
Program verification
Proving Termination of flowcharts programs

Laure Gonnord and David Monniaux

University of Lyon / LIP

October 20th, 2015

Joint work with Christophe Alias, Alain Darte, and Paul Feautrier (Compsys, ENS

Lyon), Gabriel Radanne and Lucas Seguinot (ENS Bretagne), David Monniaux

(Verimag, Grenoble) and Raphael-Ernani. Rodriguez (Univ Mineas Gerais Brasil).

Plan
Introduction

Termination proofs, what for ?
Termination proofs, how ?
Pre-processing

A first algorithm : SAS 2010
Formalisation
An algorithm to compute 1D affine functions
An algorithm for multidimensional ranking functions
First experimental results

Scalability issues

Scaling : PLDI 2015
Motivation and big picture
Counter-example based algorithm
Some details on implementation
Experimental results
Conclusion

2 / 60

Plan
Introduction

Termination proofs, what for ?
Termination proofs, how ?
Pre-processing

A first algorithm : SAS 2010
Formalisation
An algorithm to compute 1D affine functions
An algorithm for multidimensional ranking functions
First experimental results

Scalability issues

Scaling : PLDI 2015
Motivation and big picture
Counter-example based algorithm
Some details on implementation
Experimental results
Conclusion

3 / 60

Goal : Safety

Prove that (some) loops terminate:

int main () {
unsigned int i,j ;
i=42 ; j=1515 ;
while(i>0)i-- ;
while(j>=0)j++ ;

}

✔
✘

I Fight against bugs.

4 / 60

Goal : Optimisation

Prove that (some) loops terminate:

int main () {
unsigned int i,j ;
i=42 ; j=1515 ;
while(i>0) i-- ;
foo(j);

}

✔

I Code motion (compiler optimisation).

5 / 60

But

Termination (Halting Problem) is undecidable !

I Use conservative algorithms : YES (+ witness) or
“Don’t Know” (+ potential infinite path)
I On restricted classes of programs.

6 / 60

Hoare rule [1969] for total correctness

Partial correctness :

{P} while B do S done {not(B) and P}

P and B } S { P }{

7 / 60

Hoare rule [1969] for total correctness

Total correctness :

(D, <) well-founded{ t=z and t∈ D and and t<z and t∈ D }

{P} while B do S done {not(B) and P}

P and B } S { P

7 / 60

Hoare rule [1969] for total correctness

Total correctness :

(D, <) well-founded{ t=z and t∈ D and and t<z and t∈ D }

{P} while B do S done {not(B) and P}

P and B } S { P

I Find (D, <) and t !

7 / 60

First easy example

assume(N>0);

i=N;

while(i>0) --i;

I (N, <) and t = i .

8 / 60

Restriction

In this course, we will only focus on:

Numerical (sequential) flowcharts programs
no thread, no recursive call, no function call, no list, no pointer.

I A great restriction, but still undecidable
I We are able to synthesize ranking functions in some cases.

9 / 60

Agenda

I A (conservative) algorithm to find affine ranking
functions.

I Scalability issues and other improvements.

10 / 60

Our model for programs

Interpreted affine automata (K, n, kinit , T)

I K : control points

I n rational variables x

I kinit ∈ K the initial control point

I T the set of transitions (k , g , a, k ′)

kinit

k1 k2

t1 :
N > 0
i := N

t2 :
i > 1
j := N

t3 :
j > 1

j := j − 1

t4 :
j = 0

i := i− 1

11 / 60

C program to automata + invariants

Preprocessing :

I Compilation + abstraction of non numerical behaviors.
Not trivial.

I We also compute numerical invariants (polyhedra on each
control point) (see course 3 on invariant generation).

12 / 60

Two papers

I SAS 2010 : Alias, Darte, Feautrier, Gonnord.

I PLDI 2015 : Gonnord, Monniaux, Radanne.

13 / 60

Plan
Introduction

Termination proofs, what for ?
Termination proofs, how ?
Pre-processing

A first algorithm : SAS 2010
Formalisation
An algorithm to compute 1D affine functions
An algorithm for multidimensional ranking functions
First experimental results

Scalability issues

Scaling : PLDI 2015
Motivation and big picture
Counter-example based algorithm
Some details on implementation
Experimental results
Conclusion

14 / 60

Termination for affine automata (I)

What is a ranking function for a given affine automaton ?

