Program verification

Proving Termination of flowcharts programs

Laure Gonnord and David Monniaux

University of Lyon / LIP

October 20th, 2015

Joint work with Christophe Alias, Alain Darte, and Paul Feautrier (Compsys, ENS
Lyon), Gabriel Radanne and Lucas Seguinot (ENS Bretagne), David Monniaux
(Verimag, Grenoble) and Raphael-Ernani. Rodriguez (Univ Mineas Gerais Brasil).

Plan

Introduction
Termination proofs, what for 7
Termination proofs, how ?
Pre-processing
A first algorithm : SAS 2010
Formalisation
An algorithm to compute 1D affine functions
An algorithm for multidimensional ranking functions
First experimental results
Scalability issues
Scaling : PLDI 2015
Motivation and big picture
Counter-example based algorithm
Some details on implementation
Experimental results Cle7<)

Conclusion
2/60

Plan

Termination proofs, what for 7
Termination proofs, how 7
Pre-processing

3/60

Goal : Safety

Prove that (some) loops terminate:
int main () {
unsigned int i, 3 ;
i=42 ; j=1515 ;
while (1i>0)i-—— ;
while (5>=0) j++ ; X
}

» Fight against bugs.

4/60

Goal : Optimisation

Prove that (some) loops terminate:

int main () {
unsigned int 1i,]
i=42 ; j=1515 ;

<vahile (i>0) i—— ; l/

oo (J);
}

» Code motion (compiler optimisation).

.
14

5/60

But

Termination (HALTING PROBLEM) is undecidable !
A
O)
pr——
» Use conservative algorithms : YES (+ witness) or

“Don’t Know" (+ potential infinite path)
» On restricted classes of programs.

6

60

Hoare rule [1969] for total correctness

Partial correctness :

{Pand B}S{P }

{P} while B do S done {not(B) and P}

7/60

Hoare rule [1969] for total correctness

Total correctness :

{t=zandte Dand Pand B} S {P andt<zandte D }

(D, <) well-founded

{P} while B do S done {not(B) and P}

7/60

Hoare rule [1969] for total correctness

Total correctness :

{t=z2andte Dand Pand B} S{P andt<zandte D} (D, <) well-founded

{P} while B do S done {not(B) and P}

» Find (D, <) and ¢t !

7/60

First easy example

assume (N>0) ;
i=N;
while(i>0) --i;

» (N,<)and t =i.

8/60

Restriction

In this course, we will only focus on:

Numerical (sequential) flowcharts programs
no thread, no I’eCUI’Sive Ca”, no function call, no list, no pointer.

» A great restriction, but still undecidable
» We are able to synthesize ranking functions in some cases.

9/60

Agenda

» A (conservative) algorithm to find affine ranking
functions.

» Scalability issues and other improvements.

10 /60

Our model for programs
Interpreted affine automata (IC, n, kinie, T)

» IC : control points

» n rational variables x

» kinir € K the initial control point

» T the set of transitions (k, g, a, k')

i >
. N> tr: =1
1" %=N)=
j=1
tg : —————————
Q.@ ° J:]_l

11/60

C program to automata -+ invariants

Preprocessing :
» Compilation + abstraction of non numerical behaviors.
Not trivial.

» We also compute numerical invariants (polyhedra on each
control point) (see course 3 on invariant generation).

ol

12 /60

Two papers

» SAS 2010 : Alias, Darte, Feautrier, Gonnord.
» PLDI 2015 : Gonnord, Monniaux, Radanne.

13 /60

Plan

A first algorithm : SAS 2010

Formalisation
An algorithm to compute 1D affine functions

An algorithm for multidimensional ranking functions
First experimental results

14 /60

Termination for affine automata (1)

What is a ranking function for a given affine automaton ?

» A mapping from (state, value) to a well-founded set

» Decreasing (strictly) on each transition.

15 /60

Termination for affine automata (Il)

Monodimensional affine ranking function: (N, <)

2+ Ny if st = start
p(st,i,N)=<i+1 ifst=W
0 if st = stop

16 /60

Termination for affine automata (lll)

Multidimensional affine ranking function: (Nd, <lex)
p(k,%) = A% + by

//N>0

i=0N;

while(i>0)

{
j=N
while(j>0) j--;
i--;

Introduction

Problem statement
Given:

» An affine automaton.

