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Goal : Safety

Prove that (some) loops terminate:

int main () {
unsigned int i,j ;
i=42 ; j=1515 ;
while(i>0)i-- ;
while(j>=0)j++ ;

}

✔
✘

I Fight against bugs.
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Goal : Optimisation

Prove that (some) loops terminate:

int main () {
unsigned int i,j ;
i=42 ; j=1515 ;
while(i>0) i-- ;
foo(j);

}

✔

I Code motion (compiler optimisation).
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But

Termination (Halting Problem) is undecidable !

I Use conservative algorithms : YES (+ witness) or
“Don’t Know” (+ potential infinite path)
I On restricted classes of programs.

6 / 60



Hoare rule [1969] for total correctness

Partial correctness :

{P} while B do S done {not(B) and P}

P and B } S { P }{
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Total correctness :

(D, <) well-founded{ t=z and t∈ D and and t<z and t∈ D }

{P} while B do S done {not(B) and P}

P and B } S { P

I Find (D, <) and t !
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First easy example

assume(N>0);

i=N;

while(i>0) --i;

I (N, <) and t = i .
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Restriction

In this course, we will only focus on:

Numerical (sequential) flowcharts programs
no thread, no recursive call, no function call, no list, no pointer. . . ...

I A great restriction, but still undecidable
I We are able to synthesize ranking functions in some cases.
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Agenda

I A (conservative) algorithm to find affine ranking
functions.

I Scalability issues and other improvements.
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Our model for programs

Interpreted affine automata (K, n, kinit , T )

I K : control points

I n rational variables x

I kinit ∈ K the initial control point

I T the set of transitions (k , g , a, k ′)

kinit

k1 k2

t1 :
N > 0
i := N

t2 :
i > 1
j := N

t3 :
j > 1

j := j − 1

t4 :
j = 0

i := i− 1
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C program to automata + invariants

Preprocessing :

I Compilation + abstraction of non numerical behaviors.
Not trivial.

I We also compute numerical invariants (polyhedra on each
control point) (see course 3 on invariant generation).
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Two papers

I SAS 2010 : Alias, Darte, Feautrier, Gonnord.

I PLDI 2015 : Gonnord, Monniaux, Radanne.
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Termination for affine automata (I)

What is a ranking function for a given affine automaton ?

I A mapping from (state, value) to a well-founded set

I Decreasing (strictly) on each transition.
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Termination for affine automata (II)

Monodimensional affine ranking function: (N, <)

start

W

true
i:=N

(1 <= i)
i:=i-1

stop

(i <= 0)

ρ(st, i ,N) =


2 + N0 if st = start

i + 1 if st = W

0 if st = stop
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Termination for affine automata (III)

Multidimensional affine ranking function: (Nd , <lex)

ρ(k , ~x) = Ak .~x + ~bk

//N>0

i = N;

while(i>0)

{

j = N;

while(j>0) j--;

i--;

} iN0

N

j
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Introduction

Problem statement
Given:

I An affine automaton.

I Some affine invariants on each control point.

Find a 1D (affine) ranking function.
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Finding a 1D-ranking function as an affine form

assume(N>0);

i=N;

while(i>0) --i;

start

W

true
i:=N

(1 <= i)
i:=i-1

stop

(i <= 0)

Searching for αpc,− ∈ Q:

ρ(start, ~x) = αstart,1.i + αstart,2.N

+ αstart,3.i0 + αstart,4.N0

+ αstart,5

ρ(W , ~x) = αW ,1.i + . . .

ρ(stop, ~x) = αstop,1.i + . . .

The constraints are :

I For each control point : ρ(pc , ~x) ≥ 0
on Ppc

I For each transition (~x ′ − ~x) ∈ t ⇒
ρ(dest, ~x ′)− ρ(src , ~x) > 0
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Arglll, “forall” constraints

ρ(pc , ~x) ≥ 0 on PW gives (control point W ):

∀i ,N ∈ PW , αW ,1.i + . . . ≥ 0

(~x ′ − ~x) ∈ t ⇒ ρ(dest, ~x ′)− ρ(src , ~x) > 0 for the “loop
transition”:

∀i ,N , i ′,N ′ ∈ Ptransition, αW ,1(i ′ − i) + . . . > 0

Unknowns are α∗,∗. “Forall” in (possibly) infinite domains !?
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A very useful theorem

Farkas Lemma
An affine form which is positive on a (convex) polyhedron can
be expressed as a linear combination of the polyhedron’s
constraints.
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Finding a 1D ranking function : linearization

1- Constraints for control points : ρ(pc , ~x) ≥ 0 on Ppc .