I A mapping from (state, value) to a well-founded set

I Decreasing (strictly) on each transition.

15 / 60

Termination for affine automata (II)

Monodimensional affine ranking function: (N, <)

start

W

true
i:=N

(1 <= i)
i:=i-1

stop

(i <= 0)

ρ(st, i ,N) =


2 + N0 if st = start

i + 1 if st = W

0 if st = stop

16 / 60

Termination for affine automata (III)

Multidimensional affine ranking function: (Nd , <lex)

ρ(k , ~x) = Ak .~x + ~bk

//N>0

i = N;

while(i>0)

{

j = N;

while(j>0) j--;

i--;

} iN0

N

j

17 / 60

Introduction

Problem statement
Given:

I An affine automaton.

I Some affine invariants on each control point.

Find a 1D (affine) ranking function.

18 / 60

Finding a 1D-ranking function as an affine form

assume(N>0);

i=N;

while(i>0) --i;

start

W

true
i:=N

(1 <= i)
i:=i-1

stop

(i <= 0)

Searching for αpc,− ∈ Q:

ρ(start, ~x) = αstart,1.i + αstart,2.N

+ αstart,3.i0 + αstart,4.N0

+ αstart,5

ρ(W , ~x) = αW ,1.i + . . .

ρ(stop, ~x) = αstop,1.i + . . .

The constraints are :

I For each control point : ρ(pc , ~x) ≥ 0
on Ppc

I For each transition (~x ′ − ~x) ∈ t ⇒
ρ(dest, ~x ′)− ρ(src , ~x) > 0

19 / 60

Finding a 1D-ranking function as an affine form

assume(N>0);

i=N;

while(i>0) --i;

start

W

true
i:=N

(1 <= i)
i:=i-1

stop

(i <= 0)

Searching for αpc,− ∈ Q:

ρ(start, ~x) = αstart,1.i + αstart,2.N

+ αstart,3.i0 + αstart,4.N0

+ αstart,5

ρ(W , ~x) = αW ,1.i + . . .

ρ(stop, ~x) = αstop,1.i + . . .

The constraints are :

I For each control point : ρ(pc , ~x) ≥ 0
on Ppc

I For each transition (~x ′ − ~x) ∈ t ⇒
ρ(dest, ~x ′)− ρ(src , ~x) > 0

19 / 60

Arglll, “forall” constraints

ρ(pc , ~x) ≥ 0 on PW gives (control point W):

∀i ,N ∈ PW , αW ,1.i + . . . ≥ 0

(~x ′ − ~x) ∈ t ⇒ ρ(dest, ~x ′)− ρ(src , ~x) > 0 for the “loop
transition”:

∀i ,N , i ′,N ′ ∈ Ptransition, αW ,1(i ′ − i) + . . . > 0

Unknowns are α∗,∗. “Forall” in (possibly) infinite domains !?

20 / 60

Arglll, “forall” constraints

ρ(pc , ~x) ≥ 0 on PW gives (control point W):

∀i ,N ∈ PW , αW ,1.i + . . . ≥ 0

(~x ′ − ~x) ∈ t ⇒ ρ(dest, ~x ′)− ρ(src , ~x) > 0 for the “loop
transition”:

∀i ,N , i ′,N ′ ∈ Ptransition, αW ,1(i ′ − i) + . . . > 0

Unknowns are α∗,∗. “Forall” in (possibly) infinite domains !?

20 / 60

A very useful theorem

Farkas Lemma
An affine form which is positive on a (convex) polyhedron can
be expressed as a linear combination of the polyhedron’s
constraints.

21 / 60

Finding a 1D ranking function : linearization

1- Constraints for control points : ρ(pc , ~x) ≥ 0 on Ppc .