» Some affine invariants on each control point.

Find a 1D (affine) ranking function.

18 /60

Finding a 1D-ranking function as an affine form
Searching for ape,— € Q:

assume (N>0) ;

i=N; p(start,x) =

while(i>0) --i; +
I

p(W.x) =

p(stop, X) =

Oéstart,l'i + astart,2'N
Oéstart,3-i0 + astart,4-N0
astart,S

OéW’l.i + ...

stop,1-1 + ...

19/60

Finding a 1D-ranking function as an affine form
Searching for ape,— € Q:

assume (N>0) ;
i=N; p(start,X) = Qspare1i+ Qstare2-N
while(i>0) --i; + Qstart,3-10 + Qstar,a-No
+ Olstart 5
p(W,X) = awai+...
p(stop,X) = Qstop1-i+-..

The constraints are :

» For each control point : p(pc,x) >0
on Py

> For each transition (X' — X) € t =
p(dest, x") — p(src,xX) >0 0670

19/60

Arglll, “forall” constraints

p(pc,x) > 0 on Py gives (control point W):
VI,N € Pw,OéW’l.i—l—... >0

(X' — X) € t = p(dest, x') — p(src,X) > 0 for the “loop
transition”:

\V/i, N, i/, N, S PtransitiomaW,l(i/ - ’) +...> 0

20/60

Arglll, “forall” constraints

p(pc,x) > 0 on Py gives (control point W):
VI,N € Pw,OéW’l.i—l—... >0

(X' — X) € t = p(dest, x') — p(src,X) > 0 for the “loop
transition”:

\V/i, N, i/, N, S 'DtransitiomaW,l(i/ - ’) +...> 0

Unknowns are a .. “Forall” in (possibly) infinite domains !?

ol

20 /60

A very useful theorem

Farkas Lemma
An affine form which is positive on a (convex) polyhedron can

be expressed as a linear combination of the polyhedron’s
constraints.

21/60

Finding a 1D ranking function : linearization

1- Constraints for control points : p(pc,x) > 0 on Pp.
Here (for W) Py = {Ny > 0, N = Np,0 < i < N} thus:

p(W,)_(’) = >\W71.(N0 - 1) + >\W72.(N0 - N)
+ Awas (N = No) 4+ Awai+ Aws. (N —i)

22 /60

Finding a 1D ranking function : linearization

1- Constraints for control points : p(pc,x) > 0 on Pp.
Here (for W) Py = {No > 0, N = Np,0 < i < N} thus:

p(W,)?) =)\W71.(N0 - 1) + >\W72.(N0 - N)
+ Aws.(N—No) + Awai+ Aws.(N—i)

We were looking for p(W, X) with the following “template” :
p(W,)?) = O[W71.i + OCW’Z.N -+ OéW,3.l'0 + OéW74.N0 + aw 3

» Identifying coefficients for i: aw1 = Awas—Aws, ...

ol

22 /60

Finding a 1D ranking function : linearization

1- Constraints for control points : p(pc,x) > 0 on Pp.
Here (for W) Py = {No > 0, N = Np,0 < i < N} thus:

p(W,)_(‘) =)\W71.(N0 - 1) + >\W72.(N0 - N)
+ Aws.(N—No) + Awai+ Aws.(N—i)

We were looking for p(W, X) with the following “template” :
p(W,)?) = OéW71.i + OCW’Z.N + OZW,3.I'0 + OéW74.N0 + aw 3

» Identifying coefficients for i: aw1 = Awas—Aws, ...
» We solved the for all problem.

ol

22 /60

Finding a 1D ranking function - linearization and
solving

2- Decreasing transitions :
(X' — X) € t = p(dest, x') — p(src,x’) > 0

also gives affine constraints.

23/60

Finding a 1D ranking function - linearization and
solving

2- Decreasing transitions :
(X' — X) € t = p(dest, x') — p(src,x’) > 0

also gives affine constraints.

» A set of affine constraints. A Linear Programming solver
gives a model, which solves the problem.

ol

23 /60

Finding a 1D ranking function - example/demo

assume (N>0) ;
i=N;
while(i>0) --i; We find :

state start:
2+N__o

state W:
1+1

state stop:
0

24 /60

But

Scoop : all programs are not linear !

» Synthesize multidimensional ranking functions.

25 /60

The main idea

ldea
A multidimensional affine function is a vector of
monodimensional (partial) ranking functions.