Here (for W) PW = {N0 > 0,N = N0, 0 ≤ i ≤ N} thus :

ρ(W , ~x) = λW ,1.(N0 − 1) + λW ,2.(N0 − N)

+ λW ,3.(N − N0) + λW ,4.i + λW ,3.(N − i)

We were looking for ρ(W , ~x) with the following “template” :

ρ(W , ~x) = αW ,1.i + αW ,2.N + αW ,3.i0 + αW ,4.N0 + αW ,3

I Identifying coefficients for i : αW ,1 = λW ,4 − λW ,3, . . .
I We solved the for all problem.
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Finding a 1D ranking function - linearization and

solving

2- Decreasing transitions :

(~x ′ − ~x) ∈ t ⇒ ρ(dest, ~x ′)− ρ(src , ~x ′) > 0

also gives affine constraints.

I A set of affine constraints. A Linear Programming solver
gives a model, which solves the problem.
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Finding a 1D ranking function - example/demo

assume(N>0);

i=N;

while(i>0) --i;

start

W

true
i:=N

(1 <= i)
i:=i-1

stop

(i <= 0)

We find :

state start:

2+N__o

state W:

1+i

state stop:

0
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But

Scoop : all programs are not linear !

I Synthesize multidimensional ranking functions.
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The main idea

Idea
A multidimensional affine function is a vector of
monodimensional (partial) ranking functions.

ρ =


ρ1
ρ2
...
ρd


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Finding a ranking function - nD

The multidimensional-case, a greedy algorithm

I i = 0; T = T , set of all transitions.

I While T is not empty do

I Find a 1D affine function σ, not increasing for any
transition, and decreasing for as many transitions as
possible.

I Let ρi = σ ; i = i + 1; (i th dimension)
I If no transition is decreasing, return false.
I Remove from T all decreasing transitions.

I d = i , return true.
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Modification of the constraint system

Pb How do we implement “decreasing for as many
transitions as possible” in the LP instance ?

Decreasing transitions constraints :

(~x ′ − ~x) ∈ t ⇒ ρ(dest, ~x ′)− ρ(src , ~x ′) > 0

→

(~x ′ − ~x) ∈ t ⇒ ρ(dest, ~x ′)− ρ(src , ~x ′) ≥ εt

with 0 ≤ εt ≤ 1

And the Objective function:

Maximize
∑

t εt
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Example - 1

//N>0

i = N;

while(i>0)

{

j = N;

while(j>0) j--;

i--;

}

iN0

N

j
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Example - 2

//N>0

i = N;

while(i>0){

j = N;

while(j>0) j--;

i--;

}

start

whiles

i := N
j := N

j > 0

j := j − 1

j = 0 ∧ i > 0

i := i− 1

j := N

Invariant for whiles :

−1 < i ≤ N,−1 < j ≤ N,N > 0,N = No
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}
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i := N
j := N

j > 0

j := j − 1
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i := i − 1

j := N

N + 1

(i, j)
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An additional result!

Theorem (Completeness of greedy algorithm w.r.t.
invariants)
If an affine interpreted automaton, with associated invariants,
has a multi-dimensional affine ranking function, then the
greedy algorithm generates one such ranking.
Moreover, the dimension of the generated ranking is minimal.
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Summary of this part

From (arbitrary) flowchart programs :

I Compute an affine abstraction.

I Compute invariants on each control point.

I Compute and solve linear programming problems from the
graph and its invariants.
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Bonus ! Computing a “WCET”

Worst-case computational complexity (WCCC): maximum
number of transitions fired by the automaton:

WCCC ≤ card
(⋃

k

ρ(k ,Pk)
)
≤
∑
k

card(ρ(k ,Pk))

I Use counting integer points algorithms

WCCC ≤ #ρ(start,Pstart)
+#ρ(whiles,Pwhiles)

= 1 + #{(i , j) | . . .}
= N2

0 + . . .

start

whiles

i := N
j := N

j > 0

j := j − 1

j = 0 ∧ i > 0

i := i − 1

j := N

N + 1

(i, j)
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Our toolsuite “Rank”

I c2fsm for the front-end

I aspic for the invariants

I rank for the computation of the ranking function.