Here (for W) PW = {N0 > 0,N = N0, 0 ≤ i ≤ N} thus :

ρ(W , ~x) = λW ,1.(N0 − 1) + λW ,2.(N0 − N)

+ λW ,3.(N − N0) + λW ,4.i + λW ,3.(N − i)

We were looking for ρ(W , ~x) with the following “template” :

ρ(W , ~x) = αW ,1.i + αW ,2.N + αW ,3.i0 + αW ,4.N0 + αW ,3

I Identifying coefficients for i : αW ,1 = λW ,4 − λW ,3, . . .
I We solved the for all problem.

22 / 60

Finding a 1D ranking function : linearization

1- Constraints for control points : ρ(pc , ~x) ≥ 0 on Ppc .

Here (for W) PW = {N0 > 0,N = N0, 0 ≤ i ≤ N} thus :

ρ(W , ~x) = λW ,1.(N0 − 1) + λW ,2.(N0 − N)

+ λW ,3.(N − N0) + λW ,4.i + λW ,3.(N − i)

We were looking for ρ(W , ~x) with the following “template” :

ρ(W , ~x) = αW ,1.i + αW ,2.N + αW ,3.i0 + αW ,4.N0 + αW ,3

I Identifying coefficients for i : αW ,1 = λW ,4 − λW ,3, . . .

I We solved the for all problem.

22 / 60

Finding a 1D ranking function : linearization

1- Constraints for control points : ρ(pc , ~x) ≥ 0 on Ppc .

Here (for W) PW = {N0 > 0,N = N0, 0 ≤ i ≤ N} thus :

ρ(W , ~x) = λW ,1.(N0 − 1) + λW ,2.(N0 − N)

+ λW ,3.(N − N0) + λW ,4.i + λW ,3.(N − i)

We were looking for ρ(W , ~x) with the following “template” :

ρ(W , ~x) = αW ,1.i + αW ,2.N + αW ,3.i0 + αW ,4.N0 + αW ,3

I Identifying coefficients for i : αW ,1 = λW ,4 − λW ,3, . . .
I We solved the for all problem.

22 / 60

Finding a 1D ranking function - linearization and

solving

2- Decreasing transitions :

(~x ′ − ~x) ∈ t ⇒ ρ(dest, ~x ′)− ρ(src , ~x ′) > 0

also gives affine constraints.

I A set of affine constraints. A Linear Programming solver
gives a model, which solves the problem.

23 / 60

Finding a 1D ranking function - linearization and

solving

2- Decreasing transitions :

(~x ′ − ~x) ∈ t ⇒ ρ(dest, ~x ′)− ρ(src , ~x ′) > 0

also gives affine constraints.

I A set of affine constraints. A Linear Programming solver
gives a model, which solves the problem.

23 / 60

Finding a 1D ranking function - example/demo

assume(N>0);

i=N;

while(i>0) --i;

start

W

true
i:=N

(1 <= i)
i:=i-1

stop

(i <= 0)

We find :

state start:

2+N__o

state W:

1+i

state stop:

0

24 / 60

But

Scoop : all programs are not linear !

I Synthesize multidimensional ranking functions.

25 / 60

The main idea

Idea
A multidimensional affine function is a vector of
monodimensional (partial) ranking functions.

ρ =


ρ1
ρ2
...
ρd



26 / 60

Finding a ranking function - nD

The multidimensional-case, a greedy algorithm

I i = 0; T = T , set of all transitions.

I While T is not empty do

I Find a 1D affine function σ, not increasing for any
transition, and decreasing for as many transitions as
possible.

I Let ρi = σ ; i = i + 1; (i th dimension)
I If no transition is decreasing, return false.
I Remove from T all decreasing transitions.

I d = i , return true.

27 / 60

Finding a ranking function - nD

The multidimensional-case, a greedy algorithm

I i = 0; T = T , set of all transitions.

I While T is not empty do

I Find a 1D affine function σ, not increasing for any
transition, and decreasing for as many transitions as
possible.

I Let ρi = σ ; i = i + 1; (i th dimension)
I If no transition is decreasing, return false.
I Remove from T all decreasing transitions.

I d = i , return true.

27 / 60

Modification of the constraint system

Pb How do we implement “decreasing for as many
transitions as possible” in the LP instance ?