P1
p=|"

Pd

26 /60

Finding a

ranking function - nD

The multidimensional-case, a greedy algorithm

» i =0; T =7, set of all transitions.

» While T is not empty do

>

Find a 1D affine function o, not increasing for any
transition, and decreasing for as many transitions as
possible.

Let p; =0 ; i =i+ 1; (i*" dimension)

If no transition is decreasing, return false.

Remove from T all decreasing transitions.

i, return true.

27 /60

Finding a ranking function - nD

The multidimensional-case, a greedy algorithm

» i =0; T =7, set of all transitions.
» While T is not empty do
» Find a 1D affine function o, not increasing for any
transition, and decreasing for as many transitions as
possible.
» Let pj =0 ; i =i+1; (i*h dimension)
» If no transition is decreasing, return false.
» Remove from T all decreasing transitions.

» d = i, return true.

27 /60

Modification of the constraint system

Pb How do we implement “decreasing for as many
transitions as possible” in the LP instance ?

Decreasing transitions constraints :

(X' — X) € t = p(dest, x') — p(src,x’) > 0

(;/ -X)et= p(dest,;’) — p(SfC,;/) e
with 0 <e <1

28 /60

Modification of the constraint system

Pb How do we implement “decreasing for as many
transitions as possible” in the LP instance ?

Decreasing transitions constraints :

(X' — X) € t = p(dest, x') — p(src,x’) > 0

(X' — X) € t = p(dest, x') — p(src,x') > e,
with 0 <¢ <1
And the Objective function:

Maximize), €

28 /60

EXample 21

//N>0

while(i>0)
{

while(§>0) j--
i-—;

-

N

Example - 2

//N>0
i=N; start
. ‘s

Wl.llle(l 0{ .

=N j:=N

while(j>0) j-—=; .., 3 - J=0Ai>0
i Gl whiles V=i
} ’ --- ji=N
Invariant for whiles :

~1<i<N,-1<j<N,N>O0N=N,

30/60

Example - 2

//N>0

i = N;

while(i>0){

J = N;. . j>0

i--;

¥ e=0 (1, e>0

Invariant for whiles :

—1<i<N-1<j<NN>0N=N,

ol

30/60

Example - 2

//N>0 start N +1
i = N; .

1 .=
Whlle(1>0){ =N

} (4,)

Invariant for whiles :

—1<i<N-1<j<NN>0N=N,

30/60

Example - 2

//N>0 start N +1
i = N; N
. . 1 .=
while(i>0){ =N
j=N ‘ . . j=0Ai>0
. . .]>O . \ . .
while(j>0) j--; .._ 1 whiles od=i—1
- ji=3 ([J PN
4 (i.5)

Invariant for whiles :

—1<i<N-1<j<NN>0N=N,

ol

30/60

An additional result!

Theorem (Completeness of greedy algorithm w.r.t.
invariants)

If an affine interpreted automaton, with associated invariants,
has a multi-dimensional affine ranking function, then the
greedy algorithm generates one such ranking.

Moreover, the dimension of the generated ranking is minimal.

ol

31/60

Summary of this part

From (arbitrary) flowchart programs :
» Compute an affine abstraction.
» Compute invariants on each control point.

» Compute and solve linear programming problems from the
graph and its invariants.

ol

32/60

Bonus | Computing a “"WCET"

Worst-case computational complexity (WCCC): maximum
number of transitions fired by the automaton:

WCCC < card (| Jp(k, Pi)) < card(p(k, Py))

» Use counting integer points algorithms

WCCC < #p(start, Pstart) start N+1
+#£p(whiles, Pyhiles) =y
j>0 R
—LE#D)]) 0 (Tam]
2

N
0t (i,)

ol

33 /60

Our toolsuite “Rank”

» C2FSM for the front-end
» ASPIC for the invariants

» RANK for the computation of the ranking function.

Available for demo at the url :

http://compsys-tools.ens-1lyon.fr/

34 /60

http://compsys-tools.ens-lyon.fr/

Some experimental results

Sorting arrays :

Name | LOCs | Time(c2fsm/analysis)! | dim
selection | 20 1.0/0.4 3
insertion | 12 0.6/0.22 3

bubble 22 1.2/0.4 3

shell | 23 1.0/11 4

heap 45 3.0/2.8 3

Luser time in seconds on a Pentium 2GHz with 1Gbyte RAM

ol

35/60

Some comments on experimental results

» The algorithm works well on small challenging programs
from the litterature.

