + 2

Semantics of the programs as transition systems :

I A state is a pair (pc ,Val) :

Val : Var→ N d

I Var is [[0, . . . , d − 1]] (finite set, d vars)
I N is N, Z, Q

I Initial states : (pc0, allv).

18 / 75

Iterative computation

Remark Xn+1 = φ(Xn) with φ(X) = Σ0 ∪ R(X).

How to compute efficiently the Xn? And the limit?

I Explicit representations of Xn (list all states) : If Σ finite,
Xn converges in at most |Σ| iterations.

I else, we have to cope with two problems :
I Representing the Xi s and computing R(Xi).
I Computing the limit ?

I X∞ = ∪φn(X0) is the strongest invariant of the program
I Looking for overapproximations : X∞ ⊆ Xresult also called
invariant.

19 / 75

Invariants for programs

init

loop

end

x := 0

x ≥ 100

x ≤ 99

→ x++

I {x ∈ N, 0 ≤ x ≤ 100} is the most precise invariant in
control point loop.

20 / 75

Back to our problem

Given a program (or an interpreted automaton), find inductive
invariants for each control point : Recall : a state is a pair

(pc ,Val) :
Val : Var→ N d

I We want to compute lfp(φ) with

φ(X) = X0 ∪ {y ∈ Σ | ∃x ∈ X x → y}

and → entails the actions of the program.

21 / 75

Representing sets of valuations

First problem to cope with : represent sets of valuations

Val : Var→ N d

I Var is [[0, . . . , d − 1]] (finite set, d vars)

I N is N, Z, Q

I Find a finite representation !

22 / 75

Computing R

Second problem to cope with : computing the transition
relation

R(pc ,X) = {(pc ′, x ′)|∃x ∈ X and (pc , x)→ (pc ′, x ′)}

I X is a (representation of a) set of valuations

I → is the program transition function.

I Let’s try intervals (easy storage, easy computation) !

23 / 75

A first example

Try to compute an interval for each variable at each program
point using interval arithmetic :

assume (x >= 0 && x<= 1) ;
assume (y >= 2 && y= 3) ;
assume (z >= 3 && z= 4) ;
t = (x+y) ∗ z ;

Interval for z? [6, 16]

24 / 75

Loops?

Push intervals / polyhedra forward. . .

i n t x =0;
while (x<1000) {

x=x +1;
}

Loop iterations [0, 0], [0, 1], [0, 2], [0, 3],. . .

How? φ(X) = Initial state t R(X), thus
φ([a, b]) = {0} t [a + 1,min(b, 999) + 1]

I Stricly growing interval during 1000 iterations, then
stabilizes : [0, 1000] is an invariant.

25 / 75

Termination Problem

Third problem to cope with : stopping the computation :

I Too many computations

I unbounded loops

26 / 75

One solution. . .

Extrapolation!

[0, 0], [0, 1], [0, 2], [0, 3] → [0,+∞)

Push interval:

i n t x =0; /∗ [0 , 0] ∗/
while /∗ [0 , +i n f t y) ∗/ (x<1000) {

/∗ [0 , 9 9 9] ∗/
x=x +1;
/∗ [1 , 1 0 0 0] ∗/

}

Yes! [0,∞[is stable!

27 / 75

Computing inductive invariants as intervals

I Representation : intervals. The union leads to an
overapproximation.

I We don’t know how to compute R(P) with P interval
(The statements may be too complex, . . .)
I Replace computation by simpler over-approximation
R(X) ⊆ R](X).

I The convergence is ensured by extrapolation/widening.

I We always compute φ](X) with : φ(X) ⊆ φ](X)
In the end, over-approximation of the least fixed point of φ.

28 / 75

Computing inductive invariants as intervals - 2

Interval operations :

I +,−,× on intervals : interval arithmetic

I union : [a, b] ∪ [c , d] : loosing info !