Decreasing transitions constraints :

(~x ′ − ~x) ∈ t ⇒ ρ(dest, ~x ′)− ρ(src , ~x ′) > 0

→

(~x ′ − ~x) ∈ t ⇒ ρ(dest, ~x ′)− ρ(src , ~x ′) ≥ εt

with 0 ≤ εt ≤ 1

And the Objective function:

Maximize
∑

t εt

28 / 60

Modification of the constraint system

Pb How do we implement “decreasing for as many
transitions as possible” in the LP instance ?

Decreasing transitions constraints :

(~x ′ − ~x) ∈ t ⇒ ρ(dest, ~x ′)− ρ(src , ~x ′) > 0

→

(~x ′ − ~x) ∈ t ⇒ ρ(dest, ~x ′)− ρ(src , ~x ′) ≥ εt

with 0 ≤ εt ≤ 1

And the Objective function:

Maximize
∑

t εt

28 / 60

Example - 1

//N>0

i = N;

while(i>0)

{

j = N;

while(j>0) j--;

i--;

}

iN0

N

j

29 / 60

Example - 2

//N>0

i = N;

while(i>0){

j = N;

while(j>0) j--;

i--;

}

start

whiles

i := N
j := N

j > 0

j := j − 1

j = 0 ∧ i > 0

i := i− 1

j := N

Invariant for whiles :

−1 < i ≤ N,−1 < j ≤ N,N > 0,N = No

30 / 60

Example - 2

//N>0

i = N;

while(i>0){

j = N;

while(j>0) j--;

i--;

}

start

whiles

i := N
j := N

j > 0

j := j − 1

j = 0 ∧ i > 0

i := i − 1

j := N

N + 1

(i, ε > 0ε = 0

Invariant for whiles :

−1 < i ≤ N,−1 < j ≤ N,N > 0,N = No

30 / 60

Example - 2

//N>0

i = N;

while(i>0){

j = N;

while(j>0) j--;

i--;

}

start

whiles

i := N
j := N

j > 0

j := j − 1

j = 0 ∧ i > 0

i := i − 1

j := N

N + 1

(i, j)ε > 0

Invariant for whiles :

−1 < i ≤ N,−1 < j ≤ N,N > 0,N = No

30 / 60

Example - 2

//N>0

i = N;

while(i>0){

j = N;

while(j>0) j--;

i--;

}

start

whiles

i := N
j := N

j > 0

j := j − 1

j = 0 ∧ i > 0

i := i − 1

j := N

N + 1

(i, j)

Invariant for whiles :

−1 < i ≤ N,−1 < j ≤ N,N > 0,N = No

30 / 60

An additional result!

Theorem (Completeness of greedy algorithm w.r.t.
invariants)
If an affine interpreted automaton, with associated invariants,
has a multi-dimensional affine ranking function, then the
greedy algorithm generates one such ranking.
Moreover, the dimension of the generated ranking is minimal.

31 / 60

Summary of this part

From (arbitrary) flowchart programs :

I Compute an affine abstraction.

I Compute invariants on each control point.

I Compute and solve linear programming problems from the
graph and its invariants.

32 / 60

Bonus ! Computing a “WCET”

Worst-case computational complexity (WCCC): maximum
number of transitions fired by the automaton:

WCCC ≤ card
(⋃

k

ρ(k ,Pk)
)
≤
∑
k

card(ρ(k ,Pk))

I Use counting integer points algorithms

WCCC ≤ #ρ(start,Pstart)
+#ρ(whiles,Pwhiles)

= 1 + #{(i , j) | . . .}
= N2

0 + . . .

start

whiles

i := N
j := N

j > 0

j := j − 1

j = 0 ∧ i > 0

i := i − 1

j := N

N + 1

(i, j)

33 / 60

Our toolsuite “Rank”

I c2fsm for the front-end

I aspic for the invariants

I rank for the computation of the ranking function.

Available for demo at the url :

http://compsys-tools.ens-lyon.fr/

34 / 60

http://compsys-tools.ens-lyon.fr/

Some experimental results

Sorting arrays :

Name LOCs Time(c2fsm/analysis)1 dim
selection 20 1.0/0.4 3
insertion 12 0.6/0.22 3
bubble 22 1.2/0.4 3
shell 23 1.0/1.1 4
heap 45 3.0/2.8 3

1user time in seconds on a Pentium 2GHz with 1Gbyte RAM
35 / 60

Some comments on experimental results

I The algorithm works well on small challenging programs
from the litterature.