Available for demo at the url :

http://compsys-tools.ens-lyon.fr/
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Some experimental results

Sorting arrays :

Name LOCs Time(c2fsm/analysis)1 dim
selection 20 1.0/0.4 3
insertion 12 0.6/0.22 3
bubble 22 1.2/0.4 3
shell 23 1.0/1.1 4
heap 45 3.0/2.8 3

1user time in seconds on a Pentium 2GHz with 1Gbyte RAM
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Some comments on experimental results

I The algorithm works well on small challenging programs
from the litterature.

I The form of the automaton has a strong impact on the
invariants.

I The precision of invariants is crucial.

But the size of the LP instances grows exponentially and the
solvers cannot deal with too much variables

ex2 : 10 loc / automaton : 10 vars, 5 transitions

-- > 3LP, average 180L/75 cols

heapsort : 30 loc / automaton : 12 vars, 10 transitions

--> fail.

I Our algorithm does not scale.
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2 ways of improvement

Two main directions of work :

I Divide and conquer : slice, cut, and go.

I Work on the ’practical’ complexity of the initial algorithm.
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Divide and conquer

Global idea
Work on smaller instances of programs.

We use classical (static methods for safety) :

I slicing : we designed a specialized slicing for termination

I compute context information

I cut into kernels with preconditions

I prove termination on kernels.

I With C. Alias and G. Andrieu [Stop tool].
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Work on the initial algorithm

Even after slicing/summarizing all programs are not tractable
with the first (monodimensional) algorithm.

I Idea 1 : work only on cutsets and on a compact version of
the graph (Henry/Monniaux)

I Idea 2 : Construct incrementaly the (dual) LP programs
with counter examples computed with an SMT-solver.
The size of LP programs does not depend on the
complexity of the transitions.

I These ideas lead to PLDI’15 and the tool Termite
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Contributions of the PLDI paper

I A technique to prove that (some) loops terminate:
I Automatic generation of ranking functions
I Based on Linear Programming.
I Focus on scalability: incremental construction of LP

instances.

I Implemented as a standalone tool: Termite
I Capable of proving 119 on 129 programs of TermComp

benchmark.
I Competitive with other state-of-the-art tools.
I Publicly available on github.
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Proving termination: ranking functions

Non strict Linear ranking function

I Non increasing along the transitions

I Positive

I Linear

Strict linear ranking function: decreasing by ≥ 1.

int main () {
unsigned int i,j ;
i=42 ; j=1515 ;
while(i>0)i-- ;

}
ρ=i+1
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Existing techniques: drawbacks / solutions

Existing techniques: build a system of constraints and solve:

Size = O(#vars ×#Bblocks ×#transitions)

I scalability: all basic blocks  big constraint systems

I precision: ρ must decrease at each transition.

Our technique:

I only considers a cut-set of basic blocks.

I considers loops as single transitions.

I We do not compute all paths explicitly (CEGAR-based
algorithm).
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Our key insight : incremental generation of

constraints

Does it work?
⇒ look for counterexample

• Program
• Initial Guess

Yes No

4 The program
Terminates!

Refine with
counterexample.
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Sub-problem

Given a single loop τ = t1 ∨ t2:

k0
t1 :

i ≤ 10 ∧ 0 ≤ j
i := i+ 1
j := j − 1

t2 :
0 ≤ i ∧ 0 ≤ j
i := i− 1
j := j − 1

+ an invariant I, compute ρ = λx + ` an affine function:

O
i

j

Initial position

t1t2

I Positive on I.

I Decreasing on τ .

w.l.o.g we suppose i0 = 10, j0 = 15

x =

(
i
j

)
is the vector of variables.
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Solving the problem

Thanks to linearity + Farkas’ Lemma we are able to define:

LPI:invariants
ρ

Max termination 
power on G

G:    Dgenerators of

with D the set of reachable one-step differences:

D = {x− x′ | x, x′ ∈ I, (x, x′) ∈ τ}

I ρ positive, decreasing on G, and stricly decreasing on a
maximal subset of G

47 / 60



Simple algorithm for one control point

Idea : we construct G lazily.

Is there a path that
negates the fact ρ is a
strict ranking function?

SMT-query:
Is there any x, x′ such
that I ∧ τ ∧ ρ(x) −
ρ(x′) ≤ 0 ?

No Yes

I Program

τ + I

I Null ranking
function

ρ← 0
I G = ∅

Add the counter
example in G

Update:
G ← G ∪ (x− x′)

4 The program Ter-
minates!

Compute a new
ranking function
that “satisfies” all
elements of G.