I widening : (I1∇I2 with I1 ⊆ I2)

⊥∇I = I

[a, b]∇[c , d] = [if c < a then −∞ else a,

if d > b then +∞ else b]

The idea is to infer the dynamic of the intervals thanks to the
first terms.

29 / 75

Computing inductive invariants as intervals - 3
The widening operator being designed, we compute
(x ⊆ F (x))

Σ0,Y1 = Σ0∇F (Σ0),Y2 = Y1∇F (Y1) . . .

finite computation instead of :

Σ0,F (Σ0),F 2(Σ0), . . .

which can be infinite.

Theorem
(Cousot/Cousot 77) Iteratively computing the reachable states
from the entry point with the interval operators and applying
widening at entry nodes of loops converges in a finite number
of steps to a overapproximation of the least invariant (aka
postfixpoint).

I The widening operators must satisfy the non ascending
chain condition (see Cousot/Cousot 1977).

30 / 75

Invariants for programs - ex 1

init

loop

end

x := 0

x ≥ 100

x ≤ 99

→ x++

I x ∈ [0,+∞] in loop.

31 / 75

Computing inductive invariants as intervals - ex 2

x = random (0 , 7) ;
y = c os (x)+x
while (y<=100) {

i f (x>2) x−−;
e l s e {

y = −4;
x−−;

}
}

32 / 75

Nested loops / Several loops

(Bourdoncle, 1992) Computing strongly connected
subcomponents and iterate inside each :

0

1 2 3 4

7 5 8 9

6

Gray nodes are widening nodes

33 / 75

Improving precision after convergence - 1

i n t x =0; /∗ [0 , 0] ∗/
while /∗ [0 , +i n f t y) ∗/ (x<1000) {

/∗ [0 , 9 9 9] ∗/
x=x +1;
/∗ [1 , 1 0 0 0] ∗/

}

we got [0,+∞) instead of [0, 999]. Run one more iteration of
the loop: {0} t [1, 1000] = [0, 1000]. Check if [0, 1000] is an
inductive invariant ? YES
I This is called narrowing or descending sequence : ends
when we have an inductive invariant or after k applications of
the transition function.

34 / 75

Improving precision after convergence - 2

Let x̂ be the result of the computation

Result
The descending sequence always improves precision.

Proof : lfp(F) ⊆ x̂ , then F (lfp(F)) = lfp(F) ⊆ F (x̂), and
F (x̂) is again a correct invariant. If x̂ is not a fixpoint, then
F (x̂) ⊂ x̂ , so is a strictly better invariant.

35 / 75

Best invariant in domain not computable

P () ;
x =0;

Best invariant at end of program, as interval?

[0, 0] iff P() terminates
∅ iff P() does not terminate

Entails solving the halting problem.

36 / 75

When intervals are not sufficient

assume (x >= 0 && x <= 1) ;
y = x ;
z = x−y ;

I The human (intelligent) sees z = 0 thus interval [0, 0],
taking into account y = x .

I Interval arithmetic does not see z = 0 because it does not
take y = x into account.

37 / 75

How to track relations

Using relational domains.

E.g.: keep

I for each variable an interval

I for each pair of variables (x , y) an information x − y ≤ C .

I (One obtains x = y by x − y ≤ 0 and y − x ≤ 0.)

How to compute on that?

38 / 75

Bounds on differences : practical example

Suppose x − y ≤ 4, computation is z = x + 3, then we know
z − y ≤ 7.

Suppose x − z ≤ 20, that x − y ≤ 4 and that y − z ≤ 6, then
we know x − z ≤ 10.

We know how to compute on these relations (transitive
closure / shortest path).
On our example, obtain z = 0.

39 / 75

Why this is useful

Let t(0..n) an array in the program.
The program writes t(i).

Need to know whether 0 ≤ i ≤ n, otherwise said find bounds
on i and on n − i . . .

40 / 75

Can we do better?

How about tracking relations such as 2x + 3y ≤ 6?