I The form of the automaton has a strong impact on the
invariants.

I The precision of invariants is crucial.

But the size of the LP instances grows exponentially and the
solvers cannot deal with too much variables

ex2 : 10 loc / automaton : 10 vars, 5 transitions

-- > 3LP, average 180L/75 cols

heapsort : 30 loc / automaton : 12 vars, 10 transitions

--> fail.

I Our algorithm does not scale.

36 / 60

Plan
Introduction

Termination proofs, what for ?
Termination proofs, how ?
Pre-processing

A first algorithm : SAS 2010
Formalisation
An algorithm to compute 1D affine functions
An algorithm for multidimensional ranking functions
First experimental results

Scalability issues

Scaling : PLDI 2015
Motivation and big picture
Counter-example based algorithm
Some details on implementation
Experimental results
Conclusion

37 / 60

2 ways of improvement

Two main directions of work :

I Divide and conquer : slice, cut, and go.

I Work on the ’practical’ complexity of the initial algorithm.

38 / 60

Divide and conquer

Global idea
Work on smaller instances of programs.

We use classical (static methods for safety) :

I slicing : we designed a specialized slicing for termination

I compute context information

I cut into kernels with preconditions

I prove termination on kernels.

I With C. Alias and G. Andrieu [Stop tool].

39 / 60

Work on the initial algorithm

Even after slicing/summarizing all programs are not tractable
with the first (monodimensional) algorithm.

I Idea 1 : work only on cutsets and on a compact version of
the graph (Henry/Monniaux)

I Idea 2 : Construct incrementaly the (dual) LP programs
with counter examples computed with an SMT-solver.
The size of LP programs does not depend on the
complexity of the transitions.

I These ideas lead to PLDI’15 and the tool Termite

40 / 60

Plan
Introduction

Termination proofs, what for ?
Termination proofs, how ?
Pre-processing

A first algorithm : SAS 2010
Formalisation
An algorithm to compute 1D affine functions
An algorithm for multidimensional ranking functions
First experimental results

Scalability issues

Scaling : PLDI 2015
Motivation and big picture
Counter-example based algorithm
Some details on implementation
Experimental results
Conclusion

41 / 60

Contributions of the PLDI paper

I A technique to prove that (some) loops terminate:
I Automatic generation of ranking functions
I Based on Linear Programming.
I Focus on scalability: incremental construction of LP

instances.

I Implemented as a standalone tool: Termite
I Capable of proving 119 on 129 programs of TermComp

benchmark.
I Competitive with other state-of-the-art tools.
I Publicly available on github.

42 / 60

Proving termination: ranking functions

Non strict Linear ranking function

I Non increasing along the transitions

I Positive

I Linear

Strict linear ranking function: decreasing by ≥ 1.

int main () {
unsigned int i,j ;
i=42 ; j=1515 ;
while(i>0)i-- ;

}
ρ=i+1

43 / 60

Existing techniques: drawbacks / solutions

Existing techniques: build a system of constraints and solve:

Size = O(#vars ×#Bblocks ×#transitions)

I scalability: all basic blocks big constraint systems

I precision: ρ must decrease at each transition.

Our technique:

I only considers a cut-set of basic blocks.

I considers loops as single transitions.

I We do not compute all paths explicitly (CEGAR-based
algorithm).

44 / 60

Our key insight : incremental generation of

constraints

Does it work?
⇒ look for counterexample

• Program
• Initial Guess

Yes No

4 The program
Terminates!

Refine with
counterexample.

45 / 60

Sub-problem

Given a single loop τ = t1 ∨ t2:

k0
t1 :

i ≤ 10 ∧ 0 ≤ j
i := i+ 1
j := j − 1

t2 :
0 ≤ i ∧ 0 ≤ j
i := i− 1
j := j − 1

+ an invariant I, compute ρ = λx + ` an affine function:

O
i

j

Initial position

t1t2

I Positive on I.

I Decreasing on τ .

w.l.o.g we suppose i0 = 10, j0 = 15

x =

(
i
j

)
is the vector of variables.