» The form of the automaton has a strong impact on the
invariants.

» The precision of invariants is crucial.

But the size of the LP instances grows exponentially and the
solvers cannot deal with too much variables

ex2 : 10 loc / automaton : 10 vars, 5 transitions

-- > 3LP, average 180L/75 cols

heapsort : 30 loc / automaton : 12 vars, 10 transition:
--> fail.

» Our algorithm does not scale. 0(170

36 /60

Plan

Introduction
Termination proofs, what for 7
Termination proofs, how ?
Pre-processing
A first algorithm : SAS 2010
Formalisation
An algorithm to compute 1D affine functions
An algorithm for multidimensional ranking functions
First experimental results
Scalability issues
Scaling : PLDI 2015
Motivation and big picture
Counter-example based algorithm
Some details on implementation
Experimental results c>[f7<>

Conclusion
37/60

2 ways of improvement

Two main directions of work :
» Divide and conquer : slice, cut, and go.

» Work on the 'practical’ complexity of the initial algorithm.

ol

38 /60

Divide and conquer

Global idea

Work on smaller instances of programs.
We use classical (static methods for safety) :
» slicing : we designed a specialized slicing for termination
» compute context information
» cut into kernels with preconditions
» prove termination on kernels.
» With C. Alias and G. Andrieu [Stop tool].

39 /60

Work on the initial algorithm

Even after slicing/summarizing all programs are not tractable
with the first (monodimensional) algorithm.

» ldea 1 : work only on cutsets and on a compact version of
the graph (Henry/Monniaux)

» Idea 2 : Construct incrementaly the (dual) LP programs
with counter examples computed with an SMT-solver.
The size of LP programs does not depend on the
complexity of the transitions.

» These ideas lead to PLDI'15 and the tool Termite

ol

40 /60

Plan

Scaling : PLDI 2015
Motivation and big picture
Counter-example based algorithm
Some details on implementation
Experimental results
Conclusion

41 /60

Contributions of the PLDI paper

» A technique to prove that (some) loops terminate:

» Automatic generation of ranking functions

» Based on Linear Programming.

» Focus on scalability: incremental construction of LP
instances.

» Implemented as a standalone tool: TERMITE

» Capable of proving 119 on 129 programs of TERMCOMP
benchmark.

» Competitive with other state-of-the-art tools.

» Publicly available on github.

ol

42 /60

Proving termination: ranking functions

Non strict Linear ranking function
» Non increasing along the transitions
» Positive
» Linear

Strict linear ranking function: decreasing by > 1.

int main () {
unsigned int i, 73 ;
i=42 ; J=1515

while (i>0)i—- ,p +1

ol

43 /60

Existing techniques: drawbacks / solutions

Existing techniques: build a system of constraints and solve:

Size = O(#tvars x #Bblocks x #transitions)

» scalability: all basic blocks ~~ big constraint systems

» precision: p must decrease at each transition.

Our technique:
» only considers a cut-set of basic blocks.
» considers loops as single transitions.

» We do not compute all paths explicitly (CEGAR-based
algorithm).

ol

44 /60

Our key insight : incremental generation of
constraints

e Program
o Initial Guess

| |

Refine with
counterexample.

Does it work?
= look for counterexample

Yes No T

A
v/ The program
Terminates!

45 /60

Sub-problem

Given a single loop 7 = t; V ty:

AO<j 4 AS10A0<
i—1

ji=35—-1
+ an in/tariant Z, compute p = Ax + ¢ an affine function:

» Positive on Z.