At a given program point, a set of linear inequalities.

In other words, a convex polyhedron.

41 / 75

Plan
Data Flow analysis

Available expressions - Recall from Compiler Course
Live Variable analysis
Toward a generalisation of these analyses

Abstract Interpretation
Transition systems and invariants
Computing Invariants (forward)
Non-relational vs relational analyses

Linear Relation Analysis
Classical Linear Relation Analysis
Some improvements
Diverse use of AI

Tools

Additional Material

42 / 75

Intro

(Halbwachs/Cousot 1979)

I Abstract Interpretation in the Polyhedral domain

I Infinite Domain with many particularities

I Discover affine relations on variables

I Classically used in verification problems.

43 / 75

The polyhedral domain (1)

Convex polyhedra representation :

I Effective and efficient algorithmic (emptyness test, union,
affine transformation . . .)

44 / 75

The polyhedral domain(2)

I Intersection, emptyness

I Affine Transformation : a(P) = {CX + D | X ∈ P}.
I Convex hull (loss of precision)

45 / 75

The Polyhedral domain (3)

Widening : P∇Q : limit extrapolation.
P∇Q constraints : take Q constraints and remove those
which are not saturated by P .

Trick (!) : {x = y = 0} = {0 ≤ y ≤ x ≤ 0}

46 / 75

Analysis example - 1

x:=0;y:=0

while (x<=100) do

read(b);

if b then

x:=x+2

else begin

x:=x+1;

y:=y+1;

end;

endif

endwhile

p

pin

x 6 100 →

x := x + 1
y := y + 1

x 6 100 →

x := x + 2

(x, y) := (0, 0)

pout

x > 100

47 / 75

Example - 2

p

pin

x 6 100 →

x := x + 1
y := y + 1

x 6 100 →

x := x + 2

(x, y) := (0, 0)

pout

x > 100

48 / 75

Linear Relation Analysis - Problems

Complexity increases with :

I number of control points

I number of numerical variables

Approximation is due to :

I Convex hulls

I Widening

(credits for these slides : Nicolas Halbwachs)

49 / 75

Complexity

(In general) The more precise we are, the higher the costs.

I Intervals: algorithms O(n), n number of variables.

I Differences x − y ≤ C : algorithms O(n3)

I Octagons ±x ± y ≤ C (Miné) : algorithms O(n3)

I Polyhedra (Cousot / Halbwachs): algorithms often O(2n).

50 / 75

Delaying widening - 1

Halbwachs 1993 / Goubault 2001 / Blanchet et al. 2003

Fix k and compute :

Xn =


⊥ if n = 0

F (Xn−1) if n < k

Xn−1∇F (Xn−1) else.

I Similar to unrolling loops, costly but useful (regular
behaviour after a constant number of iterations).

51 / 75

Delaying widening - 2 - ex

p

q0

x > 0 →

x := x + 1

x = 0 →

x := x + 1

y := y + 1

x := 0; y := 0

52 / 75

Improving the widening operator
While applying P∇Q, intersect with constraints that are
satisfied by bith P and Q. The constraints must be
precomputed.

init

loop

end

x := 0

x ≥ 100

x ≤ 99

→ x++

Here, with “x ≤ 100” in the pool of constraints, it avoids
narrowing.
I Warning widening is not monotone, so improving locally
is not necessarily a good idea !

53 / 75

Local improvement with acceleration

(Gonnord/Halbwachs 2006, Schrammel 2012)
Idea : Sometimes, a fixpoint of a loop can be easily computed
without any fixpoint iteration.
More details here

54 / 75

Good path heuristic

(Gonnord/Monniaux 2011)
Idea : find interesting paths by means of smt-queries
More details here

55 / 75

Applications
I Bounds on iterators of arrays (intervals, differences on

bounds)
I Dead code elimination (all domains) - especially when the

code has been automatically generated / asserts
I Vectorization : computations that can be permuted
I Memory optimisation : this int can be encoded in 16 bits