46 / 60

Solving the problem

Thanks to linearity + Farkas’ Lemma we are able to define:

LPI:invariants
ρ

Max termination
power on G

G: Dgenerators of

with D the set of reachable one-step differences:

D = {x− x′ | x, x′ ∈ I, (x, x′) ∈ τ}

I ρ positive, decreasing on G, and stricly decreasing on a
maximal subset of G

47 / 60

Simple algorithm for one control point

Idea : we construct G lazily.

Is there a path that
negates the fact ρ is a
strict ranking function?

SMT-query:
Is there any x, x′ such
that I ∧ τ ∧ ρ(x) −
ρ(x′) ≤ 0 ?

No Yes

I Program

τ + I

I Null ranking
function

ρ← 0
I G = ∅

Add the counter
example in G

Update:
G ← G ∪ (x− x′)

4 The program Ter-
minates!

Compute a new
ranking function
that “satisfies” all
elements of G.

Linear Program-
ming:

ρ← LP(I,G)

8 Stop : Fail

48 / 60

Simple algorithm for one control point

Idea : we construct G lazily.

Is there a path that
negates the fact ρ is a
strict ranking function?

SMT-query:
Is there any x, x′ such
that I ∧ τ ∧ ρ(x) −
ρ(x′) ≤ 0 ?

No Yes

I Program τ + I
I Null ranking

function ρ← 0
I G = ∅

Add the counter
example in G

Update:
G ← G ∪ (x− x′)

4 The program Ter-
minates!

Compute a new
ranking function
that “satisfies” all
elements of G.

Linear Program-
ming:

ρ← LP(I,G)

8 Stop : Fail

48 / 60

Simple algorithm for one control point

Idea : we construct G lazily.

Is there a path that
negates the fact ρ is a
strict ranking function?

SMT-query:
Is there any x, x′ such
that I ∧ τ ∧ ρ(x) −
ρ(x′) ≤ 0 ?

No Yes

I Program τ + I
I Null ranking

function ρ← 0
I G = ∅

Add the counter
example in G

Update:
G ← G ∪ (x− x′)

4 The program Ter-
minates!

Compute a new
ranking function
that “satisfies” all
elements of G.

Linear Program-
ming:

ρ← LP(I,G)

8 Stop : Fail

48 / 60

Simple algorithm for one control point

Idea : we construct G lazily.

Is there a path that
negates the fact ρ is a
strict ranking function?

SMT-query:
Is there any x, x′ such
that I ∧ τ ∧ ρ(x) −
ρ(x′) ≤ 0 ?

No Yes

I Program τ + I
I Null ranking

function ρ← 0
I G = ∅

Add the counter
example in G

Update:
G ← G ∪ (x− x′)

4 The program Ter-
minates!

Compute a new
ranking function
that “satisfies” all
elements of G.

Linear Program-
ming:

ρ← LP(I,G)

8 Stop : Fail

48 / 60

Simple algorithm for one control point

Idea : we construct G lazily.

Is there a path that
negates the fact ρ is a
strict ranking function?

SMT-query:
Is there any x, x′ such
that I ∧ τ ∧ ρ(x) −
ρ(x′) ≤ 0 ?

No Yes

I Program τ + I
I Null ranking

function ρ← 0
I G = ∅

Add the counter
example in G

Update:
G ← G ∪ (x− x′)

4 The program Ter-
minates!

Compute a new
ranking function
that “satisfies” all
elements of G.

Linear Program-
ming:

ρ← LP(I,G)

8 Stop : Fail

48 / 60

On the example

k0
t1 :

i ≤ 10 ∧ 0 ≤ j
i := i+ 1
j := j − 1

t2 :
0 ≤ i ∧ 0 ≤ j
i := i− 1
j := j − 1

O
i

j

Initial position

t1t2

Initial ρ← 0:

I SMT
(i , j) = (−1, 0), (i ′, j ′) = (0,−1) is
a counterex for ρ (from t1)
 G ← {(−1, 1)}.

I LP new candidate: ρ = 11− i .

I SMT
(i , j) = (11, 0), i ′, j ′ = (10,−1) is a
counterex for ρ (from t2)
 G ← G ∪ {(1, 1)}.