Linear Program-
ming:

ρ← LP(I,G)

8 Stop : Fail
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On the example

k0
t1 :

i ≤ 10 ∧ 0 ≤ j
i := i+ 1
j := j − 1

t2 :
0 ≤ i ∧ 0 ≤ j
i := i− 1
j := j − 1

O
i

j

Initial position

t1t2

Initial ρ← 0:

I SMT
(i , j) = (−1, 0), (i ′, j ′) = (0,−1) is
a counterex for ρ (from t1)
 G ← {(−1, 1)}.

I LP new candidate: ρ = 11− i .

I SMT
(i , j) = (11, 0), i ′, j ′ = (10,−1) is a
counterex for ρ (from t2)
 G ← G ∪ {(1, 1)}.

I LP new candidate: ρ = j + 1.

I SMT UNSAT ! ρ = j + 1 is strict
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A major issue!

This algorithm doesn’t terminate in general:

I The set of counter examples can be infinite.

I If there is no strict ranking function.

Fix: limit the search area for the counterexample u = x− x′

I impose counterexamples to be in the boundary of D
(max-SMT).

I always improve the ranking or quit.
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Control flow graph and LLVM representation

void simple_loop_constant () {

for(unsigned i=0; i<10; i++) {

// Do nothing

}

} block %0

br label %1

block %1

%i.0 = phi i32 [ 0, %0 ], [ %5, %4 ]

%2 = icmp ult i32 %i.0 , 10

br i1 %2, label %3, label %6

block %6

ret void

block %3

br label %4

block %4

%5 = add i32 %i.0 , 1

br label %1



SMT encoding for control-flow-graph

(LLVM2SMT)

block %0

br label %1

block %1

%i.0 = phi i32 [ 0, %0 ], [ %5, %4 ]

%2 = icmp ult i32 %i.0 , 10

br i1 %2, label %3, label %6

block %6

ret void

block %3
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SMT encoding for control-flow-graph

(LLVM2SMT)

block %0

br label %1

block %1

%i.0 = phi i32 [ 0, %0 ], [ %5, %4 ]

%2 = icmp ult i32 %i.0 , 10

br i1 %2, label %3, label %6

block %6

ret void

block %3

br label %4

block %4

%5 = add i32 %i.0 , 1

br label %1



SMT encoding for control-flow-graph

(LLVM2SMT)
block %1 Down part

%2 = icmp ult i32 %i.0 , 10

br i1 %2, label %3, label %6

block %6

ret void

block %3

br label %4

block %4

%5 = add i32 %i.0 , 1

br label %1

block %0

br label %1

block %1 Up part

%i.0 = phi i32 [ 0, %0 ], [ %5, %4 ]



SMT encoding for control-flow-graph

(LLVM2SMT)
block %1 Down part

x2 = i0 < 10
if x2 then b1 = e9 else

b1 = e10

block %6

e10 = b6

block %3

e9 = b3
b3 = e7

block %4

e7 = b4
x5 = i0 + 1
b4 = e8

block %0

false = b1
b1 = e6

block %1 Up part

e6 ∨ e8 = b5
i ′0 = ite e6 then 0 else if e8 then x5

e6

e10
e9

e7

e8



Software architecture

C

C program

Clang
+ LLVM

Pagai I

Invariants

LLVM
to SMT

τ

Transition relation

Termite

Z3opt

ρ

Ranking
function

http://termite-analyser.github.io/
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Experimental setup

I Benchmarks: TermComp + others

I Machine: Intel(R) Xeon(R) @ 2.00GHz 20MB Cache.

I Other tools: (Rank), Aprove, Bchi Ultimate, Loopus.

I Issue : various front-ends / invariant generators
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Comparison : Linear Programming instances sizes

On WTC benchmark (average per file):

Tool #lines
(con-

straints)

#columns
(variables)

Rank 584 229
Termite 5 2

Rank is the termination tool from [Alias et al, SAS 2010]
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Timing Comparison

Timings exclude the front-end for Termite and Loopus.
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Precision Comparison
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In the paper

I The complete method: multidimensional algorithm, multi
control points.

I Correctness, Complexity.

I Experimental evaluation.
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Summary

I A complete method to synthetise multidimensional
ranking functions

I Based on large block encoding + counter-example based
linear programming instance generation.

I Experiments show great results!

I http://termite-analyser.github.io/
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Future Work

I Use the technique to also compute I.

I Conditional termination.

I Quantifier elimination.
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