» Decreasing on 7.

l.o.g we suppose ip = 10, jo = 15
X = jl) is the vector of variables.

ol

46 /60

Solving the problem

Thanks to linearity + Farkas' Lemma we are able to define:

G: generators of D o
Max termination

\ powerongG/

|
Z:invariants——» LP ‘—b P

with D the set of reachable one-step differences:
D={x—x|x,x €Z (x,x)er}

» p positive, decreasing on G, and stricly decreasing on a
maximal subset of §

ol

47 /60

Simple algorithm for one control point

Idea : we construct G lazily.

e Y
» Program
» Null ranking
function
. J
'a i Y
Is there a path that C
negates the fact pis a | OT.p”t‘? A=
strict ranking function? LI TUEHEH
that “satisfies” all
S J elements of G.
No Yes

Add the counter
example in G v
4

v/ The program Ter- X Stop : Fail

minates!

ol

48 /60

Simple algorithm for one control point

Idea : we construct G lazily.

e Y
» Program 7 + 7
» Null ranking
function p < 0
. s g - @ J
'a i Y
Is there a path that C
negates the fact pis a | OT.p”t‘? A=
strict ranking function? NS s
that “satisfies” all
S J elements of G.
No Yes

Add the counter
example in G v
4

v/ The program Ter- X Stop : Fail

minates!

ol

48 /60

Simple algorithm for one control point

Idea : we construct G lazily.

» Program 7 + 7
» Null ranking
function p < 0
" g="0 J
SMT-query:

Is there any x, x" such (Compute a new
tha$ IATAp(x)— < ranking function
p(x') <07 that “satisfies” all
\ J elements of G.

No Yes

Add the counter
example in G v
4

v/ The program Ter- X Stop : Fail

minates!

ol

48 /60

Simple algorithm for one control point

Idea : we construct G lazily.

» Program 7 + 7
» Null ranking
function p < 0
" g="0 J
SMT-query:

Is there any x, x" such (Compute a new
tha$ IATAp(x)— < ranking function
p(x') <07 that “satisfies” all
\ J elements of G.

No Yes

Update:
G+ GU(x—X) v
Y

v/ The program Ter- X Stop : Fail

minates!

ol

48 /60

Simple algorithm for one control point

Idea : we construct G lazily.

» Program 7 + 7
» Null ranking
function p < 0
. . g - @ J
SMT-query:
Is there any x, x’ such (Linear Program-
that Z A 7 A p(x) — < ming:
p(x) <07
L) p+ LP(Z,9)
No Yes
Update:
G+ GU(x—X) v
Y -
v/ The program Ter- X Stop : Fai
minates!

ol

48 /60

On the example

b, 0Sin0<] L G<10A0<
j Initial p < O:
| Jki,l position
+ +
2 Gl
D S

49 /60

On the example

g, 0SiN0<j g, LS10A0S]

j Initial p < O:
Initial position » SMT
6 AN ¢, (i) = (=1,0),(7,J') = (0, 1) is
a counterex for p from t1)
~ G« {(=1,1)}.

49 /60

On the example

g, 0SiN0<j g, LS10A0S]

j Initial p < O:
Initial position » SMT
t: ty (l7J) = (_170)7 (i/7.j/) = (07 _1) is

a counterex for p (from t;)
G —{(=L1)}
» LP new candidate: p =11 —J.

ol

49 /60

On the example

b 0<iNO< , . i<10A0<
L ey 1' =it 1
j=i—1 j=i-1

j Initial p < O:
Initial position » SMT
t: tr (’7]) = (_170)> (il,j/) = (07 _1) is
a counterex for p (from t;)
~ G+ {(-1,1)}.
» LP new candidate: p =11 —|.
; » SMT
¢ : (i,j) = (11,0),,j' = (10, —1) is a

counterex for p (from t,)
~ G +— GU{(1,1)}.
ol

49 /60

On the example

b OSiN0< . AS10A0<;
20 =1 L sy gy
Ji=g-1 Ji=i-1

j Initial p < O:
Initial position » SMT
A (i.)) = (~1,0),(7"./) = (0, ~1) is
a counterex for p from t1)
~ G —A{(-1,1)}.
» LP new candidate: p =11 — /.
. » SMT
¢ (i,j) = (11,0),7,j' = (10, 1) is a

counterex for p (from t,)
~ G+ GU{(1,1)}.
» LP new candidate: p = + 1. 0670

49 /60

On the example

b OSiN0< . AS10A0<;
20 =1 L sy gy
Ji=g-1 Ji=i-1

j Initial p < O:
Initial position » SMT
s, (i.)) = (~1,0),(7"./) = (0, ~1) is
a counterex for p from t1)
~ G« {(=1,1)}.
» LP new candidate: p =11 — /.
. » SMT
¢ (i,j) = (11,0),,j' = (10, —1) is a

counterex for p (from t,)
~ G+ GU{(1,1)}.
» LP new candidate: p =, + 1. 0(170
» SMT UNSAT ! p = + 1 is strict

49 /60

A major issue!