I LP new candidate: ρ = j + 1.

I SMT UNSAT ! ρ = j + 1 is strict

49 / 60

On the example

k0
t1 :

i ≤ 10 ∧ 0 ≤ j
i := i+ 1
j := j − 1

t2 :
0 ≤ i ∧ 0 ≤ j
i := i− 1
j := j − 1

O
i

j

Initial position

t1t2

x

x′

Initial ρ← 0:

I SMT
(i , j) = (−1, 0), (i ′, j ′) = (0,−1) is
a counterex for ρ (from t1)
 G ← {(−1, 1)}.

I LP new candidate: ρ = 11− i .

I SMT
(i , j) = (11, 0), i ′, j ′ = (10,−1) is a
counterex for ρ (from t2)
 G ← G ∪ {(1, 1)}.

I LP new candidate: ρ = j + 1.

I SMT UNSAT ! ρ = j + 1 is strict

49 / 60

On the example

k0
t1 :

i ≤ 10 ∧ 0 ≤ j
i := i+ 1
j := j − 1

t2 :
0 ≤ i ∧ 0 ≤ j
i := i− 1
j := j − 1

O
i

j

Initial position

t1t2

Initial ρ← 0:

I SMT
(i , j) = (−1, 0), (i ′, j ′) = (0,−1) is
a counterex for ρ (from t1)
 G ← {(−1, 1)}.

I LP new candidate: ρ = 11− i .

I SMT
(i , j) = (11, 0), i ′, j ′ = (10,−1) is a
counterex for ρ (from t2)
 G ← G ∪ {(1, 1)}.

I LP new candidate: ρ = j + 1.

I SMT UNSAT ! ρ = j + 1 is strict

49 / 60

On the example

k0
t1 :

i ≤ 10 ∧ 0 ≤ j
i := i+ 1
j := j − 1

t2 :
0 ≤ i ∧ 0 ≤ j
i := i− 1
j := j − 1

O
i

j

Initial position

t1t2

x

x′

Initial ρ← 0:

I SMT
(i , j) = (−1, 0), (i ′, j ′) = (0,−1) is
a counterex for ρ (from t1)
 G ← {(−1, 1)}.

I LP new candidate: ρ = 11− i .

I SMT
(i , j) = (11, 0), i ′, j ′ = (10,−1) is a
counterex for ρ (from t2)
 G ← G ∪ {(1, 1)}.

I LP new candidate: ρ = j + 1.

I SMT UNSAT ! ρ = j + 1 is strict

49 / 60

On the example

k0
t1 :

i ≤ 10 ∧ 0 ≤ j
i := i+ 1
j := j − 1

t2 :
0 ≤ i ∧ 0 ≤ j
i := i− 1
j := j − 1

O
i

j

Initial position

t1t2

Initial ρ← 0:

I SMT
(i , j) = (−1, 0), (i ′, j ′) = (0,−1) is
a counterex for ρ (from t1)
 G ← {(−1, 1)}.

I LP new candidate: ρ = 11− i .

I SMT
(i , j) = (11, 0), i ′, j ′ = (10,−1) is a
counterex for ρ (from t2)
 G ← G ∪ {(1, 1)}.

I LP new candidate: ρ = j + 1.

I SMT UNSAT ! ρ = j + 1 is strict

49 / 60

On the example

k0
t1 :

i ≤ 10 ∧ 0 ≤ j
i := i+ 1
j := j − 1

t2 :
0 ≤ i ∧ 0 ≤ j
i := i− 1
j := j − 1

O
i

j

Initial position

t1t2

Initial ρ← 0:

I SMT
(i , j) = (−1, 0), (i ′, j ′) = (0,−1) is
a counterex for ρ (from t1)
 G ← {(−1, 1)}.

I LP new candidate: ρ = 11− i .

I SMT
(i , j) = (11, 0), i ′, j ′ = (10,−1) is a
counterex for ρ (from t2)
 G ← G ∪ {(1, 1)}.

I LP new candidate: ρ = j + 1.

I SMT UNSAT ! ρ = j + 1 is strict
49 / 60

A major issue!