?
I Preconditions for code specialization (on going work with

F. Rastello)
I Safety analysis

56 / 75

Plan
Data Flow analysis

Available expressions - Recall from Compiler Course
Live Variable analysis
Toward a generalisation of these analyses

Abstract Interpretation
Transition systems and invariants
Computing Invariants (forward)
Non-relational vs relational analyses

Linear Relation Analysis
Classical Linear Relation Analysis
Some improvements
Diverse use of AI

Tools

Additional Material

57 / 75

Tools - Academic

ASPIC : Accelerated Symbolic Polyhedral Invariant
Computation
Aspic is an invariant generator :

I From counter automata with numerical variables.

I Invariants are polyhedra.

C2fsm is a C parser :

I From a source file in (a subset of) C into Aspic input
language (fast).

I Safe abstractions of non numerical variables, structures,
behaviors.

I http://laure.gonnord.org/pro/aspic/aspic.html

58 / 75

http://laure.gonnord.org/pro/aspic/aspic.html

Tools - More robust

I Frama-C : analysing/ proving correction of C programs
(see http://frama-c.com/

I Apron : numerical domain interface
(http://apron.cri.ensmp.fr/library/)

I Interproc : IA analyser connected to Apron (see
http://pop-art.inrialpes.fr/interproc/

interprocweb.cgi

I Rose / LLVM : C (and more) parsers and API for
manipulating C programs. Rose is more decidated to
program transformation, LLVM to compiler
construction(http://www.rosecompiler.org/ and
http://llvm.org/.

59 / 75

http://frama-c.com/
http://apron.cri.ensmp.fr/library/
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
http://www.rosecompiler.org/
http://llvm.org/

Industrial succes stories

I Polyspace

I Astree

I See later for anecdotes.

60 / 75

Plan
Data Flow analysis

Available expressions - Recall from Compiler Course
Live Variable analysis
Toward a generalisation of these analyses

Abstract Interpretation
Transition systems and invariants
Computing Invariants (forward)
Non-relational vs relational analyses

Linear Relation Analysis
Classical Linear Relation Analysis
Some improvements
Diverse use of AI

Tools

Additional Material

61 / 75

LRA and acceleration

(Gonnord/Halbwachs 2006, Gonnord/Schrammel 2012,
Schrammel/Jeannet 2014)

Combination LRA and acceleration techniques
[Finkel/Sutre/Leroux/...]

I Abstract acceleration notion :
I low-cost overapproximations;
I inside LRA, combination with widening.

I Classification of accelerable loops.

I Prototype : ASPIC

62 / 75

Acceleration - accelerable loops

An easy case

F

(0, 0, 0)

x 6 9
→ x + +

f + +
t + +

I exact effect : ∃i ∈ N, x = f = t = i , 0 ≤ i ≤ 10
I exact effect in the abstract domain :
{x = f = t, 0 ≤ t ≤ 10}

63 / 75

Gas Burner example - 1

F

∇

x := 0; t := 0; f := 0

τ1 : x 6 9 → N

∇

τ2 : true →

true → x := 0

x > 50 → x := 0

x + +

t + +

x + +

t + +

f + +

I f global leaking time

I t global time

I x local variable

64 / 75

Gas burner 2 - Real Behaviour

F

∇

x := 0; t := 0; f := 0

τ1 : x 6 9 → N

∇

τ2 : true →

true → x := 0

x > 50 → x := 0

x + +

t + +

x + +

t + +

f + +

65 / 75

Gas burner 3 - with LRA

F

∇

x := 0; t := 0; f := 0

τ1 : x 6 9 → N

∇

τ2 : true →

true → x := 0

x > 50 → x := 0

x + +

t + +

x + +

t + +

f + +

t : temps t : temps

État Ff : fuite f : fuite État N

I Loss of precision

66 / 75

Gas burner - desired invariant

F

∇

x := 0; t := 0; f := 0

τ1 : x 6 9 → N

∇

τ2 : true →

true → x := 0

x > 50 → x := 0

x + +

t + +

x + +

t + +

f + +

6f ≤ t+ 50f : temps de fuite

t: temps60 7010

67 / 75

Accelerating the gas burner - 1

(mini-)loops are replaced (τi : gi → ai)