This algorithm doesn’t terminate in general:
» The set of counter examples can be infinite.

» If there is no strict ranking function.

Fix: limit the search area for the counterexample v = x — x’

» impose counterexamples to be in the boundary of D
(max-SMT).
» always improve the ranking or quit.

50 /60

Control flow graph and LLVM representation

void simple_loop_constant () {

for(unsigned i=0; i<10;

// Do mothing
}

i++) {

block %0

%5 = add %i.0, 1
br %1

(block %4 |

block %1
= phi L o, %0 1, [%5, %4]
%2 = icmp ult %#1i.0, 10
br %2, %3, %6

block %3 /

ret

SMT encoding for control-flow-graph

(LLVM2SMT)
block %1
[block %4]’ %i.0 = phi Lo, % 1, [%5, %]
%5 = add %i.0, %2 = icmp ult %i.0, 10
br br %2, %3, %6

\
- block %3 /
_bl k %
br ha x

-
[0}
ot
(o))

SMT encoding for control-flow-graph

(LLVM2SMT)
. block %1
[block %4 > %i.0 = phi Lo, %0 1, [%5, % 1]
%5 = add %i.0, 1 %2 = icmp ult %i.0, 10

br %1 br %2, %3, %6
block %3 / \

TN

S [ret void]
ret

SMT encoding for control-flow-graph
(LLVM2SMT)

block %1 Down part

%2 = icmp ult %i.0, 10
br %2, %3, %6

[N

[block%3] [block %6)

e

Y

[bodue)

%5 = add %i.0, 1
br %1

/

block %1 Up part
%i.0 = phi [o, %0 1, [%5, %4 1

SMT encoding for control-flow-graph
(LLVM2SMT)

[block %1 Down part]

X, = Ip < 10
if xo then b; = eg else

by = ey
'/ €10
block %3
o¢ Z block %6
€ = D3 —
&
block %0 block %4
false = by N e7:=i i‘f 1
bi=e 5b :O €
o 4 8
Eg

block %1 Up part

eV eg = bg
iy = ite g then 0 else if e then x5

Software architecture

Invariants

@

C program

©

Ranking
function

Transition relation

http://termite-analyser.github.io/

ol

53 /60

http://termite-analyser.github.io/

Experimental setup

» Benchmarks: TERMCOMP + others
» Machine: Intel(R) Xeon(R) @ 2.00GHz 20MB Cache.
» Other tools: (Rank), Aprove, Bchi Ultimate, Loopus.

» Issue : various front-ends / invariant generators

54 /60

Comparison : Linear Programming instances sizes

On WTC benchmark (average per file):

Tool #lines #columns
(con- (variables)
straints)
RANK 584 229
TERMITE 5 2

RANK is the termination tool from [Alias et al, SAS 2010]

55 /60

Timing Comparison

80

60

a0}

Average Analysis Time per file (ms)

0
Polybench

Timing comparison (Lower is better)

Timings exclude the front-end for TERMITE and LOOPUS.

100 Termite B3 Aprove
=S Loopus I Ultimate
v .
Sorts TermComp

ol

56 / 60

|

E&Z4 Aprove
I Ultimate

ez Termite

[EEd Loopus

0

3leulwlal 01 panod sajl) J0%

Precision Comparison

TermComp

Sorts
Precision comparison (higher is better)

Polybench

57 /60

In the paper

» The complete method: multidimensional algorithm, multi
control points.

» Correctness, Complexity.

» Experimental evaluation.

58 /60

Summary

» A complete method to synthetise multidimensional
ranking functions

» Based on large block encoding + counter-example based
linear programming instance generation.

» Experiments show great results!

» http://termite-analyser.github.io/

59 /60

http://termite-analyser.github.io/

Future Work

» Use the technique to also compute Z.
» Conditional termination.

» Quantifier elimination.

60 /60

	Introduction
	Termination proofs, what for ?
	Termination proofs, how ?
	Pre-processing

	A first algorithm : SAS 2010
	Formalisation
	An algorithm to compute 1D affine functions
	An algorithm for multidimensional ranking functions
	First experimental results

	Scalability issues
	Scaling : PLDI 2015
	Motivation and big picture
	Counter-example based algorithm
	Some details on implementation
	Experimental results
	Conclusion