This algorithm doesn’t terminate in general:

I The set of counter examples can be infinite.

I If there is no strict ranking function.

Fix: limit the search area for the counterexample u = x− x′

I impose counterexamples to be in the boundary of D
(max-SMT).

I always improve the ranking or quit.

50 / 60

Control flow graph and LLVM representation

void simple_loop_constant () {

for(unsigned i=0; i<10; i++) {

// Do nothing

}

} block %0

br label %1

block %1

%i.0 = phi i32 [0, %0], [%5, %4]

%2 = icmp ult i32 %i.0 , 10

br i1 %2, label %3, label %6

block %6

ret void

block %3

br label %4

block %4

%5 = add i32 %i.0 , 1

br label %1

SMT encoding for control-flow-graph

(LLVM2SMT)

block %0

br label %1

block %1

%i.0 = phi i32 [0, %0], [%5, %4]

%2 = icmp ult i32 %i.0 , 10

br i1 %2, label %3, label %6

block %6

ret void

block %3

br label %4

block %4

%5 = add i32 %i.0 , 1

br label %1

SMT encoding for control-flow-graph

(LLVM2SMT)

block %0

br label %1

block %1

%i.0 = phi i32 [0, %0], [%5, %4]

%2 = icmp ult i32 %i.0 , 10

br i1 %2, label %3, label %6

block %6

ret void

block %3

br label %4

block %4

%5 = add i32 %i.0 , 1

br label %1

SMT encoding for control-flow-graph

(LLVM2SMT)
block %1 Down part

%2 = icmp ult i32 %i.0 , 10

br i1 %2, label %3, label %6

block %6

ret void

block %3

br label %4

block %4

%5 = add i32 %i.0 , 1

br label %1

block %0

br label %1

block %1 Up part

%i.0 = phi i32 [0, %0], [%5, %4]

SMT encoding for control-flow-graph

(LLVM2SMT)
block %1 Down part

x2 = i0 < 10
if x2 then b1 = e9 else

b1 = e10

block %6

e10 = b6

block %3

e9 = b3
b3 = e7

block %4

e7 = b4
x5 = i0 + 1
b4 = e8

block %0

false = b1
b1 = e6

block %1 Up part

e6 ∨ e8 = b5
i ′0 = ite e6 then 0 else if e8 then x5

e6

e10
e9

e7

e8

Software architecture

C

C program

Clang
+ LLVM

Pagai I

Invariants

LLVM
to SMT

τ

Transition relation

Termite

Z3opt

ρ

Ranking
function

http://termite-analyser.github.io/

53 / 60

http://termite-analyser.github.io/

Experimental setup

I Benchmarks: TermComp + others

I Machine: Intel(R) Xeon(R) @ 2.00GHz 20MB Cache.

I Other tools: (Rank), Aprove, Bchi Ultimate, Loopus.

I Issue : various front-ends / invariant generators

54 / 60

Comparison : Linear Programming instances sizes

On WTC benchmark (average per file):

Tool #lines
(con-

straints)

#columns
(variables)

Rank 584 229
Termite 5 2

Rank is the termination tool from [Alias et al, SAS 2010]

55 / 60

Timing Comparison

Timings exclude the front-end for Termite and Loopus.
56 / 60

Precision Comparison

57 / 60

In the paper

I The complete method: multidimensional algorithm, multi
control points.

I Correctness, Complexity.

I Experimental evaluation.

58 / 60

Summary

I A complete method to synthetise multidimensional
ranking functions

I Based on large block encoding + counter-example based
linear programming instance generation.

I Experiments show great results!

I http://termite-analyser.github.io/

59 / 60

http://termite-analyser.github.io/

Future Work

I Use the technique to also compute I.

I Conditional termination.

I Quantifier elimination.

60 / 60

	Introduction
	Termination proofs, what for ?
	Termination proofs, how ?
	Pre-processing

	A first algorithm : SAS 2010
	Formalisation
	An algorithm to compute 1D affine functions
	An algorithm for multidimensional ranking functions
	First experimental results

	Scalability issues
	Scaling : PLDI 2015
	Motivation and big picture
	Counter-example based algorithm
	Some details on implementation
	Experimental results
	Conclusion