F

∇

F ′

x := 0; t := 0; f := 0

τ
⊗
1

N

N ′

τ
⊗
2

true → x := 0

x > 50 → x := 0

I τ⊗i summarizes the effect of any application of τi (unfixed
number of iterations).
I Outer loop is widened.

68 / 75

Accelerated Gas Burner - 2 back

F

∇

F ′

x := 0; t := 0; f := 0

τ
⊗
1

N

N ′

τ
⊗
2

true → x := 0

x > 50 → x := 0
I τ⊗1 = “add ray (1, 1, 1)

while x ≤ 10”

I τ⊗2 = “add ray (1, 0, 1)”

6f ≤ t+
50

6f ≤ t+
50

6f ≤ t

50

10

1010

10

f : fuite

t : tempst : temps

t : temps t : temps

f : fuite

f : fuite

État F

f : fuite

État N’

État NÉtat F’

69 / 75

SMT+LRA, Motivation : example 1

Some properties cannot be expressed in convex abstract
domains:

i f (x >= 0) { xabs = x ; }
e l s e { xabs = −x ; }

i f (xabs >= 0 .01) {
y = (s i n (x) / x) − 1 ;

} e l s e {
xsq = x∗x ;

y = xsq ∗(−1/6. + xsq / 1 2 0 .) ;
}

if1

if2

end

I Store the fact that x = xabs ∨ x = −xabs at node if 2

70 / 75

SMT+ LRA, Motivation : example 2

The widening operator can be too coarse:

i n t x = 0 ;
w h i l e (t r u e) {

i f (nondet ()) {
x = x+1;
i f (x >= 100) x = 0 ;

} }

p1

p2

p3

x := 0

x := x + 1
x ≥ 100
x := 0

x < 100

I The analysis (interval domain) gives [0,+∞), not improved
by narrowing !

71 / 75

Two ideas

I First idea : do not compute the convex hull on
“diamonds”.

I Second idea : consider all paths and analyse them
separately.

I Advantage : precision

I Drawback : combinatorial explosion

I Our method will implement these two ideas without
computing all the program paths explicitely.

72 / 75

Invariants

p1

p2

p3

x := 0

x := x + 1
x ≥ 100
x := 0

x < 100

Is x = 0 an invariant in p2 ?

I No ! Because it’s not stable.

73 / 75

Invariants

p1

p2

p3

x := 0

x := x + 1
x ≥ 100
x := 0

x < 100

Is x = 0 an invariant in p2 ?
I No ! Because it’s not stable.

73 / 75

Our method on example 2

Focus on the red path !

p1

p2

p3

x := 0

x := x + 1
x ≥ 100
x := 0

x < 100

I Its least inductive invariant (for p2) is x ∈ [0, 99], which is
also an invariant while considering the whole graph.

74 / 75

How to detect paths ? back

We delegate the search for new paths to an SMT solver.
The problem is encoded into an SMT-problem thanks to the
use of an internal structure:

I compact; (complexity reasons)

I acyclic; (to reason about loops as for paths)

I all variables are assigned once (to reason about unique
variable values).

I Preprocessing : computing this structure.
(SAS 2011 for technical details)

75 / 75

	Data Flow analysis
	Available expressions - Recall from Compiler Course
	Live Variable analysis
	Toward a generalisation of these analyses

	Abstract Interpretation
	Transition systems and invariants
	Computing Invariants (forward)
	Non-relational vs relational analyses

	Linear Relation Analysis
	Classical Linear Relation Analysis
	Some improvements
	Diverse use of AI

	Tools
	Additional Material

